
i
i

“Book” — 2016/9/23 — 12:05 — page 1 — #1 i
i

i
i

i
i

CHAPTER 1

Characterisation of errors in deep
learning-based brain MRI
segmentation
Akshay Pai,a,⇤,†, Yuan-Ching Teng†, Joseph Blair⇤⇤, Michiel Kallenberg⇤, Erik
B. Dam⇤, Stefan Sommer†, Christian Igel† and Mads Nielsena,⇤,†
⇤ Biomediq A/S, Copenhagen, Denmark.
⇤⇤ University of Copenhagen, Department of Biology, Copenhagen, Denmark.
† University of Copenhagen, Department of Computer Science, Copenhagen, Denmark.
a Corresponding: akshay@biomediq.com, madsn@biomediq.com

Contents

1. Introduction 2
2. Deep Learning for Segmentation 3

3. Convolutional Neural Network Architecture 5
3.1. Basic CNN Architecture 5

3.2. Tri-planar CNN for 3D Image Analysis 6

4. Experiments 7

4.1. Dataset 7

4.2. CNN Parameters 7
4.3. Training 9

4.4. Estimation of Centroid Distances 9

4.5. Registration-based Segmentation 10

4.6. Characterization of Errors 10
5. Results 12

5.1. Overall Performance 12
5.2. Errors 13

6. Discussion 16
7. Conclusion 19

Abstract
With ever-increasing data in the field of medical imaging, the availability of robust methods
for quantitative analysis in large-scale studies is the need of the hour. In recent times, there
has been a significant increase in the use of deep learning, in particular of convolution
neural networks (CNNs), in the field of computer vision and image analysis. In contrast
to traditional shallow classifiers, deep learning methods need less domain-specific feature
engineering. The architecture can automatically learn hierarchies of relevant features from

c� Elsevier Ltd.
All rights reserved. 1
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raw data. Despite the many success stories from computer vision, so far there are only rather
few studies on deep learning in the field of medical imaging. In this chapter, we will look
more closely at a specific application of CNNs, namely segmentation of normal brains from
magnetic resonance images (MRI). We will characterize the types of errors from CNN-based
segmentation and compare them with the errors from a model-based registration approach.
The emphasis of this chapter is on comparing errors made by model-driven and data-driven
approaches. In conclusion, we notice that the two methods make complementary errors.
The CNN errors can be reduced by including more training data and by finding ways to
incorporate the geometric information that registration-based algorithms rely on.

Chapter points
• Deep Learning methods require large training datasets.
• Geometric information of the anatomy improves the performance of deep learning

for medical image segmentation.
• In our experiments, deep learning methods and registration-based methods pro-

duced complimentary types of errors. Thus, combining model-based and data-
driven segmentation approaches is a promising future research direction.

1. Introduction
Quantitative analysis of medical images often requires segmentation of anatomical
structures observed in them. For instance, the volume of the hippocampus in the
brain is associated with Dementia of the Alzheimer’s type [14]. In addition to volume
quantification, segmentation aids in the analysis of regional statistics such as shape,
structure, and texture. Segmentation also extends to detecting abnormal biological
processes or even pathological anomalies, for instance microbleeds, tumors so on and
so forth. In this chapter, we will specifically deal with segmentation of normal brains
from magnetic resonance images (MRI) using deep learning. The purpose is to eval-
uate and understand the characteristics of errors made by deep learning approaches as
opposed to a model-based approach such as segmentation based on multi-atlas non-
linear registration. In contrast to the deep learning approach, registration-based meth-
ods rely heavily on topological assumptions about the objects in the image, i.e., that
the anatomical structures are similar enough to be mapped onto each other.

Segmentation essentially involves dividing images into meaningful regions, which
can be viewed as a voxel classification task. The most simplistic approach is to man-
ually segment brains. However, this is a time-consuming process and has significant
interoperable variations. Automating delineation provides a systematic way of obtain-
ing regions of interest in a brain on the fly as soon as a medical image is acquired. The
field of brain segmentation is dominated by multi-atlas based methods. They are driven
by a combination of spatial normalization through registration followed by a classifi-
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cation step, which can be simple majority voting or a more sophisticated method such
as Bayesian weighting.

