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Abstract 

Cognitive impairment in patients with Alzheimer’s disease (AD) is associated with reduction in 

hippocampal volume in magnetic resonance imaging (MRI). However, it is unknown whether 

hippocampal texture changes in persons with mild cognitive impairment (MCI) that does not have a 

change in hippocampal volume. We tested the hypothesis that hippocampal texture has association 

to early cognitive loss beyond that of volumetric changes. The texture marker was trained and 

evaluated using T1-weighted MRI scans from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

database, and subsequently applied to score independent data sets from the Australian Imaging, 

Biomarker & Lifestyle Flagship Study of Ageing (AIBL) and the Metropolit 1953 Danish Male Birth 

Cohort (Metropolit). Hippocampal texture was superior to volume reduction as predictor of MCI-to-

AD conversion in ADNI (area under the receiver operating characteristic curve [AUC] 0.74 vs. 0.67; 

DeLong test, p = 0.005), and provided even better prognostic results in AIBL (AUC 0.83). 

Hippocampal texture, but not volume, correlated with Addenbrooke’s cognitive examination score 

(Pearson correlation, r = -0.25, p < 0.001) in the Metropolit cohort. The hippocampal texture marker 

correlated with hippocampal glucose metabolism as indicated by fluorodeoxyglucose-positron 

emission tomography (FDG-PET) (Pearson correlation, r = -0.57, p < 0.001). Texture statistics 

remained significant after adjustment for volume in all cases, and the combination of texture and 

volume did not improve diagnostic or prognostic AUCs significantly. Our study highlights the 

presence of hippocampal texture abnormalities in MCI, and the possibility that texture may serve as 

a prognostic neuroimaging biomarker of early cognitive impairment. 
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1 Introduction 
 

The major hallmarks of Alzheimer’s disease (AD) include early stage, small-scale alterations in the 

brain in terms of neurofibrillary tangles (NFTs) and amyloid-β (Aβ) plaque deposition [Braak and 

Braak, 1997], as well as later stage, large-scale alterations of the brain in terms of localized atrophies 

in structures such as the hippocampus [Bobinski et al., 1995] and eventually whole brain atrophy. 

NFTs and Aβ plaques are not directly detectable at the current resolution of clinical magnetic 

resonance imaging (MRI). However, localized areas of atrophy are detectable in MRI images 

[Bobinski et al., 2000; Tanabe et al., 1997], and considerable effort has been applied to developing 

and validating MRI-based AD biomarkers using this information [Ramani et al., 2006]. The 

hippocampus is often considered the primary region of interest (ROI) because it is affected early in 

the AD pathological process and is also generally severely affected [Braak and Braak, 1997; West et 

al., 1994]. MRI-based biomarkers of AD that target hippocampal atrophy include static hippocampal 

volume, change of hippocampal volume over a given time frame (often termed atrophy rate), and 

shape of the hippocampus. All of these marker types have demonstrated both diagnostic [Convit et 

al., 1997; Fox and Freeborough, 1997; Gerardin et al., 2009] and prognostic capabilities in AD 

[Achterberg et al., 2014; Costafreda et al., 2011; Devanand et al., 2007; Henneman et al., 2009; Jack 

et al., 1999; Jack et al., 2005]. 

Although individual NFTs and Aβ plaques cannot be detected at the resolution of current clinical 

MRI, it is our working hypothesis that the accumulated effect of these phenomena on the MRI image 

is detectable prior to atrophy as changes in the statistical properties of the image intensities. These 

changes may form certain textural patterns in the MRI images [Castellano et al., 2004], and texture 

analysis [Tuceryan and Jain, 1998] may therefore be suitable for capturing this information. Texture 

analysis has previously been successfully applied to produce imaging biomarkers of AD [Chincarini et 

al., 2011; Freeborough and Fox, 1998; Zhang et al., 2011] as well as other diseases, including 
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osteoarthritis [Marques et al., 2012] and multiple sclerosis [Zhang et al., 2008] in MRI, chronic 

obstructive pulmonary disease in computed tomography (CT) [Sørensen et al., 2012], breast cancer 

in mammography [Nielsen et al., 2011], and tuberculosis and interstitial diseases in chest 

radiography [van Ginneken et al., 2002]. The ability to detect dementia-specific textural patterns in 

the brain tissue and to discriminate these from the texture of normal healthy brain tissue may 

provide a valuable and complementary MRI-based biomarker of the disease. Moreover, it is likely 

that an MRI marker based on texture will be able to detect earlier stages of AD than markers that 

target larger-scale changes in the brain, such as atrophy.  

