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A Note on Generalization Loss When Evolving
Adaptive Pattern Recognition Systems

Christian Igel, Senior Member, IEEE

Abstract—Evolutionary computing provides powerful methods
for designing pattern recognition systems. This design process is
typically based on finite sample data and therefore bears the risk
of overfitting. This paper aims at raising the awareness of various
types of overfitting and at providing guidelines for how to deal
with them. We restrict our considerations to the predominant sce-
nario in which fitness computations are based on point estimates.
Three different sources of losing generalization performance
when evolving learning machines, namely overfitting to training,
test, and final selection data, are identified, discussed, and exper-
imentally demonstrated. The importance of a pristine hold-out
data set for the selection of the final result from the evolved candi-
dates is highlighted. It is shown that it may be beneficial to restrict
this last selection process to a subset of the evolved candidates.

Index Terms—Evolutionary learning, machine learning, model
selection, overfitting, pattern recognition.

I. Introduction

EVOLUTIONARY algorithms are frequently and success-
fully used to design adaptive pattern recognition systems,

in particular, neural networks [1]–[3] and, more recently,
kernel-based learning machines [4]–[7]. The predominant de-
sign goal is to create learning systems that generalize well,
that is, accurately recognize patterns not used in the design
process.

In this paper, reasons for the loss of generalization perfor-
mance when evolving adaptive pattern recognition systems due
to overfitting are discussed. These considerations help improve
the design of adaptive systems and reveal that many estimates
of the generalization performance of evolved systems reported
in the literature are overoptimistic and may even be mislead-
ing.

Overfitting occurs when a hypothesis faithfully reflects
aspects of the data used in the design process to such an
extent that idiosyncrasies of these data, rather than merely
of the underlying distribution, shape the hypothesis [8]. Three
sources of overfitting are of special interest when evolving
learning systems:

1) overfitting to training data;
2) overfitting to evaluation data;
3) overfitting to final selection data.
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The first is well known and will only be discussed briefly, for
completeness. It describes the effect of getting a bad estimate
of system performance if the data for training are the same as
for performance evaluation. The second refers to overfitting to
data used in the selection process, for example, a fixed hold-
out data set on which the fitness is based. Because of this
second type of overfitting, it is argued that it is beneficial
to consider an additional data set for the final hypothesis
selection, that is, to be used to pick the final result from the
evolved learning machines. The third type of overfitting refers
to overfitting to this data set and ideas for reducing this type
of overfitting will be presented.

Section II introduces the notation and some basic concepts.
Section III will discuss three types of overfitting and recom-
mendations for reducing their effects. Then, experiments will
be presented to demonstrate the different sources of overfitting
and to show that the proposed countermeasures are indeed
helpful.

II. Background

First, a formal definition of the supervised learning problem
will be given. We will focus on classification, but these
considerations apply, as well, to other learning tasks, such as
ranking, regression, and density estimation. Then, a canonical
evolutionary algorithm for evolving learning machines will be
sketched.

A. Learning Problem

A supervised pattern classification problem can be described
by an input space X, a set of classes Y , and a joint probability
distribution P on X × Y . The goal of a pattern recognition
algorithm is to generate a hypothesis h : X → Y that
minimizes the generalization error

erP (h) =
∫

L(y, h(x))dP(x, y) (1)

given some loss function L : Y × Y → R with ∀y ∈ Y :
L(y, y) = 0. For a pattern x belonging to class y the loss
L(y, h(x)) quantifies the error when the hypothesis predicts
h(x) given x. In the following, we assume the canonical 0-1-
loss, which is zero if h(x) = y and 1 otherwise.

