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A B S T R A C T

This paper presents a brain T1-weighted structural magnetic resonance imaging (MRI) biomarker that
combines several individual MRI biomarkers (cortical thickness measurements, volumetric measurements,
hippocampal shape, and hippocampal texture). The method was developed, trained, and evaluated using two
publicly available reference datasets: a standardized dataset from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) and the imaging arm of the Australian Imaging Biomarkers and Lifestyle flagship study of
ageing (AIBL). In addition, the method was evaluated by participation in the Computer-Aided Diagnosis of
Dementia (CADDementia) challenge. Cross-validation using ADNI and AIBL data resulted in a multi-class
classification accuracy of 62.7% for the discrimination of healthy normal controls (NC), subjects with mild
cognitive impairment (MCI), and patients with Alzheimer’s disease (AD). This performance generalized to the
CADDementia challenge where the method, trained using the ADNI and AIBL data, achieved a classification
accuracy 63.0%. The obtained classification accuracy resulted in a first place in the challenge, and the method
was significantly better (McNemar’s test) than the bottom 24 methods out of the total of 29 methods
contributed by 15 different teams in the challenge. The method was further investigated with learning curve
and feature selection experiments using ADNI and AIBL data. The learning curve experiments suggested that
neithermoretrainingdatanoramorecomplexclassifierwouldhaveimprovedtheobtainedresults.Thefeature
selection experiment showed that both common and uncommon individual MRI biomarkers contributed to
the performance; hippocampal volume, ventricular volume, hippocampal texture, and parietal lobe thickness
were the most important. This study highlights the need for both subtle, localized measurements and global
measurements in order to discriminate NC, MCI, and AD simultaneously based on a single structural MRI
scan. It is likely that additional non-structural MRI features are needed to further improve the obtained
performance, especially to improve the discrimination between NC and MCI.

© 2016 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

� Data used in preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) and from the Australian
Imaging Biomarkers and Lifestyle flagship study of ageing (AIBL) funded by the Com-
monwealth Scientific and Industrial Research Organisation (CSIRO) which was made
available at the ADNI database (www.loni.usc.edu/ADNI). As such, the investigators
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listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/
uploads/how_to_apply/ADNI_Acknowledgement_List.pdf. The AIBL researchers con-
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1. Introduction

Structural magnetic resonance imaging (MRI) biomarkers of
Alzheimer’s disease (AD) are an active research area, and a wide
range of biomarkers have been proposed and investigated (Ramani
et al., 2006; Cuingnet et al., 2011; Falahati et al., 2014). The impor-
tance of structural MRI in AD was underlined by its inclusion in
criteria for AD diagnosis (Jack et al., 2011a). To date, the volume
of the hippocampus is the most studied and used structural MRI
biomarker of AD (Jack et al., 2011b), and it is so far the only struc-
tural MRI biomarker that has been qualified for enrichment of clinical
trials (Hill et al., 2014). Volumetry is generally a popular type of
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biomarker, and the region of interest (ROI) is not limited to the hip-
pocampus. Examples of other ROIs include the amygdala (Poulin
et al., 2011), the ventricles (Tanabe et al., 1997), and the whole
brain (Tanabe et al., 1997). Other types of biomarkers include cor-
tical thickness measurements (Singh et al., 2006; Eskildsen et al.,
2013), shape (Gerardin et al., 2009; Achterberg et al., 2014), texture
(Chincarini et al., 2011; Sørensen et al., 2016), proximity of brain
structures (Lillemark et al., 2014), whole brain dissimilarities com-
puted from a deformation (Klein et al., 2010), and methods based
on voxel-wise modulated intensities (Ashburner and Friston, 2000;
Davatzikos et al., 2008; Klöppel et al., 2008).

Some MRI biomarkers complement each other. For example, it
has been shown that hippocampal shape and texture provide diag-
nostic information independent of hippocampal volume (Achterberg
et al., 2014; Sørensen et al., 2016). Moreover, markers applied in dif-
ferent parts of the brain are expected to be sensitive to different
stages of the disease. For example, the hippocampus is affected early
by neurofibrillary tangles, a pathological hallmark of AD, whereas the
cortex is only affected later (Braak and Braak, 1991). This has been
empirically reflected by hippocampal volume being better at sepa-
rating normal controls (NC) and mild cognitive impairment (MCI),
the prodromal stage of AD (Colliot et al., 2008), whereas cortical
thickness measurements have been shown to better separate MCI
from AD (Singh et al., 2006). A combination of such complemen-
tary biomarkers may provide an overall better biomarker, especially
when several diagnostic groups are considered (e.g., NC, MCI, AD).
Accordingly, the combination of volumetry and cortical thinning has
been used in several studies (Falahati et al., 2014).

Considering the multitude of MRI biomarkers, there is a need for
standardized comparisons of methods on the same dataset in order
to better understand how different biomarkers perform and what
their relations are. The recent release of standardized datasets for the
comparison of algorithms from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) (Wyman et al., 2013) was an important step in
this direction, especially because ADNI is the most commonly used
reference database in AD MRI biomarker research (Weiner et al.,
2012). Likewise, recent large empirical comparison studies (Cuingnet
et al., 2011; Sabuncu et al., 2015) and the Computer-Aided Diagnosis
of Dementia (CADDementia) challenge (Bron et al., 2015) have been
important steps.

CADDementia, hosted by the 17th International Conference on
Medical Image Computing & Computer-Assisted Intervention (MIC-
CAI), was a challenge on differential diagnosis of NC, subjects with
MCI and patients suffering from AD based on a single structural MRI
scan. The challenge provided an opportunity for different research
groups to directly compare their methods in a completely stan-
dardized fashion. Notable characteristics of CADDementia included:

• differential diagnosis of NC, MCI, and AD, i.e., considering the
three-class classification problem rather than pairwise com-
parisons, which are often reported in the literature;

• validation on a completely independent and unseen dataset
from a different cohort; and

• standardized validation, i.e., evaluation metrics defined, imple-
mented, and applied by the CADDementia team.

In this study, we propose a method that combines a range of
volumetric measurements, cortical thickness measurements, hip-
pocampal texture, and hippocampal shape, to obtain a combination
biomarker that used more of the information contained in a struc-
tural MRI scan compared with a single biomarker approach. The pur-
pose is simultaneous differential diagnosis of NC, MCI, and AD. This is
a unique combination of basic MRI biomarkers not used before. The
combination is achieved by entering all biomarkers as features in a
linear discriminant analysis (LDA) classifier. The proposed method
was developed and trained on a combination of MRI scans from ADNI

(Wyman et al., 2013) and the MRI imaging arm of the Australian
Imaging, Biomarker & Lifestyle Flagship Study of Aging (AIBL) (Ellis
et al., 2009). The method was evaluated using cross-validation on
the combination of ADNI and AIBL data, and by participation in the
CADDementia challenge. The classification accuracy (CA) and area
under the receiver operating characteristic (ROC) curve (AUC) esti-
mated using the combination of ADNI and AIBL were comparable to
the performance achieved in the CADDementia challenge, and the
CADDementia test set CA was the highest among the participating
teams, resulting in the first place at the challenge. Our method also
achieved the highest AUC in the challenge.