In this study, we specifically investigated hippocampal texture as an MRI-based biomarker of AD and 

focused on early detection. This is different from previous texture studies that all focused on 

diagnosis or used more global, non-anatomically restricted information. Our goals were to 

determine if MRI hippocampal texture predicts conversion from MCI to AD, if texture can detect 

early cognitive decline in a clinically healthy population, and if texture reflects changes in 

hippocampal glucose metabolism in fluorodeoxyglucose-positron emission tomography (FDG-PET). 

In addition, we wanted to test if these properties persisted after adjustment for hippocampal 

volume, i.e., whether texture carried additional information.  

2 Materials and methods 

2.1 Data 

Data used in the preparation of this article was obtained from three different cohorts: ADNI, AIBL, 

and Metropolit. 

2.1.1 ADNI data 

This dataset was obtained from the ADNI database (adni.loni.usc.edu). The ADNI was launched in 

2003 by the National Institute on Aging, the National Institute of Biomedical Imaging and 
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Bioengineering, the Food and Drug Administration, private pharmaceutical companies, and non-

profit organizations, as a $60 million, 5-year, public-private partnership. The primary goal of ADNI 

has been to test whether serial MRI, positron emission tomography (PET), biological markers, and 

clinical and neuropsychological assessments can be combined to measure the progression of mild 

cognitive impairment (MCI) and early AD. Determination of sensitive and specific markers of very 

early AD progression is intended to aid researchers and clinicians to develop new treatments and 

monitor their effectiveness, as well as to lessen the time and cost of clinical trials. ADNI is the result 

of efforts of many co-investigators from a broad range of academic institutions and private 

corporations, and subjects have been recruited from over 50 sites across the U.S. and Canada. For 

up-to-date information, see http://www.adni-info.org/. Raw unprocessed MRI images were 

downloaded from the ADNI website between February 1 and November 11, 2012. 

We used the “complete annual year 2 visits” 1.5-T dataset from the collection of standardized 

datasets released by ADNI [Wyman et al., 2013]. The dataset definition was downloaded from the 

ADNI website (http://www.adni.loni.usc.edu/methods/mri-analysis/adni-standardized-data/) on 

September 28, 2012. The dataset comprises 504 subjects with one associated 1.5-T T1-weighted MRI 

image out of the two possible from the back-to-back scanning protocol in ADNI [Jack et al., 2008] at 

baseline, 12-month follow-up, and 24-month follow-up. Three datasets were defined from the 

standardized ADNI dataset as illustrated in Supporting Information Figure 1: one for evaluating 

diagnostic capabilities, and two datasets for evaluating prognostic capabilities considering a 12-

month and a 24-month time frame, respectively. The diagnosis dataset was defined based on the 

clinical baseline diagnosis from ADNI and comprised 169 normal control (CTRL) subjects and 101 AD 

patients. Prognosis was defined as discriminating between subjects that converted from MCI at 

baseline to AD within a given time frame versus baseline MCI subjects that did not convert within 

the same time frame. Subjects reverting to CTRL from MCI within the same time frame were kept in 
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the dataset. Baseline demographics and clinical parameters for the diagnosis dataset and the 

prognosis datasets are shown in Table I. 

2.1.1.1 ADNI FDG-PET subset 
 

An additional FDG-PET ADNI subset was defined by selecting the subjects in the “complete annual 

year 2 visits” 1.5-T standardized ADNI dataset that had an associated baseline FDG-PET 

measurement of hippocampus metabolic rate of glucose available from the Center for Brain Health, 

NYU School of Medicine, New York [Li et al., 2008; Mosconi et al., 2005]. We further required a 

maximum of 60 days between MRI and FDG-PET scans, which resulted in a total of 215 subjects 

(Table I). The associated left and right pons-normalized hippocampal metabolic rates of glucose 

(μmol/100 g/minute) were downloaded directly from the ADNI website on January 27, 2015 and 

subsequently averaged to obtain a single hippocampal FDG-PET score. 

2.1.2 AIBL data 
 

This dataset was obtained from the AIBL imaging arm available via the ADNI website. The data was 

collected by the AIBL study group. AIBL study methodology has been reported previously [Ellis et al., 

2009]. A total of 141 3-T T1-weighted baseline structural MRI images from 141 different subjects 

were downloaded between September 27 and September 30, 2013. Version 3.1.3 of the associated 

clinical data was used. AIBL adopted the MRI protocol of ADNI, and neuropsychological tests were 

designed to permit comparison and pooling with ADNI [Ellis et al., 2010]. A diagnosis dataset and a 

prognosis dataset were defined similarly to the way the corresponding ADNI datasets were defined; 

however, the prognosis dataset considered an 18-month time frame because AIBL performed follow-

up every 18 months in contrast to the 12-month intervals in the standardized ADNI dataset. Baseline 

demographics and clinical parameters for the two datasets are shown in Table I. 
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2.1.3 Metropolit data 