Learning is driven by a finite sample of training data
S = {(x1, y1), . . . , (x�, y�)} drawn i.i.d. according to P . The
empirical error of a hypothesis h on data set S is given by

erS(h) =
1

�

�∑
i=1

L(yi, h(xi)). (2)
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A learning machine A, given sample data, generates a hy-
pothesis. Formally, A : {((x1, y1), . . . , (x�, y�)) | 1 ≤ i ≤
� < ∞ and xi ∈ X, yi ∈ Y} → H, where H is a class
of hypotheses. We refer to this data-driven generation of a
hypothesis as model building or learning.

In the following sections, we will draw a basic bound
on generalization performance for binary classification to
illustrate some of the arguments. Let H be a finite set of
hypotheses mapping elements of X to Y ={−1, 1}. Then for
any � ∈ N+, any probability distribution P on X × {−1, 1},
an S = {(x1, y1), . . . , (x�, y�)} drawn i.i.d. according to P , and
any ε ∈ R+, we have

Pr{max
h∈H

| erP (h) − erS(h)| ≥ ε} ≤ 2|H|e−2ε2�. (3)

A proof can be found, for example, in [9]. The more data there
is (i.e., the larger �), the more concentrated is the estimate.
But also the fewer hypothesis to choose from (i.e., the smaller
|H|), the more concentrated is the estimate.

In the following, our primary interest is finding a good
hypothesis h minimizing erP (h). However, to select candidates
for solutions we need reliable estimates of their performance,
that is, we want | erP (h) − erS(h)| to be small in order to
make proper decisions about whether to select or discard h.
Note that a small / large erP (h) does not imply a small / large
| erP (h) − erS(h)| nor vice versa.

B. Evolving Learning Machines

When evolving adaptive pattern recognition systems the
goal is to find an appropriate learning machine for a given
problem or a class of problems. The solution is chosen from
a predefined set of learning machines. Each element a of the
search space G usually encodes one of these machines, which
is denoted by Aa.

Many evolutionary algorithms for the design of adaptive
systems more or less fit into the canonical scheme sketched
in Algorithm 1. Of course, they fundamentally differ in what
kinds of learning machines are considered and what is encoded
in the genome of individuals. For example, the genotypes
may encode hyperparameters of the learning algorithm (e.g.,
regularization parameters or learning rates), the topology of a
neural network or graphical model, or may control the data
preprocessing (e.g., in evolutionary feature selection).

In Algorithm 1, S denotes the data set available for the
whole design process. Typically, the algorithm has no access to
the underlying distribution P and cannot obtain new samples.
In each generation g, subsets of these data Strain and Sevolve are
used to generate and evaluate hypotheses, respectively. In this
canonical algorithm, it is possible but not necessary that the
current parents are reevaluated and considered in the selection
process. The selection of the final result a∗ can be based on
additional evaluations or can correspond to simply choosing
the fittest individual found so far.

Algorithm 1 is stated to illustrate where the (not necessarily
disjunct) data sets Strain, Sevolve, Sfinal ⊆ S are used in an evolu-
tionary design process. However, the following considerations
also hold for algorithms that only fit roughly into this scheme.

Algorithm 1 only captures evolutionary systems in which
the fitness value of an individual is based on a point estimate.

Algorithm 1: Simple canonical evolutionary algorithm for
the design of an adaptive system. The parent population
and offspring population at iteration g are denoted by
P (g) and O(g) with size μ and λ, respectively. The search
space G contains descriptions of learning algorithms that
generate hypotheses given sample data S

Data: sample data S

g = 0, initialize P (g) ∈ Gμ1

repeat2

create O(g) =
(
a

(g+1)
i | i = 1, . . . , λ

)
∈ Gλ from P (g)

3

for a ∈ O(g) ∪ P (g) do4

build model using Strain ⊆ S and compute fitness5

�(a) using Sevolve ⊆ S
end6

select P (g+1) ∈ Gμ from O(g) and P (g) based on fitness7

g ← g + 18

until some stopping criterion is met9

select final a∗ ∈
{

a
(g)
i | i = 1, . . . , λ ∧ g = 1, . . .

