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Abstract. Segmentation of anatomical structures in medical images is
often based on a voxel/pixel classification approach. Deep learning sys-
tems, such as convolutional neural networks (CNNs), can infer a hierar-
chical representation of images that fosters categorization. We propose
a novel system for voxel classification integrating three 2D CNNs, which
have a one-to-one association with the xy, yz and zx planes of 3D im-
age, respectively. We applied our method to the segmentation of tibial
cartilage in low field knee MRI scans and tested it on 114 unseen scans.
Although our method uses only 2D features at a single scale, it performs
better than a state-of-the-art method using 3D multi-scale features. In
the latter approach, the features and the classifier have been carefully
adapted to the problem at hand. That we were able to get better results
by a deep learning architecture that autonomously learns the features
from the images is the main insight of this study.

1 Introduction

Convolutional neural networks (CNNs, [1]) are deep learning architectures and
have recently been employed successfully for 2D image segmentation tasks [2].
Here we use them for voxel classification in 3D images. There is a generic ex-
tension of CNNs from 2D to 3D images [3]. However, these truly 3D CNNs have
large memory and training time requirements, retarding their application for
time-constrained large-scale medical imaging tasks. In this paper we propose a
classifier based on a system of triplanar 2D CNNs which classifies voxels from
3D images with high accuracy and is easy to train.

Deterioration of cartilage implies Osteoarthristis, which is one of the major
reasons for work disability [4]. Cartilage segmentation in knee MRI scans is
the method of choice for quantitative analysis of cartilage deterioration. We ap-
plied our method for segmenting tibial articular cartilage from knee MRI and
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compared the performance with a state-of-the-art method [5]. Cartilage segmen-
tation in knee MRI scans is often performed by the radiologists in a slice-by-slice
manner and is a time consuming and tedious job. Furthermore, the inter and
intra observer variability is found to be rather high. Thus, for large studies, auto-
mated segmentation is desirable. Therefore, the automatic and semi-automatic
segmentation of knee cartilage in MRI scans is an active field of research. These
methods address the task either slice-by-slice or directly perform 3D segmenta-
tion [6–9].
State-of-the-art. Folkesson et al. [5] developed a highly efficient voxel classifica-
tion based segmentation method which can be considered as the state-of-the-art
in fully automatic cartilage segmentation from MRI scans. It served as the ref-
erence in our study. The approach is based on k nearest neighbor classification
(kNN) with k = 100 and a predefined 178-dimensional feature vector. The train-
ing of their classifier involves reducing the number of features using a sequential
floating forward feature selection algorithm and also selecting a posterior thresh-
old that optimizes the segmentation results. The features calculated using 3D
filters are: the intensity, the three-jet, the position, the eigenvectors and eigen-
values of the 3D Hessian matrix, as well as the eigenvector and eigenvalues of
the 3D structure tensor and the third order tensor in the gradient direction. All
features except position are calculated at 3 different scales.

2 Method

Convolutional neural networks were introduced by LeCun et al. [1], who applied
it for handwritten digit recognition. Since then, CNNs have been used success-
fully for many recognition and segmentation tasks [2, 10–14]. The first part of
this section will give a brief introduction to 2D CNNs. The second part will
explain our technique for classifying voxels in 3D images.

Convolutional Neural Networks. Convolutional neural networks are deep
learning architectures [1]. A CNN is a multilayer perceptron and mainly consists
of convolutional layers and subsampling layers.

The network topology exploits the stationary nature of natural images by
learning features using locally connected networks. Convolutional layers are used
to learn small feature detectors based on patches randomly sampled from a large
image. A feature in the image at some location can be calculated by convolving
the feature detector and the image at that location. A subsampling layer is
used to reduce the number of features in order to reduce the computational
complexity, to introduce invariance properties, and to reduce the chances of
overfitting. It summarizes the statistics of a feature over a region in the image.

Let d(l−1) and d(l) be the input and output for the lth layer, respectively. Let
d(0) be the 2D input image patch and d(L) be the output of the last layer L. Let
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mapping f is a nonlinear activation function, often a sigmoid, which is applied
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where s is the subsampling factor and 0 ≤ x, y < S
(l)
I . A subsampling layer has

the same number of output and input maps. The parameters for a subsampling
layer are only bias parameters. The final layer of a CNN is fully connected to
the preceding layer. If L is the number of layers, we vectorize the output maps
of layer L−1 and then concatenate them all together to obtain the output of the

last layer. The number of output maps N
(L)
O for this layer is N
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O )

2
,

each corresponding to a single scalar. The output of the last layer is

d
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The output of the fully-connected layer L acts as input for the softmax classifier
(i.e., logistic regression for a two class problem). Let θ be the parameter matrix

for softmax classifier. It has size K × N
(L)
O , where K in the number of classes,

each row being associated to one particular class. Let vectors θ1
T , θ2

T . . . θT
K

be K rows of θ. Given the softmax matrix θ, the probability of mth training
example belonging to class n is

p(n|d(L)(m)
; θ) =

eθn
Td(L)(m)