With the advance in computational capabilities and refinement of algorithms, deep
learning based methods have seen an increased usage [27, 17]. They have proven to be
extremely e�cient, stable, and state-of-art in many computer vision applications. The
architecture of a deep neural network is loosely inspired by the human cortex [16].
It consists of several layers, each performing a non-linear transformation. In contrast
to most traditional machine learning approaches where features typically need to be
handcrafted to suit the problem at hand, deep learning methods aim at automatically
learning features from raw or only slightly pre-processed input. The idea is that each
layer adds a higher level of abstraction—a more abstract feature representation—on
top of the previous one.

This chapter will focus on the application of deep neural networks, specifically
convolutional neural networks (CNNs), to brain MRI segmentation. After a short in-
troduction, we will evaluate the accuracy of the CNNs compared to a standard multi-
atlas registration based method. We reproduce results from [7] on the MICCAI 2012
challenge dataset. We will focus on the characterization of the errors made by CNNs
in comparison with the registration-based method. Finally, we will discuss some di-
rections for future work such as ensemble learning of multiple classifiers including
CNNs.

2. Deep Learning for Segmentation
Most segmentation methods either rely soley on intensity information (e.g., appear-
ance models) or combine intensity and higher order structural information of objects.
A popular example of the latter is multi-atlas registration, which is based on a specific
set of templates that, in a medical application, typically contains labelings of anatomi-
cal structures. An image registration algorithm then maps these templates to a specific
subject space through a non-linear transformation. Voting schemes are then applied
to choose the right label from a given set of labels obtained from the transformed
templates [6].

In a typical model-based approach, images are first registered to a common anatom-
ical space and then specific features are extracted from the aligned images. The fea-
tures are often higher order statistics of a region such as histograms of gradients or
curvatures. Learning algorithms such as support vector machines (SVMs) or neural
networks are then used to classify regions in a medical image. Fischl et al [10] have
integrated both learning and model based methods for segmentation. Images are nor-
malized to a common template, and then a Markov random field learns anatomically
corresponding positions and intensity patterns for di↵erent anatomical structures. In
the above-mentioned algorithms, domain knowledge about spatial locations of various
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anatomical structures is incorporated as a Bayesian prior distribution of the segmenta-
tion algorithm.

In contrast, data-driven deep learning approaches aim at learning a multi-level fea-
ture representation from image intensities, typically not using anatomical background
knowledge about spatial relations. The feature representation at each level results from
a non-linear transformation of the representations at the previous level. This is in con-
trast to shallow architectures, which have at most one distinguished layer of non-linear
processing (i.e., one level of data abstraction). Popular shallow architectures include
linear methods such as logistic regression and linear discriminant analysis as well as
kernel methods such as SVMs and Gaussian processes. Kernel classifiers use kernel
functions to map input from a space where linear separation is di�cult to a space
where the separation is easier. The class of kernel functions, and therefore the feature
representation, has to be chosen a priori. Because deep learning methods learn the
feature representation, it has been argued that they have the advantage of being less
dependent on prior knowledge of the domain. However, feature learning requires that
enough training data is available to learn the representations. Deep neural networks
are, in general, highly complex non-linear models having many free parameters. Suf-
ficient training data is needed to learn these parameters and to constrain the model
such that it generalizes well to unseen data. Therefore, deep learning methods excel in
applications where there is an abundance of training data—which is typically not the
case in medical imaging where data is often scarce.

Accordingly, so far there are only rather few applications of deep learning meth-
ods in medical imaging, specifically brain segmentation. A prominent example of
CNNs for classification applied to 2D medical images is mitosis detection - winning
the MICCAI 2013 Grand Challenge on Mitosis Detection [5, 33, 32]. Some more re-
cent notable applications of deep learning in the field of medical image analysis are
collected in [12]. Highlights include classification of brain lesions [4, 23], microbleeds
in brain [8], histopathalogical images [29], colonic polyp [31], lung nodules [28], and
mammograms [15].

