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Astrophysics and cosmology are rich with data. The advent of wide-area
digital cameras on large aperture telescopes has led to ever more ambitious
surveys of the sky. Data volumes of entire surveys a decade ago can now be
acquired in a single night and real-time analysis is often desired. Thus, mod-
ern astronomy requires big data know-how, in particular it demands highly
efficient machine learning and image analysis algorithms. But scalability
is not the only challenge: Astronomy applications touch several current ma-
chine learning research questions, such as learning from biased data and deal-
ing with label and measurement noise. We argue that this makes astronomy
a great domain for computer science research, as it pushes the boundaries of
data analysis. In the following, we will present this exciting application area
for data scientists. We will focus on exemplary results, discuss main chal-
lenges, and highlight some recent methodological advancements in machine
learning and image analysis triggered by astronomical applications.

Ever-Larger Sky Surveys

One of the largest astronomical surveys to date is the Sloan Digital Sky Sur-
vey (SDSS, http://www.sdss.org). Each night, the SDSS telescope pro-
duces 200 GB of data, and to this day close to a million field images have
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Figure 1: Increasing data volumes of existing and upcoming telescopes: Very
Large Telescope (VLT), Sloan Digital Sky Survey (SDSS), Visible and In-
frared Telescope for Astronomy (VISTA), Large Synoptic Survey Telescope
(LSST) and Thirty Meter Telescope (TMT).

been acquired, in which more than 200 million galaxies, and even more stars,
have been detected. Upcoming surveys will provide far greater data volumes.

Another promising future survey is the Large Synoptic Survey Telescope
(LSST). It will deliver wide-field images of the sky, exposing galaxies that are
too faint to be seen today. A main objective of LSST is to discover transients,
objects that change brightness over time-scales of seconds to months. These
changes are due to a plethora of reasons; some may be regarded as uninter-
esting while others will be extremely rare events, which cannot be missed.
LSST is expected to see millions of transients per night, which need to be
detected in real-time to allow for follow-up observations. With staggering 30
TB of images being produced per night, efficient and accurate detection will
be a major challenge. Figure 1 shows how data rates have increased and will
continue to increase as new surveys are initiated.

What do the data look like? Surveys usually make either spectroscopic
or photometric observations, see Figure 2. Spectroscopy measures the pho-
ton count at thousands of wavelengths. The resulting spectrum allows for
identifying chemical components of the observed object and thus enables
determining many interesting properties. Photometry takes images using a
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CCD, typically acquired through only a handful of broad-band filters, making
photometry much less informative than spectroscopy.

While spectroscopy provides measurements of high precision, it has two
drawbacks: First, it is not as sensitive as photometry, meaning that distant
or otherwise faint objects cannot be measured. Second, only few objects can
be captured at the same time, making it more expensive than photometry,
which allows for acquiring images of thousands of objects in a single image.
Photometry can capture objects that may be ten times fainter than what
can be measured with spectroscopy. A faint galaxy is often more distant
than a bright one—not just in space, but also in time. Discovering faint
objects therefore offers the potential of looking further back into the history
of the Universe, over time-scales of billions of years. Thus, photometric
observations are invaluable to cosmologists, as they help understanding the
early Universe.

Once raw observations have been acquired, a pipeline of algorithms needs
to extract information from them. Much image-based astronomy currently
relies to some extent on visual inspection. A wide range of measurements are
still carried out by humans, but need to be addressed by automatic image
analysis in light of growing data volumes. Examples are 3D orientation and
chirality of galaxies, and detection of large-scale features, such as jets and
streams. Challenges in these tasks include image artifacts, spurious effects,
and discerning between merging galaxy pairs and galaxies that happen to
overlap along the line of sight. Current survey pipelines often have trouble
correctly identifying these types of problems, which then propagate into the
databases.