}
based10

on Sfinal ⊆ S

Output: a∗

It is assumed that each individual corresponds to a single
model, assigned a scalar performance value. Therefore, the
formal framework does not cover algorithms in which each
individual represents a probability distribution over models
or rather model parameters, as in full Bayesian approaches,
or interval estimates of these parameters (e.g., confidence
intervals). It does, however, include probabilistic approaches in
which probabilistic inference is used by the learning machine
to infer a single hypothesis. In particular, the learning machine
could map to the hypothesis corresponding to a maximum
likelihood estimate or a maximum a posteriori estimate of the
model parameters.

III. Three Ways of Overfitting

Three particular sources of overfitting when evolving adap-
tive pattern recognition systems will be identified and recom-
mendations will be given for how to deal with them.

A. Overfitting to Training Data

The first source of overfitting is the well-known fact that the
resubstitution method, in which the data for training the model
are the same as for estimating its performance, yields a bad
estimate of the performance of the system when a complex
predictor is built based on too few examples.

Let us consider evolutionary optimization of neural net-
works as an example. If Strain = Sevolve, that is, if the fitness
of each neural network is the error on the training set, then
the evolutionary process will clearly overfit to Strain = Sevolve.
For completeness, let us state this well-known problem and its
remedies.

Problem 1 (Overfitting to Training Data): Given a learn-
ing algorithm choosing from a rich class of hypothe-
ses, the training error of the produced hypothesis is an
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over-optimistically biased estimate of its generalization per-
formance.

Now, what does richness (or complexity or capacity) of a
hypothesis class mean in this context? It can be measured in
different ways, for example, in terms of the VC dimension
[10] or the Rademacher complexity [11], or, for a finite class,
simply by its cardinality. These measures of the richness of
a hypothesis class H have an intuitive interpretation in terms
of the possibility of finding a function in H fitting arbitrarily
labeled data. Furthermore, they have the desirable property
that they allow bounding the maximum difference between
the true and empirical loss for functions in H. An example of
such a bound is (3), which is only applicable to finite H and
uses the cardinality |H| as a measure of complexity.

Recommendation 1: Use as much data as possible in the
design process. Using more data for training a classifier will
in general improve its performance. Furthermore, the more
data points used to measure the performance of a classifier, the
more accurate this performance estimate can be expected to be.

The latter can be seen, for instance, by looking at (3).
Most people follow this obvious recommendation. However,
in practice the amount of data that can be used in the design
process is typically limited. First, often just a small amount
of proper training data is available. Second, there is an upper
limit on the number of data points used for either training
and/or evaluating a model due to time (and perhaps storage)
complexity problems. If the training time or evaluation time
of a model scales unfavorably with the number of data points,
then this imposes constraints on the sizes of the data sets (e.g.,
consider batch training of nonlinear support vector machines,
which scales at least quadratically with the number of training
data points [12]). Thus, we need additional measures to avoid
overfitting, beyond that of using more and more data in the
design process.

Problem 1 is called traditional overfitting by Langford
in [13]. He also summarizes the standard ways to reduce
traditional overfitting (including the first recommendation).

Recommendation 2 [13]: The effects of overfitting to
training data can be avoided by using independent data for
assessing the performance of the classifier, considering a less
rich class of predictors, increasing the number of training
patterns, and/or integrating over many predictors.

B. Overfitting to Evaluation Data

The first problem and its corresponding recommendations
are very widely accepted. However, Problem 2, which occurs
when evolving an adaptive pattern recognition system, is
almost as fundamental, but often ignored.

Problem 2 (Overfitting to Evaluation Data): When opti-
mizing (the parameters of) a learning algorithm to find a
proper hypothesis in a rich class of functions, the error on
data used to evaluate different (parameters of) algorithms may
be an over-optimistically biased estimate of the generalization
performance.