A preliminary version of the work presented here appeared in
the CADDementia workshop proceedings (Sørensen et al., 2014). The
present study contains a detailed description of the method and
the obtained results. Moreover, we perform additional experiments
to investigate feature relations and importance in the method, and
to investigate whether more data and/or a more complex classifier
would have benefited the method.

2. Material and methods

2.1. The CADDementia challenge

The CADDementia challenge (Bron et al., 2015) used data col-
lected from three different sites, and the data were split into two
datasets, a validation dataset (30 scans) that included the clinical
diagnosis, and a test data set (354 scans) for which clinical diagno-
sis was not available to the challenge participants. Participants were
encouraged to use other data sources such as ADNI for training of
their methods. The CADDementia validation set was mainly supplied
for participants to gauge their performance. The CADDementia test
set was the data to be analyzed and scores be submitted for the
challenge.

The data was made available via the CADDementia website1 on
March 1, 2014, and test set scores were to be uploaded via the web-
site no later than June 16, 2014. A total of 15 teams uploaded scores.
Each team was allowed to upload 5 attempts, and a total of 29
attempts were uploaded. The results of the challenge were revealed
at the challenge workshop at MICCAI on September 18, 2014.

The Python scripts used for evaluation of the results were also
made available via the website, so each team could compute their
performance on the validation set using the exact same code that
would later be used to compute the performance on the test set.

Methods were ranked using the three-class CA (for NC, MCI, and
AD), which was based on a hard classification output of the methods.
Teams could supply soft classification outputs as well in order to also
have ROC statistics computed. The AUC acted as secondary perfor-
mance measure, i.e., ties according to CA were to be resolved using
AUC.

2.2. Data

Data used in this study were obtained from three different cohorts:
ADNI, AIBL, and CADDementia. Table 1 provides an overview.

2.2.1. ADNI standardized dataset
We used the “complete annual year 2 visits” 1.5T dataset from

the collection of standardized datasets released by ADNI (Wyman
et al., 2013). Raw unprocessed 1.5 T T1-weighted MRI images were
downloaded from the ADNI database between February 1, 2012
and November 11, 2012, and the standardized dataset definition
was downloaded from the ADNI website (http://adni.loni.usc.edu/
methods/mri-analysis/adni-standardized-data/) on September 28,
2012.

1 http://caddementia.grand-challenge.org/.

http://adni.loni.usc.edu/methods/mri-analysis/adni-standardized-data/
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Table 1
Characteristics of the datasets.

n Age, years Male MMSEa Field strength
(mean ± std) (%) (mean ± std) (1.5 T/3 T)

ADNI standardized dataset
All 504 75.3 ± 6.5 58.1 27.0 ± 2.6 504/0
NC 169 76.0 ± 5.1 50.9 29.2 ± 1.0 169/0
MCI 234 74.9 ± 7.0 66.7 27.1 ± 1.7 234/0
AD 101 75.3 ± 7.4 50.5 23.2 ± 1.9 101/0

ADNI HHP subset
All 40 74.0 ± 7.6 47.5 26.3 ± 2.9 40/0
NC 13 75.9 ± 6.8 46.2 28.8 ± 1.1 13/0
MCI 11 70.4 ± 7.4 54.5 27.5 ± 1.2 11/0
AD 16 74.9 ± 8.0 43.8 23.4 ± 2.0 16/0

AIBL imaging arm
All 145 75.4 ± 7.4 46.2 27.1 ± 4.0 1/144
NC 88 75.2 ± 7.2 47.7 28.9 ± 1.3 1/87
MCI 29 77.5 ± 7.1 51.7 27.0 ± 2.0 0/29
AD 28 73.6 ± 8.1 35.7 21.2 ± 5.6 0/28

CADDementia validation
All 30 65.2 ± 7.0 43.3 0/30
NC 12 62.3 ± 6.3 25.0 0/12
MCI 9 68.0 ± 8.5 44.4 0/9
AD 9 66.1 ± 5.2 66.7 0/9

CADDementia test
All 354 65.1 ± 7.8 60.2 0/354

a MMSE was not available for the CADDementia data.

The ADNI was launched in 2003 by the National Institute on
Aging, the National Institute of Biomedical Imaging and Bioengi-
neering, the Food and Drug Administration, private pharmaceutical
companies, and non-profit organizations, as a $60 million, 5-year,
public-private partnership. The primary goal of ADNI has been to test
whether serial MRI, positron emission tomography (PET), biologi-
cal markers, and clinical and neuropsychological assessments can be
combined to measure the progression of mild cognitive impairment
(MCI) and early AD. Determination of sensitive and specific mark-
ers of very early AD progression is intended to aid researchers and
clinicians to develop new treatments and monitor their effective-
ness, as well as to lessen the time and cost of clinical trials. ADNI
is the result of efforts of many co-investigators from a broad range
of academic institutions and private corporations, and subjects have
been recruited from over 50 sites across the U.S. and Canada. For
up-to-date information, see www.adni-info.org.

2.2.2. AIBL imaging arm
This dataset comprised the AIBL baseline imaging arm available

via the ADNI database. The 3 T T1-weighted baseline structural MRI
images were downloaded between September 27, 2013 and Septem-
ber 30, 2013. The data was collected by the AIBL study group. The
AIBL study methodology has been reported previously (Ellis et al.,
2009).

2.2.3. ADNI HHP subset
This dataset comprised a subset of 40 manual hippocampus

segmentations from the Harmonized Hippocampal Protocol (HHP)
(Boccardi et al., 2015) as well as the associated 1.5 T ADNI MRI scans
reoriented along the anterior commissure (AC) – posterior commis-
sure (PC) line using a six degrees of freedom linear transformation.
We used the “preliminary release” version of the labels.

2.2.4. Training dataset (ADNI + AIBL)
The standardized ADNI dataset and the AIBL imaging arm were

joined into one single training set for training of our method. This
was possible because AIBL adopted the MRI protocol of ADNI, and
because the neuropsychological tests in AIBL were designed to

permit comparison and pooling with ADNI (Ellis et al., 2010). We
denote the combined dataset ADNI + AIBL.

2.2.5. CADDementia validation and test set
The challenge used 3 T T1-weighted scans collected from the fol-

lowing three sites; Erasmus MC, Rotterdam, The Netherlands (174
scans); VU Medical Center, Amsterdam, The Netherlands (180 scans);
and University of Porto/Hospital de São João, Porto, Portugal (30
scans). Two versions of the MRI data were available; raw data, and a
bias field corrected and skull stripped version of the data. We used
the raw data and applied the same bias field correction method to all
MRI scans from ADNI, AIBL and CADDementia.

2.3. Algorithm

The algorithm was based on a number of individual MRI imaging
biomarkers (Table 2); FreeSurfer cortical thickness measurements,
FreeSurfer volumetric measurements, and hippocampal volume,
shape and texture computed using special purpose methods. These
biomarkers were z-score transformed within each group dependent
on age, and entered as features to an LDA classifier as illustrated in
Fig. 1.

Part of the FreeSurfer pipeline conforms the MRI scans to
1 × 1 × 1mm3 resolution and corrects for bias field using the
non-parametric non-uniform intensity normalization (N3) algorithm
(Sled et al., 1998). The hippocampal shape and hippocampal tex-
ture methods used this representation of the MRI data as well. The
special purpose hippocampal volume method utilized the additional
anonical atlas-based intensity normalization step in FreeSurfer. Hip-
pocampal shape and texture were computed based on the FreeSurfer
segmentation of the hippocampus because this is an established
method.

