
Balancing Learning and Evolution

Michael Hüsken Christian Igel

Institut für Neuroinformatik
Ruhr-Universität Bochum
44780 Bochum, Germany

{michael.huesken,christian.igel}@neuroinformatik.ruhr-uni-bochum.de

Abstract

Finding the right coupling of learning and
evolution in a hybrid algorithm is an open
problem. In this article, we present a strategy
to adjust the time spent on learning during
evolutionary optimization of neural networks.
The proposed adaptation scheme leads to a
significant improvement in performance. It
is empirically shown that suitable learning
strategies strongly depend on the problem
and that it is advantageous to adapt the time
spent on learning during evolution.

To be published in:

GECCO-2002: Proceedings of the Genetic and Evolutionary Computation Conference

1 INTRODUCTION

Evolution and learning are biologically-inspired opti-
mization paradigms that have proven to be efficient
in a wide range of applications, particularly when—as
in nature—combined in hybrid strategies. Both tech-
niques have different characteristics and their coupling
aims at getting the best of both worlds. Evolution
and learning interact in complex ways (e.g., see May-
ley, 1996; Nolfi and Parisi, 1999). Further, it appears
to be obvious that the optimal way of combining them
depends on the target problem and may change during
optimization. However, a systematic way to balance
the two strategies is still missing. In this article, we
present an adaptive method for controlling the time
spent on learning in the framework of evolutionary op-
timization of neural networks.

Structure optimization of artificial neural networks is
the most prominent technical example of a success-
ful combination of evolution and learning, where evo-
lution is employed to optimize mainly the network’s
architecture and learning (or training) is usually iden-
tified with gradient-based adaptation of the weights
(Yao, 1999). In this paper, we assume that learning

and evolution interact in a typical manner: Each off-
spring individual, representing one network architec-
ture with the corresponding initial weights, is trained
once immediately after its creation. The fitness of the
individual is determined after training.

Most learning algorithms are iterative methods and
their computational complexity usually scales linearly
with the number of iterations. When searching for a
neural network for a given task, several questions arise:
Is learning necessary or is evolution sufficient? If learn-
ing is employed, how should evolution and learning be
coupled? How long should each system learn? We ad-
dress the last question, which might lead to an answer
to the first one. For several reasons the learning time
is a crucial parameter, e.g.:

• In most cases, the computational costs for gener-
ating and evaluating an offspring can be neglected
compared to the costs for training. For standard
neural network architectures, even a single learn-
ing iteration typically takes about twice the time
of one fitness evaluation.

• If the learning time is too long, the neural net-
work may overfit and lose its ability to generalize,
i.e., to react in a desired way to data not used
for learning. Even if no overfitting occurs, long
learning might be a waste of resources in cases of
bad local minima or insufficient architectures.

• If the maximum number of iterations is too small,
the weights may not have enough time to adapt
to an altered architecture. Hence, better archi-
tectures may be discarded, because the learning
time is too short to uncover their benefits.

It is intuitive—and will become obvious in this study—
that the right learning time depends on the problem
at hand and on the course of evolution. Nevertheless,

no systematic way exists either to choose the learning
time for a given task or to adjust it during evolution.

In this article, we present a strategy to adapt the time
spent on learning. The basic idea is inspired by strat-
egy adaptation methods in evolutionary computation
(Smith and Fogarty, 1997; Eiben et al., 1999). The
learning time is viewed as a strategy parameter that
is adjusted on population level. As a basis for adap-
tation, different numbers of iterations have to be ex-
plored. Therefore, the learning time is described by
a random variable. The maximum number of itera-
tions an offspring is allowed to learn is a realization
of this random variable, whose expectation is subject
to adaptation: The expected learning time in the up-
coming generations is shifted towards the learning time
that gave good results recently.