That is, samples repeatedly used for fitness evaluation will
not give reliable estimates of generalization performance,
regardless of whether they are used for training the machine
or not. This holds for all types of evaluation based on a

fixed data set such as the hold-out method, k-fold cross-
validation (rotation method) including the leave-one-out pro-
cedure, and bootstrapping [14]. For instance, although cross-
validation makes clever use of the available data within a
single generation, it does not per se circumvent the problem
of the same data points being used in subsequent generations.

Recommendation 3: Overfitting to evaluation data can be
avoided if the data used for evaluating the models in one
generation g are independent of the data used for evaluating
the models in all other generations g′�g. In the following, it
is assumed that Strain is independent of Sevolve.

This could be achieved if we could sample the patterns in
Sevolve anew in each iteration independently from the previous
iterations. This is, however, either not possible or too expen-
sive in most application scenarios (but a reasonable assumption
in computational models of biological evolution, e.g., in the
line of [15]). Given a fixed data set Sevolve for evaluation, we
could, alternatively, choose a maximum number of generations
G and a partition of Sevolve into G subsets S1

evolve, . . . , S
G
evolve

and use only S
g

evolve for evaluation in generation g. This
would implement the above recommendation. This procedure
could be refined by keeping track of all data sets S

g

evolve that
were used to evaluate some ancestor of an individual. Then,
the evaluation data set for each individual could be chosen
individually from those subsets that have not been used in the
evaluation of any ancestor of the individual (and the algorithm
stops if it runs out of data subsets for evaluating individuals).1

Recommendation 3 requires that enough data are available for
being split into a large number of subsets, each of which is
representative for the learning problem. Unfortunately, this is
often not the case in practice.

It is easy to see that overfitting to evaluation data can occur
if we agree that overfitting to training data can occur. Let us
consider adaptive systems that are trained using a data set Strain

and may overfit to that data set. If such systems are optimized
(e.g., in an evolutionary loop) based on an independent data
set Sevolve, then the whole adaptation process can be viewed
as a single adaptation algorithm operating on the training data
set S′

train = Strain ∪ Sevolve suffering from overfitting to S′
train.

Problem 2 can be viewed as automatic parameter tweak
overfitting, which can, in principle, be reduced using the same
methods as for minimizing traditional overfitting [13]. This
leads to the following good practice guideline.

Recommendation 4: Generalization performances must not
be reported and compared based on data used in the design
process. The generalization performance should be measured
and compared on an external data set Sextern that is independent
of the data S (and therefore of Sevolve and Sfinal) used in the
design process.

This means that it is not a valid procedure to use some
test data for determining the fitness of individuals and to
then go on to use these same data to report the performance
of the final hypothesis. This would lead to over optimistic
results.

If we agree that we lose generalization performance in
the evolutionary process, and if we take the fittest candidate

1This procedure was suggested by an anonymous reviewer.
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found in this process as our final result, then the duration of
the evolutionary optimization is crucial. The stopping time,
for example, given by the maximum number of generations,
is an important hyperparameter. The optimal stopping time
depends on both the algorithm and the problem. This implies
that statements such as “the evolutionary algorithm A pro-
duced classifiers with better generalization performance than
the evolutionary algorithm B although we ran it for fewer
generations” should perhaps be “the evolutionary algorithm
A produced classifiers with better generalization performance
than the evolutionary algorithm B because we ran it for
fewer generations.” Therefore, for an unbiased comparison
of algorithms it is necessary to study the effects of this
hyperparameter.

Recommendation 5: The number of evaluations in the evo-
lutionary process should be analyzed as to its influence on
overfitting, especially if the final result is taken to be the
solution with the best fitness.

The proper number of generations is not known a priori.
This leads to the idea of using early stopping to regularize
the design process. That is, if enough data are available, we
consider a data set not used in the evolutionary process at
all (also not used for measuring the final generalization per-
formance) for detecting overfitting. This data set can be used
to stop the evolutionary optimization as soon as overfitting
is observed and/or used for picking the final result from the
evolved pattern recognizers. We refer to this data set as final
selection data and denote it by Sfinal.