Throughout the presentation, we represent the Nclass = 3 diag-
nostic groups as y1 = NC, y2 = MCI, and y3 = AD.

2.3.1. FreeSurfer volumetry
Sub-cortical, whole brain, and ventricular volumetric measure-

ments were computed using cross-sectional FreeSurfer (Fischl et al.,
2002). We used version 5.1.0 of FreeSurfer with default parameters.
Bilateral ROIs were joined. All 7 volumetric measurements were nor-
malized for head size by dividing by the intra-cranial volume (ICV)

Table 2
Overview of individual MRI biomarkers.

MRI biomarker ROI segmentation Training dataset

Cortical thickness
Frontal lobe FreeSurfer No training
Occipital lobe FreeSurfer No training
Parietal lobe FreeSurfer No training
Temporal lobe FreeSurfer No training
Cingulate cortex FreeSurfer No training

Volumetry
Amygdala FreeSurfer No training
Caudate nucleus FreeSurfer No training
Hippocampus FreeSurfer No training
Pallidum FreeSurfer No training
Putamen FreeSurfer No training
Ventricular FreeSurfer No training
Whole brain FreeSurfer No training

Special purpose hippocampus
NL patch NL patch HHP
Left hipppocampus shape FreeSurfer ADNI + AIBL
Right hipppocampus shape FreeSurfer ADNI + AIBL
Hippocampal texture FreeSurfer ADNI + AIBL

http://www.adni-info.org


L. Sørensen et al. / NeuroImage: Clinical 13 (2017) 470–482 473

Fig. 1. Sketch illustrating the algorithm. (A) A range of individual structural MRI biomarkers capturing different aspects of the scan are extracted. (B) The individual MRI
biomarkers are z-score normalized dependent on the age of the subject with respect to each diagnostic group. (C) The z-score normalized MRI biomarkers are entered to a
3-class LDA classifier to produce the combination biomarker score. A hard classification was obtained using fhardLDA(zcombination), and a soft classification was obtained using
fsoftLDA(yi|zcombination).

also computed during the cross-sectional FreeSurfer pipeline. The
resulting feature vector looked as follows:

xvolumetry =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(|left amygdala| + |right amygdala|)/ICV
(|left caudate nucleus| + |right caudate nucleus|)/ICV
(|left hippocampus| + |right hippocampus|)/ICV
(|left pallidum| + |right pallidum|)/ICV
(|left putamen| + |right putamen|)/ICV
(|ventricular|)/ICV
(|whole brain|)/ICV

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(1)

where | • | denotes volume of an ROI. Note that | • | is computed by
FreeSurfer and that partial volume effects are accounted for in this
computation.

2.3.2. FreeSurfer cortical thickness
Cortical thickness measurements were computed using cross-

sectional FreeSurfer (version 5.1.0, default parameters) (Fischl and
Dale, 2000). We used the Desikan-Killiany atlas that parcelates the
entire cortex into 68 regions for each hemisphere. In order to keep
the dimensionality of the feature vector low, the regions were joined
into the four lobes and the cingulate cortex according to the specifi-
cations on the FreeSurfer website.2 Left and right hemispheres were
further joined, resulting in a total of 5 cortical thickness measure-
ments. We did not normalize cortical thickness measurements for
head size (i.e., ICV) (Westman et al., 2013). The cortical thickness
feature vector looked as follows:

xcortical thickness=

⎡
⎢⎢⎢⎢⎢⎢⎣

d(left frontal lobe) + d(right frontal lobe)
d(left occipital lobe) + d(right occipital lobe)
d(left parietal lobe) + d(right parietal lobe)
d(left temporal lobe) + d(right temporal lobe)
d(left cingulate cortex)+d(right cingulate cortex)

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(2)

2 http://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation (accessed 2016.
10.20).

where d( • ) computes the average distance between the gray/white
matter boundary and the pial surface of an ROI. Note that d is
computed by FreeSurfer.

2.3.3. Multi-atlas, patch-based hippocampal volume
In addition to the FreeSurfer estimate of the hippocampal vol-

ume, we also computed the hippocampal volume using a special
purpose algorithm. This was motivated by the fact that hippocam-
pal volume is the most widely used MRI biomarker of AD (Jack et al.,
2011b), and since FreeSurfer segments many ROIs simultaneously
in one objective function, it is not specific to a certain ROI. The left
and right hippocampus were segmented separately using our own
in-house implementation of the multi-atlas, non-local patch-based
segmentation with expert priors technique (Coupé et al., 2011).
Manual delineations from HHP (Boccardi et al., 2015), representing
state-of-the-art in manual hippocampus segmentation, were used
as expert priors (Anker, 2014; Anker et al., 2014). The method
has previously demonstrated a better atrophy-based AD diagnostic
performance than static FreeSurfer (Anker et al., 2014), and have
in recent comparison studies performed by other research groups
demonstrated better correspondence with manual segmentations
than FreeSurfer (Manjón and Coupé, 2016; Næss-Schmidt et al.,
2016).

The atlas comprised the 40 segmentations in the HHP subset
and their corresponding MRI scans, both transformed to a common
atlas space using affine registration. When segmenting a new test
MRI scan, the Natlas closest atlases were selected from the candi-
date set of 40 HHP segmentations by registering each HHP MRI
scan in the atlas set to the test MRI using an affine registration
and computing the sum of squared differences between intensities
inside the FreeSurfer skull-stripped area. The Natlas corresponding
manual hippocampus delineations were used in the subsequent
computations.

Following Coupé et al. (2011), the left and right hippocampus
were segmented separately using the following steps. In order to
avoid unnecessary computations, only voxels inside a coarse mask
obtained by the union of the manual delineations in the atlas were
segmented in the test MRI scan. The segmented label ŷi of a voxel xi

in the test MRI scan was obtained by thresholding a weighted label

http://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation
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fusion of all labeled samples within the search volume from the Natlas
selected subjects

ŷi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if

Natlas∑
s=1

∑
j∈V

w(xi ,xs,j)ys,j

Natlas∑
s=1

∑
j∈V

w(xi ,xs,j)

≥ 0.5

0 otherwise

, (3)

where xs,j is the voxel at position j in atlas s with corresponding HHP
segmentation label ys,j ∈ {0, 1} encoded according to whether voxel
xs,j is background or hippocampus, V is the search volume, and the
label weights according to the similarity of the intensities in the two
patches being compared is

w(x, xj,s) =

⎧⎨
⎩ exp

(
−||p(x),p(xs,j)||22

n3h(x)

)
if t(x, xj,s) > 0.95

0 otherwise
,

t(x, xj,s) =
2lp(x)lp(xs,j)

l2
p(x) + l2

p(xs,j)

×
2sp(x)sp(xs,j)

s2
p(x) + s2

p(xs,j)

. (4)

Here p(x) extracts the n3-dimensional vector of concatenated inten-
sities in the n×n×n patch centered on x, h is a smoothing parameter
that locally adapts the similarity measure according to the distance
of the closest atlas patch, and l f(x) and s f(x) are the mean and stan-
dard deviation of the intensities in patch f(x), respectively. In Eqs.
(3) and (4), the thresholds were selected according to Coupé et al.
(2011). The threshold on t serves as pre-selection of patches to
reduce computational time. That is, dissimilar atlas patches are dis-
regarded in the label fusion where similarity, t, is computed as the
product of simple measures of luminance and contrast difference. As
proposed by Coupé et al. (2012), h was estimated according to

h(x) = 0.25 min
xs,j

||p(x) − p(xs,j)||2 + 4,

where 4 is a small constant to avoid division by zero when the test
patch is contained in the atlas.