We proceed with the presentation of a straightforward
algorithm for evolutionary structure optimization of
neural networks and with the detailed explanation of
the adaptation scheme for the learning time. In section
3, we present experimental results showing the dynam-
ics of the learning times induced by our adaptation
scheme as well as the improved optimization perfor-
mance. The paper ends with concluding remarks.

2 LEARNING TIME ADAPTATION

IN STRUCTURE OPTIMIZATION

In the main part of this section, we introduce the adap-
tation scheme for the learning time. Beforehand, we
describe a simple algorithm for structure optimization
of neural networks, which serves as a testbed for our
method. However, the proposed adaptation scheme is
designed to work well with almost any of such algo-
rithms.

2.1 EVOLUTIONARY FRAMEWORK

We use an evolutionary algorithm for structure opti-
mization of neural networks inspired by Angeline et al.
(1994). The search space contains all arbitrarily con-
nected feed-forward neural networks. The validity of
the architectures is the only constraint, i.e., each hid-
den neuron has to lie on a path from at least one input
to at least one output neuron. Each of the µ individu-
als in the population encodes the architecture and the
weights of one neural network by means of a direct
encoding scheme. Prior to the first generation, the
individuals are randomly initialized and assigned a fit-
ness value, depending on the target problem. In every
generation, each parent produces one offspring by re-
production and mutation. One out of five problem
specific mutation operators is randomly chosen and

applied: adding and deleting single neurons and single
connections as well as disturbing each weight normally
distributed with zero mean and standard deviation
σ; connections with a lower weight are removed with
an increased probability (Braun, 1997). Thereafter,
each individual is trained using the iRprop+ learning
method (Igel and Hüsken, 2002), an improved ver-
sion of the well known Rprop algorithm (Riedmiller
and Braun, 1993). Learning starts with the genet-
ically encoded weight configuration. After learning
the modified weights are inherited, i.e., coded back
onto the individual’s genome, following the Lamarck-
ian paradigm, which is very efficient for technical pur-
poses. Finally, the individual’s fitness is evaluated and
the parent population of the next generation is deter-
mined by means of EP-tournament selection (Fogel,
1995).

2.2 ADAPTATION OF THE LEARNING

TIME

The aim of adjusting the learning time is to choose
its value such that in the next generations a maxi-
mum fitness improvement relative to the costs can be
expected. This task is similar to the adaptation of
the strategy parameters of an evolutionary algorithm
(e.g., population size, mutation rates, . . .), which is a
key concept in evolutionary computation (Smith and
Fogarty, 1997; Eiben et al., 1999). Our scheme is
inspired by these methods, in particular by the co-
variance matrix adaptation (CMA) evolution strategy
(Hansen and Ostermeier, 2001). The adjustment of
the learning time is based on the heuristic that learn-
ing times that have given good results recently will
also perform well in future generations.

The learning strategy is altered every G generations;
this interval is called adaptation cycle. For the adap-
tation of the strategy (i.e., the average learning time
in the gth adaptation cycle), it is necessary to explore
the space of possible strategies and to compare the
improvements achieved by different strategies. There
has to be a variety of different learning times for the
individuals instead of the same for all of them, in or-
der to estimate the efficiency of different strategies in
every adaptation cycle to find out the putative best

strategy. The variable τ
(g)
i ∈

�
0 denotes the learning

time of the ith individual in the gth adaptation cycle.

One possibility for the adaptation would be to under-
stand learning as some kind of operator. For each in-
dividual, one operator from a set of learning operators
with different learning times is applied and rated de-
pending on the fitness gain. The probability of these
operators to be applied in the next adaptation cycle is

adjusted based on the rating (Davis, 1989). In the do-
main of evolutionary optimization of learning systems,
such a procedure was successfully applied by Igel and
Kreutz (1999, 2001) for the adaptation of the proba-
bilities to apply different mutation operators. In our
context, this procedure is not suitable, because the
number of different operators needed to represent the
various learning times would be too high. Further,
the learning operators strongly differ in their compu-
tational costs. To allow for an ongoing probability
adaptation, none of these operators should be allowed
to become extinct. Hence, even when some expensive
operators are not suitable in the current phase of opti-
mization, they have to be applied every now and then
and may dominate the average computational com-
plexity. Simulations support this assumption.