 
Metropolit [Osler et al., 2013; Osler et al., 2006] includes all boys born in 1953 in the Copenhagen 

metropolitan area. The subjects underwent cognitive assessment at the conscript board examination 

at approximately 20 years of age, and again in 2009-2010 as a part of the Copenhagen Aging and 

Midlife Biobank (CAMB) at approximately 56 years of age. A subset was selected comprising subjects 

that, according to a regression analysis, exhibited either an increased or a decreased cognitive 

performance from year 20 to year 56 relative to the entire population of 1985 subjects that 

participated in both tests. The subjects with increased cognitive performance acted as the control 

group. Detailed selection criteria are described in Hansen et al. [2014]. The included subjects were 

neuropsychologically tested at approximately 58 years of age and a 3-T T1-weighted structural MRI 

scan was acquired (MP-RAGE; TI, 700 ms; TR, 6.9 ms; flip angle, 9°; 137 sagittal slices; 1.1 × 1.1 × 1.1 

mm3 voxels). The demographics and clinical parameters for the dataset are shown in Table I. 

2.2 MRI analysis 

2.2.1 Pre-processing and hippocampus segmentation 

 
The MRI scans were pre-processed and the hippocampi segmented with the freely available 

FreeSurfer software package (version 5.1.0) [Fischl et al., 2002] using the cross-sectional pipeline 

with default parameters. The original MRI image resolution of [0.94, 1.35] × [0.94, 1.35] × 1.2 mm3  

in ADNI, 1 × 1 × 1.2 mm3 in AIBL, and 1.1 × 1.1 × 1.1 mm3  in Metropolit, was conformed to a 1.0 × 

1.0 × 1.0 mm3 resolution, and all MRIs were bias field corrected. The bias field correction in 

FreeSurfer utilizes the non-parametric non-uniform intensity normalization algorithm [Sled et al., 

1998], often referred to as N3. 
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2.2.2 Hippocampal volume 

 
The hippocampal volume was computed from the raw FreeSurfer hippocampus segmentations as 

the bilateral hippocampal volume divided by the intracranial volume (ICV) [Sanfilipo et al., 2004]. 

The ICV was estimated as a part of the static FreeSurfer pipeline using a method described in 

Buckner et al. [2004]. 

2.2.3 Hippocampal texture 

A bilateral hippocampal texture score was computed by combining a texture descriptor that has 

previously been successfully applied in lung CT [Sørensen et al., 2012] and a support vector machine 

(SVM) [Cortes and Vapnik, 1995]. 

2.2.3.1 Texture descriptor 

 
A segmentation of the hippocampi is needed in order to define the ROI in which texture is 

characterized. In principle, any proper segmentation algorithm or manual delineation could be used 

for this purpose. In this study, the hippocampi were automatically segmented using FreeSurfer. The 

FreeSurfer segmentation was post-processed using morphological erosion with a spherical 

structuring element of radius 1 mm in order to remove noise from the segmentation boundary and 

to ensure that texture was measured in the interior of the hippocampus only. The size of the 

structuring element was selected based on visual inspection of a number of ADNI subjects that were 

not part of the dataset considered in this study. The average uncleaned bilateral hippocampal 

volume in the ADNI diagnosis dataset was 6464.8 mm3, and the average morphologically peeled 

counterpart was 3118.6 mm3. 

The texture within the hippocampi was represented by a number of filter response histograms of a 

3-dimensional, rotation-invariant, multi-scale, Gaussian derivative-based filter bank [Lindeberg, 

2009]. The histograms were computed using filter responses from both hippocampi collectively. 
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These histograms could capture different micro-structural properties within the hippocampal tissue, 

such as the amount of steep intensity transitions and “blob”-like structures. The descriptor was 

adapted to our problem and therefore deviated from [Sørensen et al., 2012] in four ways. First, the 

Gaussian filter was excluded in order to be invariant to the lack of a standard image intensity scale in 

MRI [Nyúl and Udupa, 1999]. This exclusion left the following seven base filters measuring different 

aspects of the local image structure: the three eigenvalues of the Hessian matrix, gradient 

magnitude, the Laplacian of the Gaussian, Gaussian curvature, and the Frobenius norm of the 