The following parameter values were determined as the ones
maximizing the leave-one-out estimation of Dice’s coefficient on a
subset of 15 HHP segmentations:

• The number of atlases considered in initial atlas selection
(Natlas) was set to 9.

• A patch size (n) of 5 mm was used.
• A search volume (V) size of 9 × 9 × 9 mm was used.

The final non-local patch (NL patch) feature was

xNL patch =
|left hippocampus| + |right hippocampus|

ICV
, (5)

where ICV was estimated from the same MRI scan using FreeSurfer.

2.3.4. Hippocampal shape
Two hippocampal shape scores, one for the left and one for the right

hippocampus, were computed as well. Each hippocampus was repre-
sented by a shape descriptor that was subsequently classified using a
naïve Bayes classifier trained explicitly for left or right hipppocampus.

In a spirit similar to Achterberg et al. (2014), the left and right
hippocampus shape descriptors were computed using the following
four steps:

1. A random subject was selected from the ADNI dataset as tem-
plate and represented by 30 landmarks uniformly distributed
across the surface of its FreeSurfer hippocampus segmentation.

2. Each hippocampus was aligned to the template hippocam-
pus using iterative closest point between the two respec-
tive FreeSurfer segmentations treated as point clouds. Sub-
sequently, the pre-defined template surface landmarks were
mapped to the aligned hippocampus by selecting its FreeSurfer
segmentation surface points closest to the template surface
points. As a result, each hippocampus was now represented by
30 surface landmarks, x = [x1, y1, z1, . . . , x30, y30, z30]T .

3. The set of hippocampi represented as surface landmarks,
{x}, were all aligned using generalized Procrustes alignment
(Gower, 1975), producing a set of aligned shapes {x̂}.

4. Finally, principal component analysis (PCA) was applied to the
set of aligned hippocampus landmarks {x̂}, and the Ncomponent

components explaining 90% of the variance were retained,
resulting in the final per-hippocampus shape descriptor x̃ =
[x̃1, x̃2, . . . , x̃Ncomponent ]T .

This representation was used as features in a 2-class Gaussian
naïve Bayes classifier computing the posterior probability of AD

fnaive Bayes(AD|x̃) =
exp g3(x̃))

exp(g1(x̃)) + exp(g3(x̃))
, (6)

where g1(x̃) and g3(x̃) are defined as

gi(x̃) =
Ncomponent∑

j=1

(
− log

(√
2psyi ,j

)
− (x̃j − lyi ,j)

2

2s2
yi ,j

)
+ log P(yi)

for i ∈ {1, 3}, where lyi ,j and syi ,j are the class-conditional mean and
standard deviation for the jth component, and P(yi) is the class prior.

The feature extraction was performed on all data simultaneously,
i.e., on the combination of the training set and the test set. Subse-
quently, only NC and AD observations from the training set were
used for training of the naïve Bayes classifier. The trained classifier
was finally applied to score the test data. From a machine learn-
ing perspective, that means we make use of transductive inference
(Vapnik, 1998, chap. 8). The class priors in (6) were set to the class
frequencies in the training set. The whole procedure was computed
for the left and the right hippocampus separately, resulting in two
shape scores. The FreeSurfer hippocampus segmentation was used
to defined the left and right hippocampus ROI in each MRI scan. The
shape feature vector looked as follows:

xshape =
[

fnaiveBayes(xleftShapeDescriptor)
fnaiveBayes(xrightShapeDescriptor)

]
, (7)

where x̃ was computed for the left and right hippocampus separately
to produce xleftShapeDescriptor and xrightShapeDescriptor.

2.3.5. Hippocampal texture
A hippocampal texture score was computed using a texture

descriptor that has previously been successfully applied for quantifi-
cation of chronic obstructive pulmonary disease in computed tomog-
raphy (Sørensen et al., 2012) in combination with a support vector
machine (SVM) (Cortes and Vapnik, 1995) with a radial Gaussian
kernel. This specific MRI biomarker has previously shown good AD
diagnostic results, captures independent information from volume,
and has demonstrated capabilities of earlier AD detection than vol-
ume (Sørensen et al., 2016). Texture therefore complements volume
well.

The texture descriptor comprised marginal filter response his-
tograms of a 3-dimensional, rotation-invariant, multi-scale, Gaussian
derivative-based filter bank (Lindeberg, 2008). The histograms were
computed using filter responses from both hippocampi collectively.
These histograms could capture different micro-structural properties
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within the hippocampal tissue, such as the amount of steep intensity
transitions and “blob”-like structures. The descriptor was adapted to
our problem and therefore deviated from Sørensen et al. (2012) in
the following four ways:

1. The Gaussian filter was excluded in order to be invariant to
the lack of a standard image intensity scale in MRI (Nyúl and
Udupa, 1999). This exclusion left the following seven base fil-
ters measuring different aspects of the local image structure:
the three eigenvalues of the Hessian matrix, gradient magni-
tude, the Laplacian of the Gaussian, Gaussian curvature, and
the Frobenius norm of the Hessian matrix. All these filters are
based on intensity derivatives, and the method is therefore
invariant to locally constant intensity offsets (e.g., caused by
imperfections in the N3 bias field correction).

2. The following scales were used: 0.6, 0.85, 1.2, and 1.7 mm.
The upper end of the scale range was determined by visual
inspection of Gaussian smoothed images. The structures in the
hippocampus visually vanished at scales exceeding 1.7 mm.

3. Derivatives at the different scales were computed by con-
volution with the corresponding derivative filter instead of
convolution with a Gaussian followed by finite differencing for
improved numerical accuracy.

4. Based on the size of the smallest morphologically cleaned
bilateral hippocampal segmentation in the ADNI dataset, we
quantized the filter responses into nine histogram bins. The
descriptor was applied to the conformed MRI scans, and since
the FreeSurfer conformation and the filtering are both linear
processes, their combination is mathematically equivalent to
one linear process.

In the following, Ix,s and Ixx,s denote the partial first order and
second order derivative, respectively, of MRI image I w.r.t. x at scale
s , and x = [x, y, z]T is a voxel. Partial derivatives of the image at the
different scales in the multi-scale representation of the image were
in all cases obtained using Gaussian derivatives (Lindeberg, 2008).
For example, Ix,s = I ∗ Gx,s where ∗ denotes convolution and Gx,s is
the partial first-order derivative of the Gaussian function,

G(x; s) =
1

((2p)(1/2)s)3
exp

(
−||x||22

2s2

)
,

w.r.t. x at scale s . This way of defining derivatives in scale-space
makes the computation of image derivatives well-posed (Lindeberg,
2008). The seven base filters in the filter bank of the texture descrip-
tor were the following: the three eigenvalues of the Hessian matrix

ki(x; s), i ∈ {1, 2, 3}, |k1(x; s)| ≥ |k2(x; s)| ≥ |k3(x; s)|,

where

H(x; s) =

⎡
⎣ Ixx,s Ixy,s Ixz,s

Ixy,s Iyy,s Iyz,s

Ixz,s Iyz,s Izz,s

⎤
⎦ ;

gradient magnitude

||∇G(x; s)||2 =
√

I2
x,s + I2

y,s + I2
z,s ;

Laplacian of the Gaussian

∇2G(x; s) = k1(x; s) + k2(x; s) + k3(x; s);

Gaussian curvature

K(x; s) = k1(x; s)k2(x; s)k3(x; s);

and the Frobenius norm of the Hessian

||H(x; s)||F =
√
k1(x; s)2 + k2(x; s)2 + k3(x; s)2.