Instead of using an external data set, other early stopping
rules can be considered for determining when to stop or
for determining when one should have stopped, and then
discarding all candidate solutions after that time point. These
rules can be based on prior knowledge about the expected
performance of a proper hypothesis or they can be based on
heuristics analyzing the error trajectories, similar, for example,
to early stopping heuristics for neural network learning [16].

The previous recommendations argued several times for
hold-out data sets. Of course, if we have limited data resources,
this implies taking away data that could otherwise be used for
learning, and the more training data, the better the performance
of the learning machine. Finding a good tradeoff between
these data set sizes can be a challenging problem. Therefore,
whenever possible, using data efficient techniques such as
cross-validation is advisable.

C. Overfitting to Final Selection Data

If traditional overfitting is first-order overfitting to a data
set Strain and parameter tweak overfitting is second-order
overfitting to S′

train = Strain ∪Sevolve, then obviously there is also
a third-order overfitting to the final selection data. Accordingly,
we can define nth-order overfitting.

Problem 3 (Overfitting to Final Selection Data): Determi-
ning the final result based on a final selection data set Sfinal

bears the risk of overfitting to Sfinal.
Why should then a third hold-out data set Sfinal be helpful at

all? Why should this third overfitting problem be less severe
than the second one?

To begin with, it makes a crucial difference that we use Sfinal

only for one decision rather than using the same Sevolve for de-
cision making in every iteration of the optimization algorithm.
Furthermore, choosing from only very few hypotheses in the
last selection step may reduce the risk of overfitting. To see
this, let us look at (3), which indicates that the risk of wrongly
estimating the generalization performance and thus picking the
wrong candidate solution is reduced if fewer candidates are
considered.

Thus, the considerations in this and the previous section
lead to the following suggestion.

Recommendation 6: The final result should be selected
using a data set not used in the design process. Preferably, only
promising candidates should be considered in this selection
process.

Promising candidates could be the set of those individuals
that were the best in some generation (in contrast to consider-
ing all created individuals). This is the approach taken in, for
instance, [17]. One may well argue that there is still a need
for a better validation, both theoretical and experimental, that
this last recommendation is indeed helpful.

IV. Experiments

This section will show that the previous conceptual consid-
erations can actually make a difference in experimental studies.
To this end, we consider a toy feature selection application
from the literature and a simple evolutionary algorithm.

A. Example Problem

We consider the classic example by Trunk [18], [19] because
it fulfills the following requirements.

1) The problem should be simple to describe and evaluate.
2) The classifier should be consistent (i.e., converge to

the Bayes optimal classifier with increasing number of
training samples) and the learning process should always
find the parameter configuration that is assumed to be
optimal given the training data.

3) The generalization performance of a model should be
analytically computable.

The last point is of the utmost importance in the context of this
paper, because the goal is to analyze the effects of generating
a learning system based on finite sample data. Therefore, the
analysis should be based on a measure that is independent of
a sampling process (i.e., standard finite benchmark data sets
are not appropriate in this paper).

In this binary classification problem, d-dimensional feature
vectors x ∈ Rd have to be assigned to one of two classes,
which we label by 1 and −1. Both classes are a priori equally
likely. The likelihood of observing x ∈ Rd given the class
y ∈ {±1} is a Gaussian

p(x | y) =
1√
2π

e−‖x−ym‖2/2 (4)

with mean ym and unit covariance matrix. The vector m

has components mi =
√

1/i for i = 1, . . . , d. The Bayes
optimal decision rule assigns an input x to class 1 if xTm >

0 and to class 0 otherwise. The Bayes error is given by
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ρ

(√∑d
i=1 1/i

)
, where the auxiliary function ρ is defined

by

ρ(r) =
∫ ∞

r

1√
2π

e−z2/2dz. (5)