Instead of the operator approach, we adapt the learn-
ing time more directly. To explore different learning

strategies, the value of τ
(g)
i is drawn independently for

each individual from a Poisson distribution with the
expectation m(g).1 The parameter m(g) is subject to
adaptation, which permits a smooth adjustment of the
learning periods. The expectation of the learning time
in adaptation cycle g + 1 is given by

m(g+1) = max
[

(1 − γ)m(g) + γ τ̃ (g), mmin

]

. (1)

The variable γ ∈ [0, 1] determines the influence of τ̃ (g),
the value which would have been the most suitable
choice of m(g) in the last adaptation cycle. In the
end, (1) is a weighted average over the whole history,
but the influence of past generations is exponentially
suppressed depending on γ. This weighted average
is similar to the evolution path in the CMA evolu-
tion strategy. The lower bound mmin in (1) enables a
minimum diversity of the learning times to allow for
continuing adaptation.

Now one is only left with the estimation of τ̃ (g). The
efficiency of learning for τ iterations is measured by the
benefit B(g)(τ) (Tuson and Ross, 1998), normalized
to the costs of learning c(τ) as proposed by Igel and
Kreutz (1999):

B(g)(τ) =
1

N
(g)
τ

∑

ι

max

[

φ(parent(ι)) − φ(ι)

c(τ)
, 0

]

.

(2)

1The Poisson distribution of τ
(g)
i ∈ � 0 is given by

p
τ
(g)
i

=
(m(g))τ

(g)
i

τ
(g)
i

!
e−m(g)

. As the expectation as well as

the variance are equal to m
(g), the width of the distribu-

tion increases with its expectation.

The sum runs over all N
(g)
τ offspring ι in adaptation

cycle g that have been trained for τ iterations; φ(.)
assigns each individual a fitness value. As an alterna-
tive to (2), one might relate B(g)(τ) only to the fitness
gain achieved by learning, i.e., the difference of the off-
spring’s fitness before and after learning replaces the
numerator in (2). However, (2) has empirically proven
to be more efficient, as it allows for evaluating the
number of iterations in the context of mutations. For
instance, it is able to take into account the time nec-
essary to counterbalance mutational disturbances.

The computational costs c(τ) depend on the imple-
mentation of the feed-forward neural network. For
simplicity, we utilize an approximation. It takes
roughly twice as much time to calculate the gradient
of the network error with respect to all weights than
to compute the network’s error itself (Rummelhart
et al., 1986): First, the input is “propagated forward”
through the network and thereafter it is “propagated
backward” through it. Additionally, one “forward-
propagation” has to be performed after the last it-
eration of learning to calculate the individual’s fitness
φ(ι). As we use “propagations” as the unit of the costs,
we set

c(τ) = 2τ + 1 . (3)

The learning time τ̃ (g) should be the time for which
the improvements have been maximal in the near past
and therefore might also be in the near future. This
seems to be fulfilled for τ̃ (g) = arg

[

maxτ

{

B(g)(τ)
}]

.
However, this might not be optimal, as in the next gen-
erations not only learning times equal to τ̃ (g) are ap-
plied, but also learning times randomly drawn from a
Poisson distribution. In the limiting case of an isolated

maximum of B(g)(τ̃ (g)), learning times τ
(g+1)
i = τ̃ (g)

would yield a maximum improvement, but slightly dif-
fering learning times would mainly lead to an explo-
ration of bad strategies. Therefore, we do not consider
the maximum of B(g)(τ), but the maximum of

b(g)(τ) =

∞
∑

τ ′=0

B(g)(τ ′) ·
ττ ′

τ ′!
e−τ , (4)

the convolution of B(g)(τ) with the Poisson distribu-
tion with mean τ . The value of b(g)(τ) is an esti-
mation of the expected improvement in the case of
m(g) = τ , as the distribution of learning times is taken
into account. As a side effect, the convolution yields a
smoothing of B(g)(τ), which makes the evaluation of
the benefit more robust. Finally, the estimation of the
optimal learning time is given by