The histogram of filter responses inside the hippocampus in a
filtered MRI image was estimated as

hf (i, I) =

∑
x∈S

di(If (x))

|S| , i = 1 . . . 9,

where S is the joined left and right hippocampus segmentation com-
puted from I using the static FreeSurfer pipeline, If is I filtered using
filter f, and di( • ) is an indicator function defined as

di(If (x)) =
{

1 if Di < If (x) < Di+1
0 otherwise

,

where Di is a histogram bin edge. The edges were determined using
adaptive binning (Ojala et al., 1996); Di is the (i − 1)/Nbin × 100th
percentile filter response in the training set where Nbin is the num-
ber of histogram bins. In this work, morphologically post-processed
bilateral FreeSurfer hippocampus segmentations were used to define
the ROI, and the number of histogram bins was determined as
Nbin = � 3√731� = 9 in the experiments. The smallest morpholog-
ically cleaned bilateral FreeSurfer hippocampal segmentation in the
ADNI dataset, which contained 731 voxels, determined this number.

The final hippocampal texture descriptor was obtained by con-
catenating the filter response histograms;

xtextureDescriptor = [hk1(x;0.6), . . . , h||H(x;0.6)||F , . . . , h||H(x;1.7)||F ]T .

The concatenated histograms were used as input features x to
a support vector machine (SVM) (Cortes and Vapnik, 1995) trained
using the NC and AD observations from the training set. The SVM
discriminant function

fSVM(x) =
Ntrain∑
i=1

aik(xi, x) + b

was used for texture scoring. It is determined by solving

minimize
a∈RNtrain ,b∈R

Ntrain∑
i=1

Lhinge(yi, fSVM(xi)) +
1

2C

Ntrain∑
i=1,j=1

aiajk(xi, xj)

where xi ∈ X (i = 1, . . . , Ntrain) is a training pattern and yi ∈ {−1, 1}
encodes the class label according to whether pattern i is labeled NC
or AD, the loss function is defined as Lhinge( y, ŷ) = max(0, 1−yŷ), and
k( • , • ) is the radial Gaussian kernel,

k(xi, x) = exp(−c||xi − x||22).

The regularization parameter C > 0 and the kernel parameter c > 0
were selected using grid search. We considered the following hyper-
parameter values in the grid: log(C) ∈ {0, 1, . . . , 10} and log(c) ∈
{log(cJaakkola) − 4 + 1/3i}i=0,1,...,24, where

cJaakkola = median{min{||xi−xj||2 |(xj, yj)

∈ S ∧ yi 
= yj}|(xi, yi) ∈ S}
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provided an initial guess for c around which the grid search was
centered (Jaakkola et al., 1999). The performance of each parame-
ter combination (C,c) was estimated using 20-fold cross-validation
splitting the available training data stratified by class label. The
parameter combination that resulted in the lowest cross-validation
AUC was selected, and the SVM was finally trained on the complete
training set using these parameters.

The final hippocampal texture score was obtained by applying the
trained SVM to the textural description of an observation

xtexture = fSVM(xtextureDescriptor). (8)

2.3.6. Age-dependent z-score transformation and classification
The individual MRI biomarker feature vectors, Eqs. (1), (2), (5),

(6) and (7), were concatenated into one 16-dimensional combined
feature vector

xcombination = [xvolumetric , xcortical thickness, xNL patch, xshape , xtexture ]T .

Each entry x in xcombination was normalized for age using a z-
score transformed dependent on the age of the subject according to
z = (x−lage)/sage. The age-dependent weighted mean, lage, and the
age-dependent weighted standard deviation, sage, of the biomarker
used in the transformation were estimated from the training set
using an adaptive width Gaussian interpolation kernel centered on
the respective age. The age-dependent z-score transformation was
applied for each diagnostic group, resulting in a 48-dimensional fea-
ture vector zcombination that was used as the final representation in the
algorithm.

The combined and z-score transformed MRI biomarkers were
classified using a 3-class LDA classifier. Either as a hard classification

fhardLDA(zcombination) = argmax
i=1,...,Nclass

gi(zcombination)

or as a posterior probability computed using the softmax function

fsoftLDA(yi|zcombination) =
exp(gi(zcombination))

Nclass∑
j=1

exp(gj(zcombination))

.

In both cases, gi( • ) is the LDA discriminant function

gi(zcombination) = zT
combination S

−1lyi
− 1

2
lT
yi
S

−1lyi
+ log P(yi)

where lyi
is the class-conditional mean and S is the pooled covari-

ance matrix. LDA training and classification was performed using the
open source C++ machine learning library Shark (Igel et al., 2008).
The class priors in were set to the class frequencies in the training
set.

3. Results and discussion

The CADDementia data was scored using the LDA classifier
trained on all ADNI + AIBL data. The ADNI + AIBL dataset was scored
using 10-fold cross-validation stratified by cohort (ADNI, AIBL) and
diagnostic group (NC, MCI, AD). The same folds were used to obtain
individual hippocampal shape and hippocampal texture scores, and
to obtain scores from the combination LDA. When scoring CADDe-
mentia data, hippocampal shape features were extracted from the
combination of ADNI + AIBL and either the CADDementia valida-
tion set (the number of components, Ncomponent, retained in the PCA
were 50 for the left hippocampus and 48 for the right hippocampus)

or the CADDementia test set (51 PCA components for the left hip-
pocampus and 49 for the right hippocampus), dependent on which
dataset was to be scored, and in the 10-fold cross-validation pro-
cedure used to score the ADNI + AIBL dataset, hippocampal shape
features were extracted using the entire ADNI + AIBL dataset (50
PCA components for the left hippocampus and 48 for the right hip-
pocampus). Because the shape features were extracted in this way,
we perform transductive inference.

FreeSurfer failed to process three scans in the CADDementia
test set. This was handled by imputing features. For two cases, the
FreeSurfer pipeline had reached past the sub-cortical segmentation
step, but not far enough to produce stats-files with partial volume
corrected volume estimates, nor cortical thickness measurements.
For these cases, we assigned the mean of the class with the most sim-
ilar texture score because we could still compute this. The last cased
failed before sub-cortical segmentation. Here we performed a visual
inspection and assigned the mean of the NC class.3

3.1. Diagnostic results

Diagnostic measures for the CADDementia validation set and
ADNI + AIBL were obtained using the Python scripts supplied by the
CADDementia team on our scores, and the CADDementia test set
performance was obtained from the challenge itself.