Hessian matrix. All these filters are based on intensity derivatives, and the method is therefore 

invariant to locally constant intensity offsets (e.g., caused by smooth intensity bias fields or 

imperfections in bias field correction). Second, the following scales were used: 0.6, 0.85, 1.2, and 1.7 

mm. The upper end of the scale range was determined by visual inspection of Gaussian smoothed 

images. The structures in the hippocampus visually vanished at scales exceeding 1.7 mm. Third, 

derivatives at the different scales were computed by convolution with the corresponding derivative 

filter instead of convolution with a Gaussian followed by finite differencing for improved numerical 

accuracy. Fourth, based on the size of the smallest morphologically cleaned bilateral hippocampal 

segmentation in the ADNI dataset, we quantized the filter responses into nine histogram bins. The 

descriptor was applied to the conformed MRI scans, and since the FreeSurfer conformation and the 

filtering are both linear reprocesses, their combination is mathematically equivalent to one linear 

process. The reader is referred to the Supporting Information Text for additional details about the 

descriptor. 

2.2.3.2 Texture classifier 

 
The bilateral hippocampi were classified based on their textural representation using a soft-margin 

SVM with a radial Gaussian kernel.  The real-valued SVM decision function was interpreted as a 

single texture score. Its sign indicates whether the SVM classifies an input as patient (+) or control (-
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), and its amount is proportional to the distance from the decision boundary that separates the two 

classes (in the kernel-induced feature space). The hyperparameters of the SVM were determined 

using grid search considering the area under the receiver operating characteristic curve (AUC) as 

performance criterion, where the AUC was estimated by 20-fold cross-validation on the current 

training data. The reader is referred to the Supporting Information Text for additional details. We 

employed the open-source C++ machine learning library Shark [Igel et al., 2008] for learning and 

classification. 

2.2.3.3 Texture scoring of the data 

 
In the diagnostic ADNI experiment, the CTRL and AD subjects in the ADNI diagnosis dataset were 

texture scored using an outer 10-fold cross-validation. The ADNI diagnosis dataset was split into 10 

disjoint subsets stratified by groups (CTRL and AD). In each fold, an SVM was built to separate 

between CTRL and AD in the training set using the procedure described above (i.e., we repeated the 

20-fold cross-validation for model selection ten times), and it was subsequently applied to score all 

cases in the held out test set. This provided a texture score for each subject in the diagnosis dataset 

(the folds and scores are available as Supporting Information Dataset 1).  

In the prognostic ADNI experiment, the MCI texture scores (available as Supporting Information 

Dataset 2) were obtained using a single SVM built to separate all CTRL and AD subjects in the ADNI 

diagnosis dataset. The hyperparameters of the SVM were determined using 20-fold cross-validation 

on the training data as described previously. The same SVM was also used to score the complete 

AIBL dataset (available as Supporting Information Dataset 3) and the complete Metropolit dataset. 
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2.3 Statistical analysis 
 

Texture and volume where inspected for Gaussianity, and a log transformation was considered but 

refused. Log volume had a linear relationship to texture (Supporting Information Fig. 2) and was 

used when texture was adjusted for volume and in the combination of texture and volume. 

The MRI biomarkers (texture and volume) were adjusted simultaneously for age and sex in all 

reported results unless otherwise stated, and the adjustment was performed using de-correlation as 

described in the Supporting Information Text. When texture was adjusted for log volume or MMSE, 

we adjusted for age and sex in addition.  

Because texture is computed within an ROI, the ROI volume is automatically available as well. We 

therefore also combined texture and log volume using logistic regression in order to inspect the 

potential combined value of the two MRI biomarkers. The combination model included raw MRI 

biomarker scores as well as age and gender as covariates, and the model parameters were 

estimated using the ADNI diagnosis dataset. The reader is referred to the Supporting Information 

Text for further details. 

The diagnostic and prognostic capabilities of hippocampal texture were evaluated using receiver 

operating characteristic (ROC) curves with the corresponding area under the ROC curve (AUC) as 

performance measure. Significance of an AUC was determined using a DeLong, DeLong, and Clarke-

Pearson’s test [DeLong et al., 1988], comparing the ROC curve to the curve obtained using random 

guessing (a straight line). Texture and volume ROC curves were also compared using the same test. 
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3 Results 

3.1 Combination of texture and volume 

 
As can be seen in Supporting Information Table I, texture, volume and age all contributed in the 

logistic regression model fitted using the ADNI diagnosis dataset whereas sex was insignificant. The 

negative coefficient for age may be attributed to the relative older CTRL group compared to the AD 

group in the ADNI diagnosis dataset. 