Since
∑d

i=1 1/i diverges for increasing d, it is easy to see that
increasing the number of features reduces the error probability,
which converges to zero as d increases [18]. The pattern
recognition algorithm we consider is a simple Bayes plug-
in classifier. We assume that we have the prior knowledge
that the class-conditional densities are Gaussians with unit
covariance matrices and that the problem is symmetric. Thus,
our learning algorithm just has to estimate d parameters,
namely the components of m. Given a training sample S =
{(x1, y1), . . . , (x�, y�)} the algorithm estimates m̂ =

∑�
i=1 yixi

and assigns an input x to class 1 if xTm̂ > 0 and to class
0 otherwise. The generalization error of this plug-in classifier
can be computed analytically by

ρ

(
mT m̂

‖m̂‖
)

. (6)

This can be proved as follows. Each hypothesis corresponds
to a separating hyperplane {x | xTm̂ = 0} through the origin.
Because of the symmetry of the problem, we can replace
all negative patterns (xi, −1) by positive patterns (−xi, 1).
Thus, the generalization error is given by the probability that
xTm̂ < 0 for x drawn according to a Gaussian with mean m

and unit covariance matrix. Because the distribution is spheri-
cal, we can decompose it into a 1-D Gaussian distribution with
unit variance generating random variations from the mean in
the directions ±m̂ normal to the hyperplane and a (d − 1)-
dimensional Gaussian distribution responsible for the varia-
tions in the subspace perpendicular to m̂. Only the component
normal to the hyperplane is relevant for the classification. The
probability of sampling a pattern that is wrongly classified
depends on the distance of m from the separating hyperplane,
which is given by mTm̂/‖m̂‖. The probability that a standard
normally distributed random variable generates a step in the
right direction of at least this length is given by (6).

As � → ∞, the plug-in classifier converges to the Bayes
optimal decision rule. However, Trunk showed that for fixed
� the error probability converges to chance level for d → ∞
[18]. Therefore, this problem commonly serves as an example
for showing the necessity of feature selection [19].

B. Evolutionary Feature Selection Algorithm

In the experiments, an evolutionary feature selection algo-
rithm was applied to the example problem described above.
The algorithm should select a proper subset of features from
a d-dimensional feature vector. Because we want to evolve a
simple solution that can be evaluated efficiently, we prefer a
small number of features.

Each individual in the evolutionary algorithm was repre-
sented by a d-dimensional bit string (i.e., the search space was
G = {0, 1}d), which encoded a plug-in classifier as described
above. Only if the ith bit was one did the plug-in classifier use
feature i.

Two fitness functions were considered. Let ‖a‖1 denote the
number of features used by individual a ∈ G (i.e., the number
of ones in the bit string). In the first fitness function, the
fitness was computed using a fixed hold-out data set. The data
available for the design process were partitioned into a fixed
training data set Strain and a test data set Sevolve. Each individual
generated a hypothesis based on Strain and was evaluated using
Sevolve

�hold-out(a) = erSevolve (Aa(Strain)) +
‖a‖1

d · |Sevolve| . (7)

The second term introduces a parsimony pressure. However,
the scaling by (d · |Sevolve|)−1 ensures that the test error domi-
nates the influence of the number of features. Only in the case
of equal classification performance is the candidate solution
with fewer features preferred.

In the second fitness function �CV, k-fold cross-validation
was used. The available data were partitioned into k disjoint,
equally sized subsets. For each of these subsets Stest, i, i =
1, . . . , k, the classifier was trained using the union Strain, i of
the k − 1 other sets and a test error was computed on the left-
out subset. The final cross-validation error is the average of
the k test errors

�CV(a) =
1

k

k∑
i=1

erStest, i
(Aa(Strain, i)) +

‖a‖1

d · ∑k
i=1 |Stest, i|

. (8)

The parent and offspring population size were set to μ =
λ = 100. The initial population contained bit strings drawn
uniformly at random. The offspring was generated by uniform
crossover and bit-flip mutation [20]. Each parent reproduced
once per generation. The probability of uniform crossover was
pc = 0.8. The probability a bit’s flipping was pm = d−1.
The μ new parents were selected from the current parents
and offspring by elitist EP-style tournament selection with
tournament size Q = 2 [21]. The number of splits in the cross-
validation procedure was set to k = 5 [14] and 100 independent
trials were conducted per problem scenario.