τ̃ (g) = arg
[

max
τ

[

b(g)(τ)
]]

. (5)

In (4) the case of non-instantiated learning times, i.e.,
times that have not been sampled, has to be consid-
ered, as for the corresponding values of B(g)(τ) no es-
timations are available. This is particularly true for
learning periods that strongly deviate from the mean
m(g), but by chance it can also occur quite close to
m(g). If information about longer and shorter learn-
ing times is available, we substitute missing values by
means of linear interpolation. Otherwise, we make the
most conservative assumption of B(g)(τ) = 0.

One might argue that due to the adaptation of the
learning time, some new parameters are introduced
and have to be chosen. However, these new parame-
ters are, compared to the learning time, intuitive and
therefore much easier to choose. Further, they are not
as problem dependent as the fixed learning time pa-
rameter is. Therefore, although the absolute number
of parameters has increased, the choice of their val-
ues has become easier and more robust. In addition,
the online adaptation of the learning times adds a new
quality to the algorithm, as dissimilar learning times
can be realized in different stages of optimization.

3 EXPERIMENTAL

VERIFICATION

In the following, we empirically show how the adap-
tation of the learning times improves the efficiency of
the optimization of neural networks. Additionally, we
consider the adaptation dynamics of the learning time,
which provide insights into the different roles of learn-
ing and evolution.

All results presented stem from 50 independently ini-
tialized trials per setting. The population size was
µ = 20, the tournament size q = 5, and the standard
deviation for the weight mutations σ = 0.05. Stan-
dard parameters were chosen for the iRprop+ algo-
rithm: η+ = 1.2, η− = 0.5, ∆0 = 0.05, ∆min = 10−8,
and ∆max = 50. The hidden neurons of the neu-
ral network had the sigmoidal activation function
f(x) = x/(1 + |x|) and the output neurons had linear
ones. Adaptation of the learning time was conducted
every second generation (G = 2) with the adaptation
rate γ = 1/4 and a lower bound of mmin = 1. This pa-
rameter setting should serve as an example rather than
as a recommendation for the optimal choice. Finally,
we explore different values for the initial expectation of
the learning time m(g) and compare the results with an
algorithm with the same value as a constant learning
time.

3.1 SAMPLE PROBLEMS

We use established neural network benchmark prob-
lems for the formulation of different types of structure
optimization tasks, in order to observe different dy-
namics of the learning time.

3.1.1 Smallest Network for 6-Parity

The task is to find the neural network with the low-
est number of weights n(dof) that completely solves the
classification problem 6-parity. The network is to de-
cide the parity of a bit-string of length 6 (i.e., whether
the number of “1” in this string is even or not). Learn-
ing was conducted with all 26 = 64 possible patterns,
the target values were given by “0” and “1”, and the
mean squared error E(mse) was used for training. The
individual’s fitness consists of three addends, the clas-
sification error E(class.), the number of weights of the
network, and the mean squared error, evaluated using
the whole data set:

φ = νE(class.) + n(dof) + E(mse) . (6)

The parameter ν = 106 was chosen with respect
to the expected magnitudes of the different addends
to describe the previously mentioned importance of
the different optimization goals. Normally, it holds
νE(class.) � n(dof) � E(mse). The inclusion of E(mse)

yields ongoing optimization, even in the absence of im-
provements with respect to the main goals. However,
reduction of the mean squared error may contribute to
better classification performance of the offspring and
may prepare the deletion of non-relevant weights.