Limitations of deep learning applications in medical image analysis are often at-
tributed to computational complexity and large variance in the data. In order to address
these methodological contributions have been made to improve both the robustness,
and computational complexity of CNN. For instance, the tri-planar approach was pro-
posed to overcome the computational complexity of the 3D CNNs[24] and later Roth

et al., [25] propose random rotations of the triplanar views as way to obtain repre-
sentations of the 3D data. Brosch et al., [4] use a combination of convolutional and
deconvolutional layers to learn di↵erent feature scales.
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3. Convolutional Neural Network Architecture
In the following, we describe the convolutional neural network (CNN) architecture we
considered in this study, which is depicted in Fig. 1.1. An in-depth introduction to
neural networks and CNNs is beyond the scope of this chapter, we refer to [11].

3.1. Basic CNN Architecture
The basic principles of CNNs have been introduced by LeCun et al. in the late 1990s [18].
Deep neural networks consist of several layers. Di↵erent types of layers can be dis-
tinguished in a CNN. First, we have convolutional layers. This type of layer computes
a convolution of its input with a linear filter (which has been suggested for modelling
neural responses in the visual cortex a long time ago, e.g., [34]). The filter mask is
also referred to as convolution kernel or—in analogy to neurons—as receptive field.
The coe�cients of each convolution kernel are learned in the same way as weights in
a neural network. Typically, after the convolution a non-linear (activation) function is
applied to each element of the convolution result. Thus, a convolutional layer can be
viewed as a layer in a standard neural network in which the neurons share weights.
The output of the layer is referred to as a feature map. The input to the convolutional
layer can be the input image or the output of a preceding layer, that is, another feature
map. The particular type of weight sharing in a convolutional layer does not only re-
duce the degrees of freedom, it ensures equi-variance to translation [11], which means
that, ignoring boundary e↵ects, if we translate the input image, the resulting feature
map is translated in the same way.

Often convolutional layers are followed by a pooling layer. Pooling layers compute
the maximum or average over a region of a feature map. This results in a subsampling
of the input. Pooling reduces the dimensionality, increases the scale, and also supports
translation invariance in the sense that a slight translation of the input does not (or only
marginally) change the output.

Convolutional layers and pooling layers take the spatial structure of their input
into account, which is the main reason for their good performance in computer vision
and image analysis. In contrast, when standard non-convolutional neural networks are
applied to raw (or only slightly preprocessed) images, the images are vectorized. The
resulting vectors serve as the input to the neural network. In this process, information
about the spatial relation between pixels or voxels is discarded and there is no inherent
equi-variance to translation nor translation invariance, which are important properties
to achieve generalization in object recognition tasks.

The final layers in a CNN correspond to a standard multi-layer perceptron neural
network [2], which receives the vectorized (or flattened) feature maps of the preceding
layer as input. There can be zero, one, or more hidden layers, which compute an a�ne
linear combination of their inputs and apply a non-linear activation function to it. The
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final layer is the output layer. For multi-class classification, it typically computes the
softmax function, turning the input into a probability distribution over the classes. For
learning, we can then consider the cross-entropy error function, which corresponds to
minimizing the negative logarithmic likelihood of the training data [2].

Figure 1.1 Convolutional neural network with 3 input channels. n@kxk indicates n feature maps
with size k ⇥ k

3.2. Tri-planar CNN for 3D Image Analysis
Processing 3D input images, such as brain scans, with CNNs is computationally de-
manding even if parallel hardware is utilized. To classify (e.g., segment) a voxel with
a 3D CNN, an image patch around the voxel is extracted. This patch, which is a small
3D image, serves as the input to the CNN, which computes 3D feature maps and ap-
plies 3D convolution kernels. To reduce the computational complexity and the degrees
of freedom of the model, tri-planar CNNs can be used instead of a 3D CNN. A tri-
planar CNN for 3D image analysis considers three two-dimensional image patches,
which are processed independently in the convolutional and pooling layers; all fea-
ture maps and convolutions are two-dimensional. For each voxel, one n ⇥ n patch is
extracted in each image plane (sagittal, coronal and transverse), centered around the
voxel to be classified.