∑K
c=1 e

θc
Td(L)(m)

, (4)

where n ∈ {1, 2, . . . .K} and d(L)(m)
is the output of the last layer of the CNN

when presented the mth training example. As d(L)(m)
is dependent on d(0)(m)

,
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Fig. 1. Convolutional neural network

and the kernel and bias parameters of the CNN, p(n|d(L)(m)
; θ) can be seen as

the probability of mth training example belonging to class n given the CNN
parameters, input patch, and the softmax parameters. Let Ω be a set of all the
parameters comprising the kernel and the bias parameters from all the layers
of the CNN as well as the softmax parameters. As d(L) depends on d(0) and

the CNN parameters, p(n|d(L)(m)
; θ) can also be written as p(n|d(0)(m)

;Ω).
Let t be a vector which stores the true labels of all the training data points
and t(m) be the true label of the mth training example. The parameters are
identified using a maximum likelihood approach. The cost function associated

with the mth training example is Q(m) = − ln(p(t(m)|d(0)(m)
;Ω)) and for all

M training examples we have accordingly Q = 1
M

∑M
m=1 Q

(m). We use weight
decay, which penalizes too large values of the softmax-parameters, to regularize
the classification. The cost function is minimized by gradient-based optimization.
The partial derivatives are computed using backpropagation, and LBFGS has
proven to be well suited for the optimization [15].

Triplanar Convolutional Neural Network. For each voxel, we take the three
planesPxy,Pyz,Pzx that pass through the voxel and are parallel to the xy, yz and
zx plane, respectively, of the 3D image (see Fig. 2a). A 2D patch centered around

that voxel is extracted from each of the three planes. Let d
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three patches. We have one CNN for each of the three patches. The 3 CNNs are
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The softmax parameter matrix θT in this case is of size K ×NOT , where NOT =
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(a) (b)

Fig. 2. The three images planes giving rise to our triplanar convolutional neural net-
work (CNN) architecture. One patch centered in the voxel is extracted from each of
the planes. The three CNNs are fused in the final layer.
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xy +NO

(L)
yz +NO
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zx . LetΩT be the set of all the parameters collecting the kernel

and bias parameters from all the layers of the three CNNs as well as the softmax
parameters. The cost associated with the mth training example in the triplanar
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where θTpq is the (p, q) element of the matrix θT and λ controls the strength of
the weight decay.

3 Application to Cartilage Segmentation in MRI Scans

In our cartilage segmentation experiments, we minimize QλT using LBFGS using
mini-batches. For each mini-batch, we selected 2000 examples randomly from
120000 training examples and run 20 iterations of LBFGS. For each of the 3
CNNs we used exactly the same configuration: the sequence of layers as well
as the number and size of feature maps in corresponding layers were the same.
Let LC denote a convolutional layer, LS a subsampling layer, and LF the final
output layer. We used the sequence LC → LS → LC → LC → LF for each
CNN. The single subsampling layer performed mean pooling with subsampling
factor 2 (see equation 2). Instead of a second subsampling layer after the fourth-
layer (a convolution layer), we have another convolution layer as the fifth layer.
Having more than one subsampling layers can lead to over-summarizing of the
features, which did not seem to be a good approach for our application because
of the thin structure of the cartilage. For each CNN, we fixed the size of input
patches to 28× 28 and kernel size to 5× 5. Let N be the number output feature
maps of the first convolutional layer. The numbers of output-feature-maps are
N → N → 2N → 4N → 64N for the whole sequence of layers. Fig. 1 depicts such
a CNN. Combining three of these CNNs leads to the triplanar CNN for 3D images
shown in Fig. 2b, where the output of the final CNN layers are concatenated
before being fed into the classifier. We selected N using cross-validation (splitting
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the training dataset) from {12, 16, 20, 24, 28, 32}. We also selected the weight
decay parameter λ using cross-validation from {10−1, 10−2, 10−3, 10−4, 10−5}. As
a result, N = 28 and λ = 10−2 were selected. The heuristic design choices were
inspired by Simard et al.’s article about best practices for CNNs for document
analysis [16] and our previous experience in CNN design.

The patients knee is being scanned in standardized position in a specialized
extremity MRI scanner. Still, there will be small variations from scan to scan
between the image planes and corresponding body planes due to anatomical and
placement differences. This variability is reflected by the training data. Thus, the
triplanar CNN is trained to become invariant under these variations.