A particular challenge is that cosmology relies on scientific analyses of
long-exposure images. As such, the interest in image analysis techniques for
preprocessing and de-noising is naturally great. This is particularly impor-
tant for the detection of faint objects with very low signal-to-noise ratios.
Automatic object detection is vital to any survey pipeline, with reliability
and completeness being essential metrics. Completeness refers to the amount
of detected objects, whereas reliability measures how many of the detections
are actual objects. Maximizing these metrics requires advanced image anal-
ysis and machine learning techniques. Therefore, data science for astronomy
is a quickly evolving field gaining more and more interest. In the following,
we will highlight some of its success stories and open problems.
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Figure 2: The spectrum of galaxy NGC 5750 (black line), as seen by SDSS,
with the survey’s five photometric broad-band filters u, g, r, i, and z, rang-
ing from ultraviolet (u) to near-infrared (z ). For each band the galaxy’s
brightness is captured in an image.

Large-scale Data Analysis in Astronomy

Machine learning methods are able to uncover the relation between input
data (e.g., galaxy images) and outputs (e.g., physical properties of galaxies)
based on input-output samples, and they have already proved successful in
various astrophysical contexts. For example, Mortlock et al. 8 use Bayesian
analysis to find the most distant quasar to date. These are extremely bright
objects forming at the center of large galaxies and are very rare. Bayesian
comparison has helped scientists to select a few most likely objects for re-
observation from thousands of candidates.

In astronomy, distances from Earth to galaxies are measured by their
redshifts, but accurate estimations need expensive spectroscopy. Getting
accurate redshifts from photometry alone is an essential, but unsolved task,
for which machine learning methods are widely applied.2 However, they are
far from on a par with spectroscopy. Thus, better and faster algorithms are
much desired.

Another application is the measurement of galaxy morphologies. Usually,
one assigns a galaxy a class based on its appearance (see Figure 3), tradition-
ally using visual inspection. Lately, this has been accelerated by the citizen
science project Galaxy Zoo,7 which aims at involving the public in classifying

4



Figure 3: An example of two morphology categories: on the left, the spiral
galaxy M101; on the right, the elliptical galaxy NGC 1132 (credit: NASA,
ESA, and the Hubble Heritage Team (STScI/AURA)-ESA/Hubble Collabo-
ration).

galaxies. Volunteers have contributed more than 100 million classifications,
which allow astrophysicists to look for links between the galaxies’ appearance
(morphology) and internal and external properties. A number of discoveries
have been made through the use of data from Galaxy Zoo, and the classi-
fications have provided numerous hints to the correlations between various
processes governing galaxy evolution. A galaxy’s morphology is difficult to
quantize in a concise manner, and automated methods are high on the wish
list of astrophysicists. There exists some work on reproducing the classifi-
cations using machine learning alone,3 but better systems will be necessary
when dealing with the data products of next-generation telescopes.

A growing field in astrophysics is the search for planets outside our so-
lar system (exoplanets). NASA’s Kepler spacecraft has been searching for
exoplanets since 2009. Kepler is observing light curves of stars, that is,
measuring a star’s brightness at regular intervals. The task is then to look
for changes in the brightness indicating that a planet may have moved in
front of it. If that happens with regular period, duration and decrease in
brightness, the source is likely to be an exoplanet. While there is automated
software detecting such changes in brightness, the citizen science project
Planet Hunters has shown that the software does miss some exoplanets.
Also, detecting Earth-sized planets, arguably the most interesting, is notori-
ously difficult, as the decrease in brightness can be close to the noise level.
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For next-generation space telescopes, such as Transiting Exoplanet Survey
Satellite (TESS), scheduled for launch in 2017, algorithms for detecting exo-
planets need to be significantly improved to more reliably detect Earth-sized
exoplanet candidates for follow-up observations.