3.2 Diagnosis of AD 

 
We first inspected the diagnostic capabilities of hippocampal texture on ADNI data. The obtained 

texture scores are summarized in Figure 1A. Texture achieved an AUC of 0.912 (p < 0.001) in 

discriminating CTRL from AD. The corresponding ROC curve is shown in Figure 1C. In comparison, 

volume achieved an AUC of 0.909 (p < 0.001), which did not differ significantly from the texture AUC 

according to a DeLong, DeLong, and Clarke-Pearson’s test comparing the two ROC curves. Texture 

maintained significant CTRL vs. AD discrimination (p < 0.001) after volume was removed from the 

texture signal using de-correlation. Finally, combining texture and volume using logistic regression 

produced an AUC of 0.915 (p < 0.001) that was not significantly different from the AUCs of the 

individual MRI biomarkers according to a DeLong, DeLong, and Clarke-Pearson’s test. 

3.3 Prognosis of AD 

 
A central part of our study was to test whether hippocampal texture could predict conversion from 

MCI to AD and whether it was capable of this independent of volume. The obtained texture scores 

for the ADNI MCI subjects are summarized in Figure 1B; subjects were grouped according to AD 

conversion within 12 and 24 months, respectively. The prognostic capabilities (discrimination 

between non-converters and converters) of the texture-based marker were evaluated using ROC 

curves (Fig. 1C), and the corresponding AUCs are shown in Table II. Both the texture and the 
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combination AUC differed significantly from the volume AUC for conversion within 24 months (p = 

0.005 and p = 0.002), but not for conversion within 12 months. Texture maintained significant 

prognostic performance after adjustment for volume using de-correlation (p = 0.003 and p < 0.001). 

In addition, texture was adjusted for baseline mini-mental state examination (MMSE) score because 

this quantity differed significantly among the prognostic groups (Table I), and we found that the 

prognostic AUCs remained significant (p < 0.001). Note that in the prognosis experiment, conversion 

to AD was defined based on follow-up clinical diagnosis, which is partly based on follow-up MMSE 

score, for which we did not adjust. 

3.4 Correlation with general cognition 

 
The age- and sex adjusted texture and volume were plotted against MMSE in the ADNI cohort (Fig. 

2), and the corresponding Pearson correlation coefficients are shown in Table III. Texture maintained 

significant correlation with MMSE when adjusted for volume using de-correlation (p < 0.001). 

3.5 Generalization to an independent cohort 

 
The texture marker trained on all CTRL and AD subjects in the ADNI dataset (i.e., the same marker as 

was used to score the MCI subjects in the prognostic ADNI experiment) was applied to score the 

imaging arm of AIBL in order to inspect generalizability to an independent cohort. The ADNI 

diagnostic and prognostic results were reproduced with the following AUCs: CTRL vs. AD 0.951 (p < 

0.001) and MCI-to-AD conversion within 18 months 0.831 (p = 0.005). Both AUCs increased 

compared with the ones obtained using ADNI data. Diagnostic and prognostic texture results 

remained significant after de-correlating volume (p < 0.001 for CTRL vs. AD, p = 0.004 for conversion 

within 18 months), and the combination of texture and volume resulted in AUCs of 0.946 (p < 0.001) 

and 0.809 (p = 0.011) that were not significantly different from the texture AUCs. The prognostic 

texture AUC was significant after adjustment for baseline MMSE score (p = 0.018). Pearson 
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correlations with baseline MMSE score were -0.56 (p < 0.001) for texture and -0.62 (p < 0.001) for 

the combination of texture and volume. The texture vs. MMSE correlation remained significant 

when adjusted for volume (p = 0.028). 

3.6 Relation to subclinical cognitive decline 

 
A central part of our study was to determine if MRI hippocampal texture was able to detect early 

cognitive decline in a clinically healthy population. The texture marker trained on ADNI and 

confirmed on AIBL was applied to score the Metropolit dataset, and the texture scores were Pearson 

correlated to two measures of global cognitive function, MMSE and Addenbrooke’s cognitive 

examination (ACE). Note that the MRI biomarkers were not adjusted for age and sex because the 

Metropolit population contains only middle-aged males. The correlation coefficients and p-values 

are shown in Table III, and the scatter plots for texture and volume vs. ACE are shown in Figure 3. 

Texture maintained significant correlations when adjusted for volume (p = 0.017 and p < 0.001 for 

MMSE and ACE, respectively). The correlations with ACE persisted after removing the three potential 

outliers visible in Figure 3. 

3.7 Relation to hippocampal metabolic rate of glucose 

 
The final goal of the study was to investigate potential relation to the metabolic rate of glucose in 

the hippocampus using the ADNI FDG-PET subset. The relation was visualized using scatter plots (Fig. 