This tri-planar approach [24, 26] reduces the computational complexity compared
to using three-dimensional patches, while still capturing spatial information in all three
planes. Due to the reduction in computation time, it is often possible to consider larger
patches, which incorporate more distant information.

The tri-planar architecture considered in this study is sketched in Figure 1.1. It con-
sists of two convolutional layers (including applying non-linear activation functions)
each followed by a pooling layer. The latter compute the maximum over the pooling
regions. Then the feature maps are flattened and fed into a hidden layer with 4000
neurons. As activation functions we use the unbounded Rectifier linear unit (ReLU)
a 7! max(0, a), which has become the standard activation function in deep CNNs. The
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absolute values of the derivatives of standard sigmoid activation functions are always
smaller than one, which leads to the vanishing gradient e↵ect in deep networks (e.g.,
see [1]), which is addressed by ReLUs. The number of neurons in the softmax output
layer corresponds to the 135 di↵erent classes we consider in our segmentation.

The e�cient tri-planer architecture allows us to consider input patches at two dif-
ferent scales, one for local and one for more global information. Accordingly, we
have in total six two-dimensional inputs to our CNN architecture (2D patches from
three planes at two scales).

4. Experiments
In this section, we will use three di↵erent feature representations for CNNs for seg-
menting structures in a normal brain using T1 weighted magnetic resonance images
(MRI). To evaluate characteristics of the errors made by CNN, we compare the seg-
mentations obtained to those obtained using a common multi-atlas registration-based
method.

We will first evaluate the performance of CNN-based segmentation method (with
and without centroid distances) in comparison with the registration-based segmenta-
tion. After that, we will characterize the errors from both the methods to understand
the limitations of CNNs in segmenting brain MRIs with limited training data. For a fair
evaluation of the methods, we exclude the outliers i.e., images where the registration-
based method fail.

4.1. Dataset
All the experiments were performed on a dataset that was released for the MICCAI
2012 multi-atlas challenge1. The dataset contains 15 atlases in the training set, and 20
atlases in the testing set. All 35 images are T1-weighted structural MRIs selected from
the OASIS project [19]. The cortical regions were labeled using the BrainCOLOR
protocol; the non-cortical regions were labeled using the NeuroMorphometric proto-
col.These images were acquired in the sagittal plane and the voxel size is 1.0 ⇥ 1.0 ⇥
1.0 mm

3. Only the labels appearing in all images are used. The labels consist of 40
cortical and 94 non-cortical regions.

4.2. CNN Parameters
All voxels in the brain were considered during the training phase. Due to similar slice
thickness relative to the in-plane voxel size, we use information from both 2D and tri-
planar planes for segmenting the volumetric images. The first three rows of the input
layers are a set of tri-planar patches. The next three rows are also tri-planar however,

1
https://masi.vuse.vanderbilt.edu/workshop2012/index.php/Main_Page
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Figure 1.2 The convolutional neural network used in the experiment. The dotted box represents
the architecture of CNN without centroids and the solid box (outermost) represents the architec-
ture of the CNN with centroids as an input feature. There are 135 neurons in the softmax layer
(instead of 134) since the background class is also included.

with a di↵erent patch area. First a patch with a larger (than the first three rows) size is
chosen, and then the patch is downscaled to match the dimensions of the patches from
the first three rows.

A CNN with multiple convolution layers was used. A schematic representation
of the CNN architecture can be found in Figure 1.2. In the first convolutional layer,
we trained 20 kernels. For patches of size 29 ⇥ 29, we used a kernel size of 5 ⇥ 5.
Max-pooling with kernels of 2 ⇥ 2 was performed on the convolved images. The
output images of the max-pooling layer served as input to the next layer, where 50
kernels of size 5 ⇥ 5 were used. In addition, max-pooling with kernels of size 2 ⇥
2 was performed on the convolved images. The output of the second layer of max-
pooling served as input to a fully-connected layer with 4000 nodes. The output layer
of the CNN computed the soft-max activation function. This function maps its inputs
to positive values summing to 1, so that the outputs can be interpreted as the posterior
probabilities for the classes. The class with the highest probability is finally chosen
for prediction.
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4.3. Training
In order not to overfit the training set when choosing the network architecture, we
randomly chose 10 images as a training set and the remaining 5 images as a validation
set. We split the training dataset into n = 4 parts (mini-batches) so that each part is
small enough to fit GPU memory while avoiding too much of I/O. We trained for 60
epochs (one epoch corresponds to training on n mini-batches). Before training, we
randomly sampled 400,000 voxels evenly from the training set, 200,000 voxels evenly
from the validation set for each epoch. We then extract patch features from those
voxels as inputs to the network.