There are also problems that may directly affect our lives here on Earth,
such as solar eruptions that, if headed towards Earth, can be dangerous to
astronauts, damage satellites, affect airplanes and, if strong enough, cause
severe damage to electrical grids. A number of spacecrafts monitor the
Sun in real-time. While the ultimate goal is a better understanding of the
Sun, the main reason for real-time monitoring is to be able to quickly de-
tect and respond to solar eruptions. The continuous monitoring is done
by automated software, but not all events are detected.13 Solar eruptions
are known to be associated with sunspots, but the connection is not un-
derstood well enough that scientists can predict the onset or magnitude
of an eruption. There may be a correlation with the complexity of the
sunspots, and understanding this, as well as how the complexity develops
over time, is crucial for future warning systems. While scientists are working
towards a solution, for example through the citizen science project Sunspot-
ter (https://www.sunspotter.org/), no automated method has yet been
able to reliably and quantitatively measure the complexity.

This glimpse of success stories and open problems of big data analysis in
astronomy is by no means exhaustive. An overview of machine learning in
astronomy can be found in the survey by Ball and Brunner.1

Astronomy Driving Data Science

In the following, we present three examples from our own work showing
how astronomical data analysis can trigger methodological advancements in
machine learning and image analysis.

Describing the Shape of a Galaxy

Image analysis does not only allow for automatic classification, but can also
inspire new ways to look at morphology.9;11 For instance, we examined how
well one of the most fundamental measures of galaxy evolution, the star-
formation rate, could be predicted from the shape index. The shape index
measures the local structure around a pixel going from dark blobs over valley-,
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Figure 4: From left to right: The original image of a galaxy merger, the
scale-space representation of the galaxies, the curvedness (a measure of how
pronounced the local structure is), the shape index, and finally the shape
index weighted by the curvedness. The shape index is defined as S(x, y;σ) =

2
π

tan−1
(

−Lxx−Lyy√
4L2

xy+(Lxx−Lyy)2

)
, where Lxnym(x, y;σ) =

(
I ∗ ∂(n+m)G

∂xn∂ym

)
(x, y;σ) is

the scale space representation of the image I, G is a Gaussian filter and σ is
the scale. The curvedness is defined as C(x, y;σ) = 1√

2
σ2
√
L2
xx + 2L2

xy + L2
yy.

The image shows the Antennae galaxies as seen by the Hubble Space Tele-
scope (credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA)-
ESA/Hubble Collaboration).

saddle point- and ridge-like structures to white blobs. It can thus be used
as a measure of the local morphology on a per-pixel scale, see Figure 4. The
study showed that the shape index does indeed capture some fundamental
information about galaxies, which is missed by traditional methods. Adding
shape index features resulted in a 12% decrease in root-mean-square error
(RMSE).

Dealing with Sample Selection Bias

In supervised machine learning, models are constructed based on labeled ex-
amples, that is, observations (e.g., images, photometric features) together
with their outputs (also referred to as labels, e.g., the corresponding redshift
or galaxy type). Most machine learning algorithms are built on the assump-
tion that training and future test data follow the same distribution. This
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allows for generalization, enabling the model built from labeled examples in
the training set to accurately predict target variables in an unlabeled test
set. In real-life applications this assumption is often violated—we refer to
this as sample selection bias. Certain examples are more likely to be labeled
than others due to factors like availability or acquisition cost regardless of
their representation in the population. Sample selection bias can be very
pronounced in astronomical data,12 and machine learning methods have to
address this bias to achieve good generalization. Often only training data
sets from old surveys are initially available, while upcoming missions will
probe never-before-seen regions in the astrophysical parameter space.