4), and the Pearson’s correlation coefficients between age- and gender de-correlated MRI 

biomarkers and FDG-PET uptake in the hippocampus were -0.57 (p < 0.001) and 0.54 (p < 0.001) for 

texture and volume, respectively. The combination of texture and volume achieved a correlation 

coefficient of -0.56 (p < 0.001). Texture maintained significant correlations when de-correlated with 

volume (p = 0.003). 



Lauge Sørensen  Page | 15 

4 Discussion 
 

In this study, we have proposed and extensively evaluated hippocampal texture as a new biomarker 

of AD with the goal of achieving early structural MRI-based detection. The texture marker was 

evaluated using data from three different cohorts: ADNI, AIBL and Metropolit. 

The ADNI results demonstrated that hippocampal texture predicts MCI-to-AD conversion. We also 

saw that hippocampal texture achieved a higher but not significantly different AUC compared to 

hippocampal volume for prognosis of conversion from MCI to AD within 12 months. However, when 

extending the conversion time span to 24 months, the texture AUC was significantly higher. This is 

an interesting finding that supports our working hypothesis that texture may be sensitive to earlier 

stages of the disease process as illustrated in Figure 5 and in Supporting Information Figure 3. When 

adjusting texture for volume using de-correlation, the AUC remained significant for the diagnostic 

and the prognostic tasks. These results support that texture to some degree captures different 

information than volume, and, thus, that texture- and atrophy-based markers may complement each 

other. The complementarity was confirmed by the logistic regression model fitted to CTRL and AD in 

the ADNI cohort; both volume and texture contributed significantly in the model (Supporting 

Information Table I). Although the combination of volume and texture using this model had a 

tendency of increasing the correlation with MMSE, it did not result in improved diagnostic or 

prognostic AUCs.  If this complementarity in information has its origin in our working hypothesis, as 

sketched in Supporting Information Figure 3, needs further investigations to be established. 

The clinical utility of biomarkers relate to their capability of also differentiating hitherto unseen data. 

We investigated generalizability by scoring the AIBL dataset using the proposed texture-based 

biomarker trained solely on ADNI data and found that both the diagnostic and the prognostic 

capabilities were preserved. The increased AUCs for AIBL data compared with ADNI data might be 

explained by more homogeneous data in the AIBL imaging arm, which is effectively single site (all 
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except one baseline MRI scan are from the same site), or by demographic differences. The ADNI-

trained marker was also applied to score the Metropolit dataset, a homogeneous population of 

healthy 58-year-old males, one-half of which had established loss of cognitive performance. The 

marker correlated significantly with both MMSE and ACE in the cohort. In contrast, volume 

correlated with MMSE only, and the combination of volume and texture using the diagnostic logistic 

regression model resulted in loss of correlation with ACE. Because ACE is an extension of MMSE 

developed to be more sensitive to early stages of dementia, including AD [Mathuranath et al., 2000], 

these results emphasize texture’s potential in early AD detection. We do not expect field strength 

differences among the cohorts to have affected these results. In a separate dataset that consisted of 

61 pairs of 1.5T/3T ADNI MRI scans from 61 different subjects with each scan in a pair acquired at 

the same visit, we found a high association between texture computed in 1.5T and texture 

computed in 3T (Pearson correlation, r = 0.86, p < 0.001). 

We found a significant negative correlation between hippocampal texture and FDG-PET uptake in 

the hippocampus indicating that the structural changes measured as texture relate to a reduction of 

glucose metabolism and the function of the hippocampus. The correlation remained significant 

when de-correlating texture for volume. This confirms that some of the volume-independent 

information texture captures in MRI is related to the underlying disease process. To gain further 

insight into the pathology underlying texture, the relation between hippocampal texture and other 

AD biomarkers remains to be investigated. For example, the relation with the following that 

together with FDG-PET are the most widely studied non-MRI biomarkers of AD pathology [Jack et al., 

2010]: CSF Aβ1-42 and PET Aβ imaging, which are biomarkers of Aβ plaque load; and CSF tau, which is 

an indicator of neurodegeneration. 

Previous MRI texture studies in AD reported diagnostic (CTRL vs. AD) classification accuracies (CAs) in 

the range 91.0 % - 96.4 % using relatively small, single site, single scanner datasets (14 - 40 subjects) 
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[Freeborough and Fox, 1998; Liu et al., 2004; Zhang et al., 2011]. On the standardized ADNI dataset, 

which is much larger and from multiple sites, our method achieved a CTRL vs. AD CA of 85.6 % when 

using the operating point on the ROC curve closest to the ideal classifier. The highest previously 

reported CA of 96.4 % [Zhang et al., 2011] was on a dataset with severely affected AD patients 

(MMSE 5.53 ± 4.47 compared to 23.2 ± 1.9 for the ADNI data we used). It should further be noted 

that our marker was optimized for AUC, not CA, which is the case for most methods. Results from 

machine learning have shown that optimizing for CA does not necessarily lead to a good AUC [Cortes 

and Mohri, 2004], and we expect the opposite to be the case as well. 