The maximum number of features was set to d = 500, the
number of generations to G = 500, and |Sevolve ∪ Strain| =
2000. In the first fitness function, |Strain| = 1000 was taken.
Additionally, an independent data set Sfinal with |Sfinal| = 100
was created.

Furthermore, a series of experiments was conducted in
which the data set Sevolve was resampled anew in each gen-
eration as discussed in Section III-B.2 In many applications,
resampling is not possible. However, this scenario, which
follows Recommendation 3, matches computational models of
natural evolution and also corresponds to the scenario in which
the amount of available data is so large that we can partition
it into subsets each of which is only used in one generation.

Let A =
{

a
(g)
i | i = 1, . . . , λ ∧ g = 1, . . . , G

}
be the set of

all candidate solutions created in the evolutionary process. We
define A∗ =

{
a∗(g) = argmina∈P (g) �(a) | g = 1, . . . , G

} ⊂ A,

2In such a scenario, using elitist selection and no re-evaluation of the parent
individuals is in general not recommended. However, this setting was used in
the experiments in order to keep the difference from the experiments with a
fixed hold-out data set as small as possible.
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the set of all individuals that have been the best in at least
one generation. Three ways to determine the final result of
the evolutionary optimization were considered.

1) Picking the candidate solution having the best overall
fitness

argmina∈A �(a). (9)

2) Selecting the final result by using the additional data
set Sfinal and choosing the individual minimizing erSfinal

among all created individuals

argmina∈A erSfinal (a). (10)

3) Selecting the final result by choosing the individual
minimizing erSfinal among all individuals that were the
best individual in some generation

argmina∈A∗ erSfinal (a). (11)

The latter is closely related to employing early stopping
(if the errors on Sfinal of the generations’ best individuals
were first nonincreasing and then, after reaching a minimum,
nondecreasing, a naive early stopping would give the same
result).

All experiments were conducted using the Shark machine
learning library [22].

C. Results and Discussion

Fig. 1 summarizes the results without resampling. Due to the
elitist selection, the fitness is nonincreasing. For both fitness
functions, overfitting to the evaluation data was observed, as
expected. This demonstrates the importance of Recommenda-
tion 4. In the early generations, the generalization error of the
best individual in the population went down before it increased
again, the expected effect that gave rise to Recommendation 5.
The cross-validation-based fitness function performed better.
Regardless of which of the three ways of determining the
result a∗ was applied, �CV yielded machines with better gen-
eralization performance than �hold-out. Furthermore, overfitting
was delayed. Still, even when cross-validation was used, the
generalization loss started surprisingly early. The experiments
show that stopping the evolutionary process early can indeed
be crucial.

Before overfitting starts, selecting the final result based
on fitness would have given the best generalizing solution.
However, already after 50–100 generations, picking the final
result from A∗ based on Sfinal should have been preferred in
accordance with Recommendation 6. Choosing the solution
from the generations’ best using the hold-out final selection
data suffered less from overfitting. The differences between the
two strategies relying on Sfinal are highly statistically signifi-
cant (Wilcoxon rank-sum test in generation 500, p < 0.001).