To correct the sample selection bias, we can resort to a technique called
importance-weighting. The idea is to give more weight to examples in the
training sample which lie in regions of the feature space that are under-
represented in the test sample and, likewise, give less weights to examples
whose location in the feature space is overrepresented in the test set. If these
weights are estimated correctly, the model we learn from the training data
is an unbiased estimate of the model we would learn from a sample that
follows the population’s distribution. The challenge lies in estimating these
weights reliably and efficiently. Given a sufficiently large sample, a simple
strategy can be followed: Using a nearest neighbor-based approach, we can
count the number of test examples that fall within a hypersphere whose ra-
dius is defined by the distance to the Kth neighbor of a training example.
The weight is then the ratio of the number of these test examples over K.
This flexibly handles regions which are sparse in the training sample. In the
case of redshift estimation, we could alleviate a selection bias by utilizing a
large sample of photometric observations to determine the weights for the
spectroscopically confirmed training set.6

To measure how well we approximated the true weight we used the
squared difference between true and estimated weight, that is,

L(β, β̂) =
∑

x∈Strain

(
β(x)− β̂(x)

)2
ptrain(x) dx ,

where Strain is the training sample, β and β̂ are true and estimated weight,
respectively, and ptrain is the training density. The nearest neighbor estimator
achieved similar or lower error compared to other methods. At the same
time the estimator’s running time is three orders of magnitude lower than
the best competitor for lower sample sizes. Furthermore, it is able to scale up
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to millions of examples (code is available at https://github.com/kremerj/
nnratio).

Scaling-up Nearest Neighbor Search

Nearest neighbor methods are not only useful for addressing sample selec-
tion bias, they also provide excellent prediction results in astrophysics and
cosmology. For example, they are used to generate candidates for quasars
at high redshift.10 Such methods work particularly well when the number
of training examples is high and the input space is low-dimensional. This
makes them a good choice for analyzing large sky surveys where objects are
described by photometric features (e.g., the five broad-band filters shown in
Figure 2). However, searching for nearest neighbors becomes a computational
bottleneck in such big data settings.

To compute nearest neighbors for a given query, search structures such
as k-d trees are an established way to accelerate the search. If input space
dimensionality is moderate (say, below 30), runtime can often be reduced
by several orders of magnitude. While approximate schemes are valuable
alternatives, one is usually interested in exact nearest neighbor search for as-
tronomical data. In this context, massively-parallel devices, such as graph-
ics processing units (GPUs), show great promise. Unfortunately, nearest
neighbor search based on spatial data structures cannot be parallelized in an
obvious way for these devices. To this end, we developed a new tree struc-
ture that is more amenable to massively-parallel traversals via GPUs, see
Figure 5.4 The framework can achieve a significant runtime reduction at a
much lower cost compared to traditional parallel architectures (code avail-
able on http://bufferkdtree.readthedocs.io). We expect such scalable
approaches to be crucial for upcoming data-intensive analyses in astronomy.

Physical Models vs. Machine Learning Models

A big concern data scientists meet when bringing forward data-driven ma-
chine learning models in astrophysics and cosmology is lack of interpretabil-
ity. There are two different approaches to predictive modeling in astron-
omy: physical modeling and data-driven modeling. Building physical mod-
els, which can incorporate all necessary astrophysical background knowledge,
is the traditional approach. These models can be used for prediction, for ex-
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Figure 5: Left: The buffer k-d tree structure depicts an extension of classical
k-d trees and can be used to efficiently process huge amounts of nearest neigh-
bor queries using GPUs.4 Right: Runtime comparison given a large-scale as-
tronomical data set with n training and m test examples. The speed-up of the
buffer k-d tree approach using four GPUs over two competitors (brute-force
on GPUs and a multi-core k-d tree based traversal using 4 cores/8 hardware
threads) is shown as solid black lines.5
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ample, by running Monte Carlo simulations. Ideally, this approach ensures
that the predictions are physically plausible. In contrast, extrapolations by
purely data-driven machine learning models may violate physical laws. An-
other decisive feature of physical models is that they allow for understanding
and explaining observations. This interpretability of predictions is typically
not provided when using a machine learning approach.