3.1.2 Prediction of Sunspots

The task is to optimize a neural network with respect
to its ability to predict the number of sunspots st+1

in the next year, based on their number in the current
and previous years. Figure 1 shows the annual number
of sunspots. The states st, st−1, st−3, and st−7, each
of them normalized to [0.2, 0.8], serve as the input for
the network.

In contrast to 6-parity, the fitness is only given by the
mean squared error of the network on a particular data
set. We distinguish between two different settings:

sunspot(=): The same data points (i.e., the predic-
tion of all years from 1708 to 1938) are used for
learning and for fitness evaluation.

sunspot(6=): The data points used for learning and fit-
ness evaluation are disjoint subsets of the sunspot
data set. The prediction error in the years 1708 to

PSfrag replacements

1700 1800 1900 2000

Jahr

0

50

100

150

200

av
er

a
g
e

n
u
m

b
er

o
f
su

n
sp

o
ts

s t

year t

Figure 1: Evolution of the average number of sunspots
in the last 300 years. The data are provided by the
SIDC (http://sidc.oma.be).

1784 is used for learning and the weight configu-
ration of the network with the best error over the
years between 1785 and 1861 is inherited (hold-
out samples). The individual’s fitness is given by
the mean squared error in the years between 1862
and 1938.

3.2 DISCUSSION OF RESULTS

The results of the structure optimization for the dif-
ferent problems are summarized in table 1. It be-
comes obvious that for both algorithms—with and
without learning time adaptation—the achieved fitness
strongly depends on the initial learning time. In all
cases where the differences between both algorithms
with equal initial learning time are statistically signif-
icant, the algorithm with adaptation performs better
than the one with constant learning time; in the other
cases we must assume both algorithms to be equally
good. In particular, for short initial learning peri-
ods the advantage of the adaptation becomes obvious.
Here, the adaptation can operate faster and there-
fore select more suitable strategies, where the speed
of adaptation is defined as the change of m(g) per cost
unit. The other way round, both algorithms perform
equally well for long initial learning times, as the adap-
tation speed is slow. In 6-parity, after a very high
number of generations and for moderate learning times
both algorithms have achieved equally good results, as
both have “converged”. As can be seen from the upper
diagram in figure 2, the algorithm with learning time
adaptation reaches this state earlier.

Summarizing, learning time adaptation yields better
results in most cases and is equally good in the re-

maining ones. In the following, we consider the learn-
ing strategies that emerged for the different problems.

3.2.1 Smallest Network for 6-Parity

The upper diagram in figure 2 shows fitness curves that
emphasize the results in table 1. The lower diagram
depicts the evolution of the adapted learning times,
showing very clear directions of adaptation. The evo-
lution of the learning times and the fitness trajectories
in conjunction with (6) allow an identification of three
phases of optimization.

1. Initially, the increase of the learning time coin-
cides with a decrease of the classification error.

PSfrag replacements

0 105 2·105 3·105

accumulated costs (propagations)

median
of expected learning time m(g)

m
ed

ia
n

o
f
b
es

t
in

d
iv

id
u
a
l’
s

fi
tn

es
s

φ

0

10

20

30

40

50

60
80

100
10

20

100

1000

5 const.

10 const.

20 const.

30 const.

50 const.

100 const.

5 adaptive

10 adaptive

30 adaptive

50 adaptive
100 adaptive

PSfrag replacements

0 105 2·105 3·105

accumulated costs (propagations)

m
ed

ia
n

o
f
ex

p
ec

te
d

le
a
rn

in
g

ti
m

e
m

(g
)

median of best individual’s fitness φ

0

10

20

30

40

50

60
80

100
10
20

100
1000

5 const.
10 const.
20 const.
30 const.
50 const.

100 const.

5 adaptive10 adaptive
30 adaptive
50 adaptive

100 adaptive

30 adaptive

Figure 2: Evolution of the fitness and the adapted
learning time for the 6-parity problem, where “adap-
tive” and “const.” refer to the algorithms with and
without adaptation of the learning times. The preced-
ing numbers denote either the initial or the constant
learning times.