Considering only the best individuals from each generation
appeared to be clearly superior to choosing from all created
individuals. The latter strategy was much worse in the begin-
ning and gave similar results later in the course of evolution
compared to considering simply the fitness. This supports our
considerations about concentrating on promising candidates

Fig. 1. Results using a single hold-out data set (top) and 5-fold cross-
validation (bottom). The curves refer to the median of 100 trials. The solid
line shows the fitness based on a hold-out data set. The other three curves
show the true generalization performance erP of solutions. The first nonsolid
line gives the generalization error of the fittest individual in the population.
The second nonsolid line gives the performance of the individual that was
selected from all solutions generated so far using a hold-out data set Sfinal. The
third nonsolid line shows the performance if the final result was not selected
from all individuals using Sfinal, but only from the best in a generation. Note
that choosing based on a finite data set Sfinal led to an increase in the true
generalization performance erP shown in the figure.

in the final selection step, as stated in Recommendation 6 and
realized in [17].

Thus, using a hold-out data set Sfinal and monitoring per-
formance of the generations’ best individuals using Sfinal

can indeed help. The experiments also indicate the potential
advantages of selecting the final result by taking the best
individual from A∗ in terms of erSfinal , as recommended in
Section III-C.

Increasing the size of Sfinal would of course reduce the effect
of overfitting (see Recommendation 1). In the experiments,
a small Sfinal was considered to pronounce the effects of
overfitting, but in practice it often has to be small because all
other available data are needed for the model building process.
If one can follow Recommendation 1 and arrange that Sfinal

be large, then computing the error on Sfinal is so close to erP

that no overfitting will occur.
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Fig. 2. This plot corresponds to the upper plot in Fig. 1 except that the
hold-out data set was resampled in every generation.

Fig. 2 depicts the results using resampling. In accordance
with Recommendation 3, overfitting was not observed. Due to
the randomness in the fitness evaluation, the fitness trajectory
was noisier than in Fig. 1. In this scenario, choosing the
fittest candidate to be the result appeared to be better than
following Recommendation 6 and choosing it using the (small)
finite Sfinal (due to Problem 3). Nonetheless, in this setting,
selecting only from the best in a generation still turned out to
be preferable to selecting from all.

V. Conclusion

Evolutionary algorithms are frequently used for optimizing
adaptive pattern recognition systems. As is the case for all
learning and model selection algorithms, they are susceptible
to overfitting. Often, the different types of overfitting that
can occur are not properly considered in the algorithm and
experimental design. This can lead to suboptimal performance,
as well as to overoptimistic evaluations.

The purpose of this paper was to raise awareness of the
different types of overfitting and to explain potential pitfalls
when evolving machine learning systems. These considera-
tions focus on the predominant scenario in which the fitness
computations are based on point estimates. This paper listed
ways of fighting overfitting, but did not, of course, provide an
ultimate answer to the problem. A simple experiment showed
that the negative effects of different types of overfitting can
easily be observed in practice.

The main recommendation may be summarized as follows.
The generalization performance of an (evolved) hypothesis
must, of course, not be measured by its performance on
data used for its design. Furthermore, when evolving adaptive
pattern recognition systems, it can be helpful to use a pristine
data set to select the final result from a small set of evolved
candidate solutions, for example, from the best individuals
of each generation. Then, fresh external data should be used
to evaluate the selected solution. The problem with these
recommendations is that they require data, and it may be
expensive or even impossible to get enough data. Furthermore,

the question arises of how to split the finite amount of data
available for the design process. The larger the training set, the
better the hypotheses produced by a learning algorithm. The
larger the data sets involved in computing the fitness, the more
precise the performance estimates for guiding the evolution.
The larger the final selection data, the more reliable is the
choice of the final result. How to find a good tradeoff is an
open research question.

Simply limiting the number of generations in the optimiza-
tion process and not letting it run until convergence seems
to be a data and time efficient solution. This introduces a
crucial hyperparameter, the maximum number of generations,
that is problem-dependent and hard to choose a priori. A better
solution appears to be to decide on the stopping time post hoc,
either based on knowledge about the expected performance of
a proper hypothesis or based on heuristics analyzing (training
or hold-out data set) error trajectories.
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