The combination biomarker achieved a CA of 63.0% and a total
AUC of 78.5 on the CADDementia challenge test set (Table 3). This was
comparable to the CA and total AUC estimated using 10-fold cross-
validation on ADNI + AIBL. The performance on the CADDementia
validation set was substantially better with a CA of 73.3% and a total
AUC of 83.2. We attribute this discrepancy to the rather small size
of the CADDementia validation set (30 observations). Better perfor-
mance on the CADDementia validation set was observed across all
participating teams (Bron et al., 2015). The TFPs and the confusion
matrices in Table 4 reveals that on a diagnostic group level, the results
between the CADDementia test set and ADNI+AIBL were less com-
parable with absolute true positive fraction differences in the range
17.9% to 29.1%. The discrepancy could be explained by cohort dif-
ferences. For example, the CADDementia subjects are on average 10
years younger than ADNI and AIBL subjects (Table 1). However, we
would not expect age to be the primary cause because of the age-
dependent z-score transformation of the individual MRI biomarkers
prior to entering the LDA. Another possible cause is difference in MRI
field strength, the CADDementia data is 3 T whereas ADNI is 1.5 T.
However, the addition of the 144 3 T AIBL scans to the training set
should to some degree account for this. Moreover, we would expect
field strength to play a smaller role because this would imply a shift
in features across the entire dataset, not within specific diagnostic
groups. Another potential cause is differences in the criteria for the
diagnostic groups, i.e., how the labels are defined. Approximately half
the CADDementia NC group are controls with subjective complaints
(Bron et al., 2015) as opposed to only 20% in ADNI + AIBL. ADNI explic-
itly defines NC to be controls with no memory complaints (Petersen
et al., 2010), and by design, approximately 50% of controls in AIBL
had subjective memory complaints (Ellis et al., 2010). ADNI and AIBL
include only mild AD patients at baseline (Petersen et al., 2010;Ellis
et al., 2010) as opposed to CADDementia that does not restrict the
severity (Bron et al., 2015). The AD patients in the training dataset
had mean mini-mental state examination (MMSE) scores of 23.2±1.9
and 21.2 ± 5.6, for the ADNI and AIBL parts, respectively. In compar-
ison, the AD patients from the VU Medical Center, which amounts to
approximately half of the AD patients in the CADDementia dataset,
had a mean MMSE score of 20 ± 4.6 (Binnewijzend et al., 2013).

3 Another team participating in the CADDementia challenge also reported problems
in FreeSurfer processing of 3 cases using FreeSurfer v5.1 (Wachinger et al., 2014).
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Table 3
Performance measures.

CA True positive fraction AUC

NC MCI AD All NC MCI AD

ADNI + AIBLa 62.7 79.0 57.8 40.3 78.1 86.1 68.3 81.8
CADDementia validation 73.3 91.7 44.4 77.8 83.2 86.6 68.3 95.8
CADDementia testb 63.0 96.9 28.7 61.2 78.8 86.3 63.1 87.5

a 10-Fold cross-validation stratified by cohort and diagnostic group.
b Results from Bron et al. (2015).

In comparison to the results of the other participating teams in
the CADDementia challenge, the 63.0% CA was significantly better
than the methods not in top-six according to a McNemar’s test on the
hard classification output (Bron et al., 2015). The total AUC of 78.5
was also the highest among all entries and only the top-five methods
had AUCs within the lower AUC confidence interval of our method
(Bron et al., 2015).

3.2. Feature contribution

In order to inspect the contribution of each feature in classifica-
tion, we performed a feature selection experiment using sequential
forward feature selection (SFS) (Jain et al., 2000). The objective func-
tion in the SFS procedure was the 20-fold cross-validation CA of an
LDA classifier applied to the training set. We used the training set
folds from the ADNI + AIBL 10FCV dataset and computed the aver-
age CA curve as a function of the number of selected features across
the 10 folds (Fig. 2A). The curve converged at 10 features, and this
was the number of features retained in the subsequent analysis. The
frequency of selection when keeping the first 10 features in each of
the 10 folds was computed (Fig. 2B). In this analysis, a feature could
be selected a maximum of 30 times (3 different z-score representa-
tions across 10 folds). The most frequently selected features were as
follows (reported as % of possible): FreeSurfer hippocampal volume
(66.7%), FreeSurfer ventricular volume (53.3%), hippocampal texture
(50.0%), FreeSurfer parietal lobe thickness (46.7%), right hippocam-
pal shape (23.3%), FreeSurfer occipital lobe thickness (20.0%), and
FreeSurfer cingulate cortex thickness (20.0%). In addition, we ana-
lyzed how early a feature was selected (indicated by color-coding
in Fig. 2B). Hippocampal texture was consistently selected in the
first iteration of the SFS procedure in all 10 folds, FreeSurfer hip-
pocampal volume was selected in the second iteration in 9 folds
and in the third iteration in 1 fold, and FreeSurfer ventricular vol-
ume was selected in 1 fold in the second iteration and in 6 folds in
the third iteration. The following feature subsets occurred most fre-
quently in the 10 folds: {hippocampal texture, FreeSurfer hippocam-
pal volume, FreeSurfer ventricular volume} (10 folds), {hippocampal
texture, FreeSurfer hippocampal volume, FreeSurfer ventricular vol-
ume, FreeSurfer parietal lobe thickness} (9 folds), {hippocampal
texture, FreeSurfer hippocampal volume, FreeSurfer ventricular vol-
ume, FreeSurfer occipital lobe thickness} (6 folds), and {hippocampal
texture, right hippocampus shape, FreeSurfer hippocampal volume,
FreeSurfer ventricular volume} (5 folds). The reduced feature repre-
sentation (i.e., using the first 10 features as selected by SFS on the
training set in each fold of the 10-fold cross-validation procedure)

resulted in a 62.6% CA on the ADNI + AIBL dataset. This was similar
to the 62.7% CA obtained when using the full feature representation.

To gain insight into which features contribute to discrimination
between two specific diagnostic groups, we repeated the SFS for each
pairwise scenario (NC vs. MCI, NC vs. AD, MCI vs. AD) using a 2-class
LDA as objective function. When considering NC vs. MCI, the picture
was similar to the 3-class scenario; hippocampal texture was con-
sistently selected as the first feature in all 10 folds, and FreeSurfer
hippocampal volume (50.0%) and ventricular volume (50.0%) were
alongside hippocampal texture (56.7%) the most frequently selected
features. However, the selection frequency for FreeSurfer parietal
lobe thickness dropped to 30.0%, whereas FreeSurfer occipital lobe
thickness increased its frequency to 33.3%. The picture changed com-
pletely when considering MCI vs. AD. In this case, the FreeSurfer
temporal lobe thickness was selected as the first feature in 8 out of
10 folds and FreeSurfer parietal lobe thickness was selected first in
the 2 remaining folds, and the distribution of selection was more uni-
form with FreeSurfer amygdala volume (40.0%), FreeSurfer temporal
lobe thickness (40.0%), NL patch (36.7%), and FreeSurfer occipital
lobe thickness (33.3%) as the most frequently selected features. For
NC vs. AD, the frequency of selection was the most peaked and a
mix of previous tendencies was observed. Hippocampal texture was
selected first in 9 out of 10 folds whereas FreeSurfer temporal lobe
thickness was selected in the remaining fold. The most frequent fea-
tures were as follows: FreeSurfer temporal lobe thickness (63.3%),
FreeSurfer hippocampus volume (50.0%), and hippocampal texture
(36.7%).