Table 1: Median of the best individual’s fitness after a given number of propagations. Depending on the context,
the first column shows either the constant learning time or the initial value of the expectation of the learning
time. The numbers in parentheses give the number of propagations after which the fitness values were measured.
In rows marked with “?”, the difference between constant and adaptive learning time is statistically significant,
Wilcoxon rank sum test (Wilcoxon, 1945), p < 0.05.

(initial) 6-parity (105) 6-parity (3·105) sunspot(=) (105) sunspot(6=) (2·105)
learning time constant adaptive constant adaptive constant adaptive constant adaptive

5 15652.5 46.0 ? 15647.1 29.0 ? 133.1 84.7 ? 139.9 130.3 ?
10 46.0 41.5 ? 33.0 26.0 ? 108.4 83.6 ? 144.5 129.2 ?
20 59.5 56.0 28.0 28.5 89.7 81.3 ? 142.4 128.2 ?
30 109.5 83.0 ? 30.0 32.0 78.6 74.1 ? 137.6 131.8 ?
50 323.5 286.5 ? 34.0 32.5 74.4 74.2 135.9 138.2

As the networks in the initial population are quite
large, it is likely that the algorithm finds suitable
architectures within this population to solve the
classification problem. Therefore, learning seems
to be the driving force in this phase and, in partic-
ular for short learning times, the amount of learn-
ing is increased compared to the amount of archi-
tectural changes.

2. The second phase starts after φ has dropped below
approximately 1000, i.e., the classification prob-
lem is solved and n(dof) becomes the dominating
addend in (6). Hence, the amount of the numera-
tor in (2) is dominated by structural changes, i.e.,
mutations. As the denominator increases with
the learning time, it is beneficial to learn only
for a short period. In this phase, the task of
learning might be to counterbalance mutational
“damages” with respect to solving the classifica-
tion task, rather than to achieve further improve-
ment in the setting of the weights.

3. The third phase is characterized by a continuing
increase of the learning time. As a further re-
duction of n(dof) without worsening the classifi-
cation performance becomes more and more un-
likely, the largest improvement can be gained by
reducing the mean squared error. This can effi-
ciently be realized by long learning periods. As
the mean squared error is in the order of magni-
tude of 10−4, these improvements are not visible
in figure 2. Reductions of the architecture are
rarely observed, maybe prepared by the fine tun-
ing of the weights, as removing of single connec-
tions takes place with respect to the correspond-
ing weight (cf. section 2.1).

From this analysis of the three phases, it becomes
clear that an algorithm with constant learning time

can barely cope with them efficiently, so that learning
time adaptation becomes necessary.

3.2.2 Prediction of Sunspots

The results of the experiments using the sunspot data
set are shown in figure 3. Interestingly, the evolu-
tion of learning times look completely different de-
pending on whether one (sunspot(=)) or three differ-
ent (sunspot(6=)) data sets are involved. In the first
case, long learning seems to be a good strategy, as
overfitting does not have to be taken into account. A
slight reduction of the number of iterations takes place
only in the first generations of the trials with an initial
learning time of 20, moving the balance towards evo-
lution (see lower left plot in figure 3). This example
also shows that the adaptation speed is limited due to
the width of the Poisson distribution and the damping
in (1) and that the longer the learning time the slower
the adaptation.