The study most comparable to ours in terms of the data used (larger ADNI subset), the evaluation 

criterion (AUC), and the considered clinical problem (prognosis) is the one by Chincarini et al. [2011]. 

A CTRL vs. AD diagnostic AUC performance of 0.93 and 0.92 were reported using age- and sex-

matched subjects from the ADNI database for ROIs covering the right and left hippocampus and 

surroundings, respectively. In comparison, our method achieved an age- and sex-adjusted diagnostic 

AUC of 0.91. For the same two ROIs, Chincarini et al. [2011] reported MCI-to-AD conversion AUC 

performances after 24 months of 0.68 and 0.67. In comparison, our method achieved an age- and 

sex-adjusted prognostic AUC of 0.74 (0.72 when using unadjusted texture) within the same time 

span. We also observe that Chincarini et al. [2011] reports a Pearson correlation of 0.31 between 

their texture marker (when computed based on several ROIs covering several brain areas) and 

MMSE in the MCI subjects. In comparison, our age- and sex-adjusted texture scores has a correlation 

of -0.30 (-0.32 when using unadjusted texture). Note that the sign difference is due to how labels are 

encoded in the respective classifiers. There are, however, still several important differences between 

our study and the work by Chincarini et al. The considered datasets are different subsets of the ADNI 

database, the methodology is different, and they use a data-driven voxel subset from a box covering 

the hippocampus as well as part of the surrounding brain structures and ventricles. The latter is 

opposed to focusing the analysis to a segmentation of the hippocampus as proposed in this study. 
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In our study, potential confounding factors were handled by subsequent statistical adjustment 

instead of, for example, conducting a matched design. It was observed that adjusting for age and sex 

using de-correlation did not deteriorate the texture-based marker results. On the contrary, results 

improved in most cases. 

This study is limited by the use of FreeSurfer hippocampus segmentations. To reduce this effect, we 

morphologically eroded the segmentations to obtain statistics only from the interior of the 

hippocampus and reduce effects from voxels close to a noisy segmentation boundary. However, the 

effect of using different segmentations, both from other automated methods and manual 

segmentations should be investigated in future work.  

In the FDG-PET experiment, we used FDG-PET scores from the Center for Brain Health, NYU School 

of Medicine, New York [Li et al., 2008; Mosconi et al., 2005] downloaded directly from the ADNI 

website. Consequently, the hippocampal segmentations we used to compute MRI texture did not 

correspond to the segmentations used in FDG-PET. This could influence the obtained correlations. 

However, we do not expect a one-to-one correspondence in segmentations to change correlations 

dramatically from what we found because of the low resolution of the FDG-PET scans relative to the 

resolution of the MRI scans in ADNI. 

Imaging biomarkers have potential for use in clinical diagnosis and in clinical trials. Efforts are 

already in place to standardize MRI hippocampal volumetry [Frisoni and Jack, 2011; Jack et al., 

2011a]. Despite the encouraging results presented here, the use of texture is much less widespread, 

and standardization lies far ahead. The most immediate potential application for texture is in clinical 

trials (e.g., for subject selection). Combining hippocampal volume with other biomarkers, such as 

cerebrospinal fluid (CSF)-derived measurements, has shown increased diagnostic performance 

[Walhovd et al., 2010], and a conjunction of texture and other biomarkers is probably needed to 

achieve a combination marker that is sufficiently good to be considered for clinical use.  
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5 Conclusion 

In conclusion, we found that hippocampal texture had a significantly higher differentiation between 

stable MCIs and MCI-to-AD converters within 24 months than hippocampal volumetry (AUC 0.74 vs. 