3.3. Feature relations

We inspected the relationship between the features entered to
the LDA by computing their pair-wise Pearson correlation (Table 5).
Prior to computing correlation, each feature was aggregated across
the 3 per-group z-scores by computing the mean feature value. As
expected, the most correlated features were the two hippocampal
volume estimates from FreeSurfer and NL patch that had a corre-
lation of q = 0.9. Other expected high correlations included the
volume of the hippocampus and of the amygdala (Poulin et al., 2011)
(q = 0.8 and q = 0.7, depending on hippocampal volume esti-
mation method), and hippocampal volume vs. hippocampal texture
(q = −0.7 and q = −0.6). The cortical thickness features were
generally highly correlated, with one insignicifant correlation and 9
significant correlations ranging from q = 0.5 to q = 0.8 among
the 10 pair-wise combinations. Finally, we note that the tempo-
ral lobe was the only cortical thickness feature that correlated with

Table 4
Confusion matrices. Rows are predicted class and columns are true class.

ADNI+AIBLa CADDementia validation CADDementia testb

NC MCI AD NC MCI AD NC MCI AD

NC 203 65 9 NC 11 3 0 NC 125 64 15
MCI 48 152 68 MCI 1 5 2 MCI 3 35 25
AD 6 46 52 AD 0 1 7 AD 1 23 63

a 10-fold cross-validation stratified by cohort and diagnostic group.
b results from Bron et al. (2015).
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Fig. 2. Result of sequential forward feature selection (SFS). (A) Performance as a func-
tion of number of selected features. The thin gray lines correspond to each of the 10
training sets in the ADNI+AIBL 10FCV dataset, and the thick black line is the average
performance across the 10 training folds. The average curve converges at 10 features
indicated by the gray circle. This is the number of features that is used in the subse-
quent analysis. (B) Frequency of selection when the first 10 features are considered
in the SFS. Each feature can be selected maximally 30 times (corresponding to the 3
different z-score versions across the 10 folds). The color-coding corresponds to how
early in the SFS procedure a feature is selected, and it ranges from white (1. iteration)
to black (10. and last iteration).

volumetric and special purpose hippocampus features, and that the
highest correlation was with hippocampal texture (q = −0.7).

3.4. Sufficient training data?

The learning curves of the combination biomarker were plotted
in order to determine whether the method would have benefited
from more training data. In a spirit similar to Perlich et al. (2003), the
curves were computed based on ADNI + AIBL as follows:

1. ADNI + AIBL is initially split randomly stratified by cohort and
diagnostic group into a validation set Xvalidation of size 49 and
the remaining 600 observations are kept as training data pool
Xtrain-source.

2. Repeat for N = 50, 100, . . . , 600.
(a) A training set Xtrain of current size N is sampled without

replacement from Xtrain-source.
(b) The combination LDA is trained on Xtrain and is subse-

quently applied to score both Xtrain and Xvalidation. The
resulting classification accuracies are recorded.

The above procedure is repeated 100 times, and the mean and
standard deviation of the resulting training curves produce the
final training learning curve. The final validation learning curve was
obtained in a similar manner.

The curves are converging and approach each other (Fig. 3A), sug-
gesting that further increasing the amount of training data would
only have a small effect on the performance. The learning task
appears to be a “high bias” problem. However, one should also bear
in mind that the Bayes optimal error for this problem is not zero.
First, there is noise in the labels because the diagnosis is clinical and
a definite diagnosis would only be possible post-mortem. CADDe-
mentia uses the NINCDS/ADRDA criteria for probable AD (McKhann
et al., 1984) to define the AD group, and an average sensitivity of 81%
across several studies at a specificity of 70% have been reported for
these criteria when compared to neurological confirmation (Knop-
man et al., 2001). The MCI group is also based on a clinical diagnosis
(Petersen, 2004), and MCI is in general a heterogeneous entity. Both
properties may lead to label noise as well. Secondly, we expect
there is a limit as to what structural MRI is capable of in isolation,
especially when MCI is part of the problem. According to recent
hypothetical models of AD biomarker dynamics, structural MRI is
one of the biomarkers that are dynamic late during the disease
process (Jack et al., 2013).

3.5. A more complex classifier?

One way to approach a high bias problem is to use a more flex-
ible classifier, possibly in combination with more training data. In
order to test this, we repeated the learning curve experiment with
the following three non-linear classifiers:

• a radial Gaussian SVM. Regularization and kernel parame-
ter were determined using grid search, and the performance
of each parameter combination was estimated using 20-fold
cross-validation on the training set in a particular fold;

• a random forest classifier. The split in each node of a tree
in the random forest classifier was done on �√48� = 6 fea-
tures (Hastie et al., 2009), and 500 trees were used in the
ensemble;

• a k nearest neighbor (kNN) classifier. Euclidean distance and
k chosen according to the usual square root rule (Alkoot and
Kittler, 2002): k = �√Ntrain � where Ntrain is the number of
training set observations in a particular fold.

It was observed that the curves of the non-linear classifiers con-
verged to a performance similar to the LDA, and that the training
and validation curves met each other (Fig. 3B–D). Therefore, we
conjecture that for the given features, we are close to the Bayes
optimal solution.

3.6. General discussion

Structural MRI is among the core biomarkers of AD (Jack et al.,
2013). It is considered a surrogate marker of neurodegeneration and
has generally been shown to be sensitive relatively late during the
course of the disease. However, the placement of structural MRI in
the hypothetical model of AD biomarker dynamics put forward by
Jack et al. (2013) is based on evidence from volumetric MRI studies.
There are other MRI-based biomarkers that target subtler informa-
tion, such as the hippocampal shape and hippocampal texture, both
considered in this study. These MRI biomarkers have been shown
to be predictive of dementia independent of volume (Achterberg et
al., 2014; Sørensen et al., 2016), and there is reason to believe that
combining volume with these markers would increase the range
over which structural MRI is sensitive to the course of AD.
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Table 5
Pair-wise Pearson correlation between features. Asterisk marks significance Bonferroni corrected across pair-wise comparisons (p < 0.000008 = 0.001/((162 − 16)/2)). Bold
font marks significant correlations of at least 0.5.

FreeSurfer cortical thickness FreeSurfer volumetry Special purpose hippocampus

FL OL PL TL CC AM CN HI PA PU VE WB NL patch Shape (l) Shape (r)

OL 0.6∗

PL 0.8∗ 0.8∗

TL 0.7∗ 0.6∗ 0.7∗

CC 0.7∗ 0.4∗ 0.5∗ 0.6∗

AM 0.3∗ 0.4∗ 0.4∗ 0.6∗ 0.3∗

CN 0.1 0.2∗ 0.2∗ 0.1 0.1 0.2∗

HI 0.4∗ 0.3∗ 0.4∗ 0.6∗ 0.4∗ 0.8∗ 0.1
PA 0.2∗ 0.2∗ 0.2∗ 0.2∗ 0.1 0.3∗ 0.3∗ 0.4∗

PU 0.3∗ 0.4∗ 0.4∗ 0.4∗ 0.3∗ 0.5∗ 0.6∗ 0.5∗ 0.5∗

VE −0.3∗ −0.2 −0.2∗ −0.4∗ −0.3∗ −0.3∗ 0.1 −0.5∗ −0.4∗ −0.4∗

WB 0.2∗ 0.2∗ 0.2∗ 0.2∗ 0.2∗ 0.4∗ 0.3∗ 0.5∗ 0.5∗ 0.5∗ −0.3∗

NL patch 0.3∗ 0.2∗ 0.2∗ 0.5∗ 0.3∗ 0.7∗ 0.1 0.9∗ 0.4∗ 0.4∗ −0.4∗ 0.4∗

Shape (l) −0.2∗ −0.2∗ −0.2∗ −0.5∗ −0.1 −0.4∗ 0.0 −0.5∗ −0.2∗ −0.2∗ 0.3∗ −0.2∗ −0.5∗