Physical models have the drawbacks that they are difficult to construct
and that inference may take a long time (e.g., in the case of Monte Carlo sim-
ulations). Most importantly, the quality of the predictions depends on the
quality of the physical model, which is typically limited by necessary simpli-
fications and incomplete scientific knowledge. In our experience, data-driven
models typically outperform physical models in terms of prediction accuracy.
For example, a simple k nearest neighbors model can reduce the RMSE by
22% when estimating star formation rates.14;15 Thus, we strongly advocate
data-driven models when accurate predictions are the main objective. And
this is indeed often the case, for example, if we want to estimate properties
of objects in the sky for quickly identifying observations worth a follow-up
investigation or for conducting large-scale statistical analyses.

Generic machine learning methods are not meant to replace physical mod-
eling, because they typically do not provide scientific insights beyond the
predicted values. Still, we argue that if prediction accuracy is what matters,
one should favor the more accurate model, whether it is interpretable or not.
While the black-and-white portrayal of the two approaches may help to il-
lustrate common misunderstandings between data scientists and physicists,
it is of course shortsighted. Physical and machine learning modeling are not
mutually exclusive: Physical models can inform machine learning algorithms,
and machine learning can support physical modeling. A simple example of
the latter is using machine learning to estimate error residuals of a physical
model.9

Dealing with uncertainties is a major issue in astronomical data anal-
ysis. Data scientists are asked to provide error bars for their predictions
and have to think about how to deal with input noise. In astronomy, both
input and output data have (non-Gaussian) errors attached to them. Of-
ten these measurement errors have been quantified (e.g., by incorporating
weather conditions during observation), and it is desirable to consider these
errors in the prediction. Bayesian modeling and Monte Carlo methods sim-
ulating physical models offer solutions, however, often they do not scale for
big data. Alternatively, one can modify machine learning methods to pro-
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cess error bars, as attempted for nearest neighbor regression by modifying
the distance function.10

Getting Started on Astronomy and Big Data

Most astronomical surveys make their entire data collection, including de-
rived parameters, available online in the form of large databases. These
provide entry points for the computer scientist wanting to get engaged in as-
tronomical research. In the following, we highlight three resources for getting
started on tackling some of the open problems mentioned earlier.

The Galaxy Zoo website (https://www.galaxyzoo.org) provides data
with classifications of about one million galaxies. It is an excellent resource
for developing and testing image analysis and computer vision algorithms for
automatic classifications of galaxies.

Much of the Kepler data for exoplanet discovery is publicly available
through Mikulski Archive for Space Telescopes (http://archive.stsci.
edu/kepler). These include light curves for confirmed exoplanets and false
positives, making it a valuable dataset for testing detection algorithms.

Having being monitored continuously for years, there is an incredible
amount of imaging data for the Sun, from archival data to near real-time
images. One place to find such is Debrecen Sunspot Data archive (http:
//fenyi.solarobs.unideb.hu/ESA/HMIDD.html). These images allow for
the development and testing of new complexity measures for image data or
solar eruption warning systems.

A Peek Into the Future

Within the next few years, image analysis and machine learning systems that
can process terabytes of data in near real-time with high accuracy will be
essential.

There are great opportunities for making novel discoveries, even in data-
bases that have been available for decades. The volunteers of Galaxy Zoo
have demonstrated this multiple times by discovering structures in SDSS
images that have later been confirmed to be new types of objects. These
volunteers are not trained scientists, yet they make new scientific discoveries.

Even today, only a fraction of the images of SDSS have been inspected by
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humans. Without doubt, the data still hold many surprises, and upcoming
surveys, such as LSST, are bound to image previously unknown objects.
It will not be possible to manually inspect all images produced by these
surveys, making advanced image analysis and machine learning algorithms
of vital importance.

One may use such systems to answer questions like how many types of
galaxies there are, what distinguishes the different classes, whether the cur-
rent classification scheme is good enough, and whether there are important
sub-classes or undiscovered classes. These questions require data science
knowledge rather than astrophysical knowledge, yet the discoveries will still
help astrophysics tremendously.

In this new data-rich era, astronomy and computer science can benefit
greatly from each other. There are new problems to be tackled, novel dis-
coveries to be made, and above all, new knowledge to be gained in both
fields.
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