We use the same 25 training scans as in [5], where features from on average
84000 voxels from each of the scans are extracted. These 84000 voxels include
all the cartilage voxels in a scan and sampled background voxels. As it is more
difficult to classify the background voxels near the cartilage, they are sampled
very densely close to the cartilage and rarely far from it, with sampling proba-
bility varying linearly. For generating our training data we extracted triplanar
patches from 4800 randomly selected voxels from the pool of 84000 voxels used
by [5] for each of the 25 scans. That is, while in [5], 2100000 voxels were used
to generate the training data, we just considered 120000 voxels for limiting the
computational cost and found this number to be sufficient. We applied ZCA
whitening to preprocess our patches, which is very similar to PCA whitening,
however, it also involves a rotation back to the input data basis.

4 Results, Discussion, and Future Work

We evaluated our method on 114 unseen knee MRIs, each having approximately
2 million voxels to classify. We compared our method to the state-of-the-art
method [5] which was also evaluated on the same test set of 114 scans. The
evaluation was based on dice similarity coefficient(DSC) where DSC(A,B) =
2(|A∩B|)
|A|+|B| and A, B are manual and automatic segmentation. Table 1 shows results

obtained by the triplanar-CNN and the kNN based method. Our method achieves
better DSC, sensitivity, specificity and accuracy than [5]. The difference in DSC
is statistically significant (Wilcoxon rank-sum test, p < 0.05). Fig. 3 shows a
knee MRI slice, its segmentation by a radiologist, and the segmentation by our
method.

Our method used just 120000 training voxels whereas in [5] 2.1 million train-
ing voxels are used. We also evaluated the performance of the method pro-
posed in [5] using 120000 training voxels and observed a loss in performance.
The average DSC, accuracy, sensitivity and specificity fell to 0.7952 (±9.10%),
99.91% (±3.18%) ,78.58% (±11.61%) and 99.95% (±2.80%)(standard deviations
in brackets), respectively, although we adjusted k of kNN for the new training set
size using cross-validation. The difference between the triplanar-CNN and the
method from [5] with 120000 training voxels is statistically significant (Wilcoxon
rank-sum test, p = 8.6× 10−5). We also performed baseline experiments with
3D CNNs. With a 14 × 14 × 14 3D patch size and 3 × 3 × 3 kernel size, the
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Table 1. Comparison of methods applied for tibial cartilage segmentation

Method Over 114 Scans DSC Accuracy Sensitivity Specificity

Triplanar CNN
Mean 0.8249 99.93% 81.92% 99.97%
Standard Deviation 4.26% 1.86% 7.62% 1.74%

State-of-the-art [5]
Mean 0.8135 99.92% 80.52% 99.96%
Standard Deviation 4.87% 2.31% 8.95% 2.37%

(a) Knee MRI slice (b) radiologist (c) triplanar CNN

Fig. 3. MRI slice with segmentations by a radiologist and the proposed triplanar CNN.
Our method is based on voxel classification, a 2D slice is taken from our 3D segmen-
tation just for visualization.

performance of a 3D CNN was worse (approximately 2% dip in DSC) than the
triplanar CNN with patch size 28× 28 and kernel size 5× 5. Using these config-
urations, the training and testing times of the two approaches were comparable.
Using a 3D CNN with 3D patch size 28 × 28 × 28 (leading to 21952 elements
and thus a 21952 × 21952 matrix to be inverted in the ZCA) and kernel size
5 × 5 × 5 turned out to be computationally not feasible in our experimental
setup as each iteration of back- and forward-propagation needed 10 to 15 times
more time compared to our triplanar 2D CNN. We also experimented with a
single 2D CNN, with patches extracted from just a single plane (the same which
radiologists use for segmenting). However, the performance achieved by a single
2D CNN was inferior to that of the triplanar 2D CNN. Based on the above ex-
periments we found that the triplanar CNN provides the best balance between
computational costs and performance. The method by Folkesson et al. [5] – in
particular the features used, but also the classifier – has been carefully tailored
towards the task. That we can perform better using a method that learns the
image features using a deep learning architecture is the main result of our study.
This is all the more remarkable because of the following differences in compar-
ison to [5] and other CNN architectures: a) The features used by our method
were extracted using only 2D kernels learned from three 2D CNNs. However, the
method from [5] uses 3D kernels to extract features. b) In [5], each feature is
calculated at 3 different scales. Our method relies on the features extracted using
single scale CNNs. c) The number of training data points used by our method
is just 120000, while in [5] more than 2100000 training data points are used. d)
We used a logistic regression classifier (a linear classifier) compared to kNN (a
non-linear classifier). e) We did not employ at any stage layer-wise pre-training
of the CNN, although pre-training is often claimed to improve the results. We
train our system of three CNNs in a single training process.
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We plan to extend our study on the segmentation of tibial cartilage to the
multiclass problem of segmenting bones and all cartilage compartments.
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