The validation set was used to detect overfitting. No overfitting was observed in
the initial experiment and the validation error did not decrease after 10 epochs. Thus,
the data from the training and validation set were again combined and the network was
retrained on all 15 images for 10 epochs.

After the network was trained, images in the test set were classified. We evaluate
the performance using Dice coe�cients between true and the CNN-classified labels
across all the 134 anatomical regions:

Dice(A, B) = 2 ⇥ |A \ B|
|A| + |B| , (1.1)

where Aand B are the true labels and predicted labels, respectively. A Dice score of 1
indicates perfect match.

The loss function used in this chapter can be found in [3]. The optimization was
performed using stochastic gradient descent with a momentum term [3].

The code we used in this chapter is based on Theano2, a Python-based library that
enables symbolic expressions to be evaluated on GPUs [30].

4.4. Estimation of Centroid Distances
Unlike computer vision problems where segmentation tasks are more or less unstruc-
tured, brain regions are consistent in their spatial position. To incorporate this informa-
tion, Brebisson et al. [3] used relative centroid distances as an input feature. Relative
centroid distance is the Euclidean distance between each voxel and the centroid of
each class.

In the training phase, the true labels were used to generate the centroids. In the
testing phase, the trained network without the centroids (see the dotted box in Fig-
ure 1.2), was used to generate an initial segmentation from which centroid distances
were extracted. This layer may be replaced by any segmentation method or a layer that
provides relevant geometric information (e.g., Freesurfer [10]). We tried replacing the

2http://deeplearning.net/software/theano/
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Predicted/True Segment Non-Segment
Segment TP FP
Non-Segment FN TN

Table 1.1 Confusion matrix used to compute error metrics such as Dice and Jaccard. TP: true
positive, FP: false positive, TN: true negative, and FN: false negative.

initial segmentations used to generate centroid distances by a registration-based seg-
mentation. However, this did not yield any improvement in the Dice scores. This
indicates that including geometric information must be more intricate that just incor-
porating spatial positions. In the experiments, we therefore used CNNs to generate
initial segmentations and the corresponding centroid distances during testing. The
final CNN network is illustrated in Figure 1.2.

4.5. Registration-based Segmentation
In the MICCAI challenge, the top performing methods relied significantly on non-
linear image registration. Hence, we chose to compare to a registration-based segmen-
tation method. Since the purpose of the chapter is to only evaluate the types of error
made by a registration-based method, we sticked to a simple majority voting scheme
for classification.

We first linearly registered the images using an inverse consistent a�ne transfor-
mation with 12 degrees freedom and mutual information as a similarity measure. After
that, we performed an inverse consistent di↵eomorphic non-linear registration using
the kernel bundle framework and stationary velocity fields [22]. The parameters of the
registration were the same as in [22]. We used a simple majority voting to fuse the
labels. More sophisticated voting schemes were avoided since they can be viewed as
an ensemble layer which optimizes classifications obtained from registration.