In sunspot(6=), where different data sets are used for
learning and fitness evaluation, the effect of overfit-
ting becomes important. The lower right plot in fig-
ure 3 shows different behaviors depending on the initial
learning times. If the adaptive algorithm starts with 5
iterations, the learning time increases during the first
generations. This happens because overfitting has not
occurred yet and learning is efficient, as improvements
on the learning data set coincide with improvements
on the fitness data set. However, when after approx-
imately 104 propagations overfitting becomes a prob-
lem, the learning time strongly decreases and stays at
its minimum value mmin. In this phase learning would
only lead to overfitting and therefore to an increase of
the error on the fitness data set, i.e., a worsening of
fitness. Progress can only be expected to occur due to
fortuitous mutational variations. When the adaptive
algorithm is initialized with 20 iterations, the learning

sunspot(=): sunspot(6=):

PSfrag replacements

0
5

10
15
20
30
40
50

80

90

100

110

120

130

140

180

200

160

130
140
150
160
170
180

0

0

2·104 4·104

1.5·105

6·104 8·104

105

105

2·105

accumulated costs (propagations)

m
ed

ia
n

o
f
b
es

t
in

d
iv

id
u
a
l’
s

fi
tn

es
s

φ
median

of expected learning time m(g)

14
16
18
20

feste Lernzeit

5 adaptive
20 adaptive

5 const.

10 const.

20 const.

30 const.

50 const.

PSfrag replacements

0
5

10
15
20
30
40
50
80
90

100
110
120

130

140

180

200

160

130
140

150

160

170

180

0

0

2·104

4·104

1.5·105

6·104

8·104

105

105 2·105

accumulated costs (propagations)

m
ed

ia
n

o
f
b
es

t
in

d
iv

id
u
a
l’
s

fi
tn

es
s

φmedian
of expected learning time m(g)

14
16
18
20

feste Lernzeit

5 adaptive
20 adaptive

5 const.

10 const.

20 const.

30 const.

50 const.

0.5·105

PSfrag replacements

0

5

10

15

20

30

40

50

80
90

100
110
120
130
140
180
200
160
130
140
150
160
170
180

0

0

2·104 4·104

1.5·105

6·104 8·104

105

105

2·105

accumulated costs (propagations)

median of best individual’s fitness φ

m
ed

ia
n

o
f
ex

p
ec

te
d

le
a
rn

in
g

ti
m

e
m

(g
)

14
16
18
20

feste Lernzeit
5 adaptive

20 adaptive

5 const.
10 const.
20 const.
30 const.
50 const.

0.5·105

5 adaptive

PSfrag replacements

0

5

10

15

20

30
40
50
80
90

100
110
120
130
140
180
200
160
130
140
150
160
170
180

0

0

2·104

4·104

1.5·105

6·104

8·104

105

105 2·105

accumulated costs (propagations)

median of best individual’s fitness φ

m
ed

ia
n

o
f
ex

p
ec

te
d

le
a
rn

in
g

ti
m

e
m

(g
)

14
16
18
20

feste Lernzeit
5 adaptive

20 adaptive

5 const.
10 const.
20 const.
30 const.
50 const.

0.5·105

5 adaptive

20 adaptive

0.5·105

Figure 3: Evolution of the fitness and adapted learning time for the sunspot prediction problem.

time seems to be too long to avoid overfitting right
from the start and decreases nearly monotonically to
its minimum value.

Again, different learning strategies, as well as a change
of the strategy during the course of evolution, can be
observed. This explains the significant improvement
of the optimization performance by means of adaptive
learning time control compared to a constant learning
time in all phases of the optimization.

4 CONCLUSION AND OUTLOOK

The number of learning iterations in algorithms that
combine learning and evolution is a crucial parameter
for the efficiency of the optimization. We have em-
pirically shown that the right learning strategy indeed
strongly depends on the problem and on the course of

evolution. This may not only include the choice of the
initial learning time, but also any schedule for mod-
ifying the learning period during optimization. Un-
fortunately, the best strategy is usually not known a

priori.

Therefore, we proposed an algorithm that adapts the
learning time similarly to strategy parameters of pure
evolutionary algorithms. The main idea is to random-
ize the learning time, to evaluate the fitness improve-
ments resulting from different learning periods, and
then to adapt the expectation of the learning time.
In a number of examples from the domain of evolu-
tionary optimization of neural networks the adapta-
tion method works in an intuitive way. Moreover, in
all examples the optimization is improved due to the
better choice of the ratio between evolution and learn-
ing.