Shape (r) −0.1 0.0 −0.1 −0.1 0.0 0.0 0.0 −0.1 0.0 0.0 0.1 0.0 −0.1 0.1
Texture −0.4∗ −0.4∗ −0.4∗ −0.7∗ −0.3∗ −0.6∗ −0.1 −0.7∗ −0.2∗ −0.3∗ 0.4∗ −0.3∗ −0.6∗ 0.5∗ 0.1

Abbreviations: FL, frontal lobe; OL, occipital lobe; PL, parietal lobe; TL, temporal lobe; CC, cingulate cortex; AM, amygdala; CN, caudate nucleus; HI, hippocampus; PA, pallidum;
PU, putamen; VE, ventricular; WB, whole brain.

Fig. 3. Learning curves with MRI biomarkers as features. (A) LDA (the classifier used in the CADDementia challenge). (B) SVM with a radial Gaussian kernel. (C) Random forest
classifier. Note that the training curve is not shown here because the training CA by design is ≈100%. (D) kNN classifier. Error bars mark ±standard deviation. The dashed black
curve corresponds to the mean ADNI + AIBL validation accuracy of the LDA classifier, i.e., the green curve in (A).
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Apart from our method, two other top-performing methods in
the CADDementia challenge also used a combination of diverse MRI
biomarkers (Bron et al., 2015), highlighting the benefit of combining
different information. Wachinger et al. (2014) used a combination
of volume, cortical thickness, and shape of different brain ROIs, and
Ledig et al. (2014) used a combination of volume and cortical fea-
tures including thickness in specific ROIs and intensity and texture
in data-driven areas of the brain. The benefit of combining diverse
MRI biomarkers was further emphasized by the five methods pro-
posed by Ledig et al. (2014). Four submissions were based on the
aforementioned four different types of features, and a fifth submis-
sion combined all four types of features. The combination of all four
types of features proved to perform best, both in the challenge (Bron
et al., 2015) and on ADNI data (Ledig et al., 2014).

In order to improve the results obtained using our method, more
features would be needed. This could potentially be extraction of
more information from the MRI scan. For example, extending tex-
ture and shape computation to other regions of the brain than the
hippocampus. Texture and shape of other regions have already been
successfully applied in AD (Chincarini et al., 2011; Tang et al., 2014),
and in the CADDementia challenge, Wachinger et al. (2014) achieved
good performance using the shape of as many as 44 different ROIs
and Ledig et al. (2014) extracted texture from the entire brain. How-
ever, it may also be the case that the performance achieved among
the top performing methods in the CADDementia challenge are at the
limit of what a single structural T1-weighted MRI scan is capable of
for this type of problem. Another option would be to include imaging
biomarkers based on other MRI modalities such as fluid-attenuated
inversion recovery or gradient-echo sequences to quantify vascular
lesions that may coexist alongside AD pathology (Zekry et al., 2002).

Many methods in the CADDementia challenge, including our
method, achieved a low true positive fraction for MCI (Bron et al.,
2015). MCI is, in general, difficult to classify because it is a het-
erogeneous group in between NC and AD. The difference between
true positive fractions for our method for the CADDementia test
dataset (28.7%) compared with ADNI + AIBL (57.8%) further indi-
cates that the MCI group in the challenge was particularly difficult
to discriminate. Moreover, the combination of the low true positive
fraction and the tendency for subjects with MCI to be misclassified
as NC (Bron et al., 2015) indicate that CADDementia contained early
MCIs, which potentially increased the difficulty of the classification
problem because structural MRI is a late AD biomarker (Jack et al.,
2013). Core biomarkers of AD that can detect the disease earlier
than structural MRI directly measure abnormal protein build-up in
cerebrospinal fluid (CSF) or use positron-emission tomography (PET)
(Jack et al., 2013). There is, therefore, great potential in combining
our MRI biomarker with these biomarkers for improved discrimi-
nation, especially of NC and MCI. Unfortunately, these biomarkers
are more invasive, are not easily accessible, and are in some cases
more costly, when compared with MRI, and blood-based biomark-
ers of protein build-up (Henriksen et al., 2014) may be a more viable
candidate for combination with our MRI biomarker in the future.

The true positive fraction of MCI could be increased in our method
by increasing the prior for MCI in the LDA. This would push the deci-
sion boundary between NC and MCI in the direction of NC with to
effect of more correctly classified MCIs. This may, however, deteri-
orate the overall performance as exemplified by the second score
we produced for the CADDementia challenge where the LDA priors
were adapted to balance the confusion matrix in the CADDementia
validation dataset (Sørensen et al., 2014).

Two versions of the hippocampal volume, FreeSurfer’s estimate
and NL patch, were included as features in the method for increased
robustness for this central MRI imaging biomarker in AD. The hip-
pocampus is affected early and severely in the AD pathological
process (Braak and Braak, 1991; West et al., 1994), and the volume
of this brain structure is the most widely applied (Jack et al., 2011b)

and only qualified (Hill et al., 2014) MRI imaging biomarker in AD. It
turned out that only one of the two hippocampal volume estimates
contributed, and which contributed depended on the classification
scenario. NL patch was selected when the two-class scenario MCI
vs. AD was considered in the feature selection experiment while the
FreeSurfer estimate was selected in the other scenarios. This should,
however, be interpreted in conjunction with the other selected
features, since restricting the algorithm to use only one of the hip-
pocampal volume estimates as feature produced the following AUCs
(reported as NC vs. MCI vs. AD/NC vs. MCI/NC vs. AD/MCI vs. AD):
FreeSurfer 0.74/0.77/0.89/0.65 and NL patch 0.70/0.74/0.85/0.61.

4. Conclusions

We propose the combination of volumetry, cortical thickness,
hippocampal shape, and hippocampal texture for differential diag-
nosis of NC, MCI, and AD using a single T1-weighted structural MRI
scan. The combination of such diverse MRI biomarkers resulted in
a multi-class CA of 62.7% on publicly available reference datasets
(ADNI and AIBL). A similar CA of 63.0% was achieved in the CADDe-
mentia challenge, which resulted in a first place in the competition.
The forward feature selection experiments revealed that hippocam-
pal texture was the most important feature in the algorithm followed
by hippocampal volume, ventricular volume, and parietal lobe thick-
ness. The learning curve results, along with the fact that other
challenge participants using relatively similar features and training
data did not surpass our performance, indicate that other types of
information are needed in order to improve beyond the obtained
performance for this type of problem, for example, other MRI modal-
ities or non-MRI core biomarkers of AD.

In summary, this paper

• describes and analyzes the winning algorithm in the CADDe-
mentia challenge;

• shows the importance of hippocampal texture as a feature in
the algorithm; and

• conjectures that additional (possibly non-structural MRI) fea-
tures are needed in order to significantly improve diagnostic
performance.
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