4.6. Characterization of Errors
In order to assess performances of both the CNN and the registration-based method in
depth, we characterize the errors made by the two methods. Typically, segmentation
errors are computed via either Dice or Jaccard indices, which are computed from the
confusion matrix, see Table 1.1:

DiceScore =
2TP

| TP + FN | + | TP + FP | =
2TP

2TP + FN + FP
⇠ 2TP + 1

2TP + FN + FP + 1
(1.2)

Jaccard =
TP

TP + FN + FP
⇠ TP + 1

TP + FN + FP + 1
(1.3)
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Predicted/True Segment ✏ region Non-Segment
Segment TP BE-1 FP
✏ region BE-2 TB BE-3
Non-Segment FN BE-4 TN

Table 1.2 Updated confusion matrix including boundaries indecisions. BE: Boundary errors,
and TB: True boundary. With an additional definition of boundary errors, one can come up with
new measures that characterize different types of errors made by the segmentation method.

For instance, the Dice is a size of the overlap of the two segmentations divided by
the mean size of the two objects. This can be expressed in terms of the entries of the
Table 1.1. Similarly, measures such as sensitivity, specificity may also be expressed in
terms of the table entries:

sensitivity =
TP

TP + FN
⇠ TP + 1

TP + FN + 1
(1.4)

specificity =
TN

TN + FP
⇠ TN + 1

TN + FP + 1
(1.5)

Errors in segmentations may have several characteristics. Sometimes, boundaries of
regions are a source of noise. Other errors arise when lumps of regions are given the
wrong-label. Let us consider ✏-boundary regions defined by ✏-erosion and ✏-dilation
as shown in Figure 1.3. When we exclude the ✏-boundary when assessing the segmen-
tation quality, see Table 1.2 and Figure 1.3, we get new quality measures:

Dice✏ =
2TP✏ + 1

2TP✏ + FN✏ + FP✏ + 1
(1.6)

Jaccard✏ =
TP✏ + 1

TP✏ + FN✏ + FP✏ + 1
(1.7)

sensitivity✏ =
TP✏ + 1

TP✏ + FN✏ + 1
(1.8)

Typically, the boundary errors can be identified by moving the boundaries of the
segmentations through morphological operations. Examples illustrating these errors
will be given in the results section. In a boundary error, since the core (excluding the
indecisive boundaries) of the segmentations are correctly classified, the Dice scores are
expected to be high. However, in labelling error, in addition to the boundary errors,
there may be lumps of regions with wrong labels which will negatively a↵ect the Dice
score. In order to formalize these e↵ects, we define a measure called the core-Dice
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score (equation (1.9)):

cDice(A, B) =
1 + 2 ⇥ | core(A) \ core(B)|

1 + | core(A) \ non-boundary(B)| + | core(B) \ non-boundary(A)|
(1.9)

where core is the inner segmentation after excluding ✏ boundaries, non-boundary(B) =
B \ boundary(B), and non-boundary(A) = A \ boundary(A). A constant 1 added in
both denominator and divider is to avoid the divide-by-zero error when the width of
boundary is so large that all the regions are ignored. The value converges to 1 when
the core regions are perfectly matched or totally isolated. We can, therefore, estimate
where the errors come from by calculating the core dice score with increasing width of
boundary. Typically, core-Dice errors will tend to increase as a function of the bound-
ary width (see Figure 1.3) where as segmentations with labeling errors will behave
vice versa.

Figure 1.3 Augmentation of the region by width of ✏. Defining an object’s boundary from ✏-
erosion and ✏-dilation: A[S ✏

A\S ✏ , where S ✏ is a structural element defined as a sphere of radius
✏

5. Results
This section will present results of the overall performance of the CNN algorithm in
comparison to the registration-based algorithm. The results were divided into two
categories: a) overall performance of the method in comparison to the registration-
based method, b) evaluation of the types of errors made by the CNN and registration-
based methods.

5.1. Overall Performance
Table 1.3 enlists the mean Dice scores obtained by the CNN and registration-based
methods across the 134 regions and all the images. The CNN with spatial information,
in the form of centroid, gave better Dice scores compared to CNN without centroids.
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Method Mean Dice score
Registration 0.724
CNN without centroids 0.720
CNN with centroids 0.736

Table 1.3 The mean Dice score of the test set using different methods. Registration is the multi-
atlas registration method; CNN without centroids is the CNN with 2 sets of tri-planar patches;
CNN with centroids is the CNN with 2 sets of tri-planar patches and the distances of centroids.