Based on these findings, our answer to the question of
the right choice of the learning time is to start with a
small one and use an adaptation scheme to adjust it to
the given task. The answer to the question, whether
learning is necessary at all, can be left to the evolu-
tionary process itself.

This study is a step towards an evolutionary optimiza-
tion algorithm for neural networks without any crucial
parameters. In further investigations, we plan to com-
bine the control of the learning time with adjustment
of the operator probabilities (Igel and Kreutz, 1999,
2001) and adaptation of the population size.

Acknowledgement

We would like to thank the BMBF, grant LOKI, num-
ber 01 IB 001 C, for their financial support of our
research.

References

Angeline, P. J., G. M. Saunders, and J. B. Pollack (1994).
An evolutionary algorithm that constructs recurrent
neural networks. IEEE Transactions on Neural Net-
works 5 (1), 54–65.

Braun, H. (1997). Neuronale Netze: Optimierung durch
Lernen und Evolution. Springer-Verlag.

Davis, L. (1989). Adapting operator probabilities in genetic
algorithms. In J. D. Schaffer (Ed.), Proceedings of the
3rd International Conference on Genetic Algorithms,
pp. 61–69. Morgan Kaufmann.

Eiben, A. E., R. Hinterding, and Z. Michalewicz (1999).
Parameter control in evolutionary algorithms. IEEE
Transactions on Evolutionary Computation 3 (2), 124–
141.

Fogel, D. B. (1995). Evolutionary Computation: Toward a
New Philosophy of Machine Intelligence. IEEE Press.

Hansen, N. and A. Ostermeier (2001). Completely deran-
domized self-adaptation in evolution strategies. Evolu-
tionary Computation 9 (2), 159–195.

Igel, C. and M. Hüsken (2002). Empirical evaluation of the
improved Rprop learning algorithm. Neurocomputing .
In press.

Igel, C. and M. Kreutz (1999). Using fitness distribu-
tions to improve the evolution of learning structures.
In Congress on Evolutionary Computation (CEC ’99),
Volume 3, pp. 1902–1909. IEEE Press.

Igel, C. and M. Kreutz (2001). Operator adaptation in
structure optimization of neural networks. In L. Spec-
tor, E. D. Goodman, A. Wu, W. B. Langdon, H.-M.
Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. Gar-
zon, and E. Burke (Eds.), Genetic and Evolutionary
Computation Conference (GECCO 2001), pp. 1094.
Morgan Kaufmann.

Mayley, G. (1996). Landscapes, learning costs and genetic
assimilation. Evolutionary Computation 4 (3), 213–234.

Nolfi, S. and D. Parisi (1999). Learning and evolution. Au-
tonomous Robots 7 (1), 89–113.

Riedmiller, M. and H. Braun (1993). A direct adap-
tive method for faster backpropagation learning: The
RPROP algorithm. In Proceedings of the IEEE Inter-
national Conference on Neural Networks, pp. 586–591.
IEEE Press.

Rummelhart, D. E., G. E. Hinton, and R. J. Williams
(1986). Learning internal representations by error back-
propagation. In D. E. Rummelhart, J. L. McClelland,
and the PDP Research Group (Eds.), Parallel Dis-
tributed Processing: Explorations in the Microstructure
of Cognition, Volume 1, pp. 318–362. MIT Press.

Smith, J. E. and T. C. Fogarty (1997). Operator and pa-
rameter adaptation in genetic algorithms. Soft Com-
puting 1 (2), 81–87.

Tuson, A. and P. Ross (1998). Adapting operator settings
in genetic algorithms. Evolutionary Computation 6 (2),
161–184.

Wilcoxon, F. (1945). Individual comparison by ranking
methods. Biometrics Bulletin 1, 80–83.

Yao, X. (1999). Evolving artificial neural networks. Pro-
ceedings of the IEEE 87 (9), 1423–1447.