The registration-based method still achieved a Dice score close to that of CNN, indi-
cating the importance of information about the underlying topology of the anatomies.
Figure 1.5 details the Dice di↵erences. As expected, the standard deviation in error
decreased with the inclusion of centroid distances as a feature.

5.2. Errors
In order to dig into the performance analysis of CNN-based segmentation system, we
look at the kind of segmentation errors the method made. We broadly classify the
errors into two classes as specified in Section 4.6.

Figure 1.4 illustrates the segmentation of a test case (number 1119) using both
CNN and registration. We can see that overall the CNN led to more lumps of mis-
classifications compared to registration. The misclassifications of registration-based
segmentations were generally on the boundaries of the object.

Figure 1.7 illustrates an example of both labelling and boundary errors. The first
column is a segmentation of the left lateral ventricle and the second column repre-
sents the segmentation of the left cuneus. The first row illustrates the ground truth,
the second row illustrates segmentation by the registration-based method, the third
row illustrates segmentation by the CNN-based method, the fourth row represents the
di↵erence between ground truth and registration, and finally the last row represents
di↵erence between ground truth and CNN segmentation. As illustrated in the first
column, CNN-based segmentation has misclassification of similar looking voxels for
instance misclassfication of left lateral ventricles around insular cortex, see Figure 1.7.
In contrast, the errors from registration-based method is on the boundary of the ven-
tricle.

The second column illustrates more severe boundary errors made by both CNN and
registration in segmenting the left cuneus. While the segmentation is very specific, the
sensitivity is low. In such regions, combining both methods may not improve the Dice
score.

A graph to further illustrate the di↵erence between the di↵erent segmentation er-
rors is shown in Figure 1.8. Segmentation of left lateral ventricle using CNN has
labeling errors since the core dice drops on change of boundary width whereas the
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Figure 1.4 Segmentation results from both CNN and registration. The first row illustrates the
true labels. Different colors indicate different types of labels. The second and third rows are
predictions from registration and CNN, respectively. The last two rows are differences of each
method (registration and CNN) from true labels. Difference illustrates that CNN has more mis-
classifications compared to CNN. The CNN results are based on CNN with centroids.
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Figure 1.5 The Dice score of different methods. This box plot illustrates the variance in the Dice
measure for each method.

Figure 1.6 The histogram of labelling error occurrence in 134 classes across all the test images.
X axis: Index of class. Y axis: Labeling error occurrence. The results are from CNN with
centroid. The CNN results are based on CNN with centroids.

registration-based segmentation has 1 core dice upon the change of boundaries. In
segmenting left cuneus, both registration and CNN make labeling errors. Labelling er-
rors are errors with lumps of misclassified voxels that are not specific to the anatomy,
i.e., false positives. Typically with such errors, the Dice coe�cient changes negatively
with a change in the boundary width. In contrast, change in boundary width makes
a positive change in the Dice score when the errors are of the boundary type. This
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is the logic we use to classify the errors. A positive slope in the graph is classified
as a boundary error and negative slope is classified as a labelling error. Figure 1.6
shows the histograms of the occurrence of labelling errors for each class across the
test data. As expected, the CNN made more labelling errors on average compared to
the registration-based method. This is expected since the training dataset is small, and
the registration-based methods have stronger topological constraints. On the contrary,
the registration-based method made more boundary errors than labelling errors.

6. Discussion
This chapter presented a characterization of errors made by a CNN for automatic
segmentation of brain MRI images. Fairly accurate segmentations were obtained.
However, the performance was inferior to both a standard registration plus majority
voting-based method and other model-based methods presented at the MICCAI 2012
challenge3. Note that the best performing methods in the challenge rely on non-linear
image registration. With this as motivation, we compared the results of segmentation
using a CNN to a registration-based segmentation methodology.

The performance of both the registration and the CNN-based methods could pos-
sibly be improved, which might lead to di↵erent results in the comparison. For in-
stance, Moeskops et al. [21] use convolution kernels at di↵erent scales. This results
in similar mean Dice scores (0.73). Studies like [3] include 3D patches in the feature
stack. Including 3D patches is not trivial because of intensive memory requirements
depending on the size of the patches involved. In order to avoid memory intensive
representations, the tri-planar approach [24] was proposed.

As illustrated in various examples in the results section, our CNN made more la-
belling errors than segmentation or boundary errors. This can be caused by limited
training size, lack of spatial information, or a combination of both. Unlike images aris-
ing in many computer vision problems, medical images are structured, that is, there
is a spatial consistency in the location of objects. This gives a particular advantage to
methods that use spatial information. The gains from the use of spatial information is
apparent when the centroid distances are included as a feature. The centroid distances
can be obtained from any popular segmentation algorithm. In such a case, centroid
distances in the training must also be computed (as opposed to using the true labels)
using the segmentation method so that the network can learn the errors made by the
method.

Lack of training data is a limiting factor for the application of deep learning in
medical image analysis. For instance, the specific application presented in this chap-
ter aims at obtaining segmentations with 134 classes from just 15 training images.

3https://masi.vuse.vanderbilt.edu/workshop2012.
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Figure 1.7 Illustration of segmentation errors for a single class. The left column shown seg-
mentation of the left ventricle. CNN (last row, left image) shows clear misclassification (labeling
error) of regions in comparison the errors by registration (fourth row, left image) are strictly
boundary based. The right column illustrates segmentation of the left cuneus, where both the
methods make more severe boundary errors. The second row represents segmentation using
registration. Third row represents segmentation using CNN. Fourth row represents difference of
registration-based segmentation and the true segmentation, and finally the fifth row represents
difference of CNN-based segmentation and the true segmentation.
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Figure 1.8 The core-Dice score with different boundary width with respect to two classes.
x-axis: width of boundary, y-axis: core-Dice score.

Lowering the number of classes with the same dataset yields significantly better Dice
scores [21]. When large training sets are available, CNN-based methods generally give
better results [13]. In computer vision problems such as the PASCAL challenge [9],
CNN-methods perform particularly well due to the presence of large and relatively
cheap ground truth data. In the area of medical imaging analysis, however, obtaining
ground truth is expensive. In cases where there is an upper limit to the availability of
both data and corresponding annotations (what we use as ground truth), using deep
learning as a regression tool to a clinical outcome may be more useful. An example
application of using CNNs in regression may be found in [20].

In our experiments, the registration-based method made errors complementary to
that of the CNN-based method. Thus, combining the two approaches may improve
Dice scores. The choice of where to include the geometric information in the network
is a research topic in itself. For example, one may add information on the top via
centroid distances or have a more intricate way of adding geometric information as
a priori inside the network at some level. In addition, one may even consider com-
bining classifications obtained by both methods via an ensemble learning to improve
performances for large category classification (large number of classes). With limited
validation data, unsupervised/semi-supervised learning as an initialization [15] in con-
junction with model-driven approaches such as image registration may improve results
in the future.

Even though we only chose one architecture in this chapter, the choices are many,
for examples see the special issue [12]. The choices may for example vary in the
number of layers or in a fusion of multiple architectures. An increase of the network
depth proved e↵ective in the recent ILSVRC challenge where the authors use as many
as 152 hidden layers [13]. Once the architecture is fixed, small variations in the settings
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may not necessarily yield significantly better results [21].

7. Conclusion
Deep learning methods have already improved performances in medical tasks such as
classification of tumors (3/4 classes), detection of micro-bleeds, or even classification
of specific structures in histological images, which is a significant step in the field.
However, CNN-based methods for segmentation of brain MRI images with a large
number of classes may need more training data as used in our study to outperform
model-driven approaches. With the advent of big data, connecting healthcare centers
may increase the availability of medical data significantly. However, it is likely that
obtaining hand annotations for such data may be intractable. In such cases, to leverage
the use of data, the field of deep learning in medical imaging may have to move to-
wards combining the benefits of model-driven techniques, unsupervised learning, and
semi-supervised learning. In this chapter, we have shown that model-driven and data-
driven approaches can make complementary errors. This encourages using techniques,
for example ensemble learning, to combine the two approaches.
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