0.67; p = 0.005), the most widely studied structural MRI biomarker of AD [Jack et al., 2011a]. The 

prognostic texture results were confirmed by applying the biomarker to data from a different cohort, 

which revealed excellent generalization performance. Both texture and volume correlated with 

MMSE in a cohort of clinically healthy, middle-aged males, one-half of which had established loss of 

cognitive performance. In contrast, only texture correlated with ACE, a cognitive test designed to be 

sensitive to early stages of AD compared to MMSE. In addition, we found a significant correlation 

between texture and hippocampal FDG-PET uptake. The texture statistics remained significant after 

de-correlating volume in all experiments, and the combination of texture and volume did not 

significantly improve diagnostic or prognostic AUCs compared to texture alone. These findings 

support the hypothesis that texture extracts different information than volume, and that it is more 

sensitive to early cognitive decline. Atrophy rate as measured by structural MRI is already accepted 

and used in AD clinical trials [Cummings and Zhong, 2014; Frisoni et al., 2010], and the role of MRI 

biomarkers in AD has become increasingly important with atrophy from structural MRI entering 

criteria for AD diagnosis [Dubois et al., 2010; Jack et al., 2011b]. It is evident that there are other 

sources of information to extract from structural MRI in addition to volume or atrophy, such as the 

hippocampal texture studied in this work, which may produce complementary imaging biomarkers 

of AD. This was exemplified by the variety of markers applied in a recent grand challenge in medical 

image analysis on differential diagnosis of CTRL, MCI and AD using structural MRI [Bron et al., 2015]. 
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Figure legends 

Figure 1: Diagnostic and prognostic ADNI results. (A) Box plots of the hippocampal texture scores for 

the diagnostic groups. The central line marks the median; the lower and upper edges of the box 

mark the 25th percentile (q1) and the 75th percentile (q3), respectively; the notch marks the 95 % 

confidence interval of the median as ±1.57 (q3 - q1) / n½, where n is the number of observations; the 

whiskers mark the most extreme inlier data points; and the circles mark outliers defined as > q3 + 

1.5 (q3 - q1) or < q1 - 1.5 (q3 - q1). (B) Box plots of the hippocampal texture scores for the prognostic 

groups. The upper and lower dashed horizontal lines mark the median hippocampal texture score of 

the AD and CTRL group, respectively. (C) ROC curves for AD diagnosis and AD prognosis. The AUCs 

are (p-values according to a DeLong, DeLong, and Clarke-Pearson’s test in parentheses): CTRL vs. AD 

0.912 (p < 0.001), MCI-NC12 vs. MCI-C12 0.740 (p < 0.001), MCI-NC24 vs. MCI-C24 0.742 (p < 0.001).  

Figure 2: Scatter plots of MRI biomarkers vs. MMSE score in the ADNI cohort. (A) Hippocampal 

texture. (B) Hippocampal volume. Note that uniform random noise in the range -0.5 to 0.5 was 

added to each MMSE score for better visualization. 

Figure 3: Scatter plots of MRI biomarkers vs. ACE score in the Metropolit cohort. (A) Hippocampal 

texture. (B) Hippocampal volume. Note that uniform random noise in the range -0.5 to 0.5 was 

added to each ACE score for better visualization. 

Figure 4: Scatter plots of MRI biomarkers vs. metabolic rate of glucose in the hippocampus in FDG-

PET. (A) Hippocampal texture. (B) Hippocampal volume. 
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Figure 5: Schematic view of the proposed texture working hypothesis in AD. Top row: NFTs inside 

the neurons and Aβ plaques between neurons spread throughout the brain, causing neuronal death. 

Middle row: Changes in the statistical properties of the image intensities due to the accumulated 

effect of NFTs and/or Aβ plaques may be reflected as certain textural patterns prior to atrophy. 

Bottom row: Atrophy manifests as the shrinkage and possible morphological change of brain 

structures.  
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Table I. Demographics and clinical parameters for the three cohorts; ADNI, AIBL, and Metropolit. 

 
N Age 

mean ± SD 
Sex 
% male 

MMSE 
mean ± SD 

ACE 
mean ± SD 

ADNI diagnosis dataset 
    CTRL 169 76.0 ± 5.1 50.9 29.2 ± 1.0

d
  

    AD 101 75.3 ± 7.4  50.5 23.2 ± 1.9  
ADNI prognosis datasets

a
 

    MCI-NC12 192 74.9 ± 7.1 66.7 27.2 ± 1.7
e
  

    MCI-C12 41 74.3 ± 6.8 65.9 26.5 ± 1.8  
    MCI-NC24 140 74.8 ± 6.9 67.1 27.5 ± 1.7

e
  

    MCI-C24 93 74.9 ± 7.3 65.6 26.6 ± 1.7  
ADNI FDG-PET subset 
    CTRL 62 75.9 ± 5.0 59.7 29.1 ± 1.0   
    AD 52 75.7 ± 6.5 53.9 23.3 ± 2.1   
    MCI 101 75.5 ± 6.9 69.3 27.1 ± 1.6  
AIBL

b
 

    CTRL 88 75.2 ± 7.2 47.7 28.9 ± 1.3
d
  

    AD 28 73.6 ± 8.1 35.7 21.2 ± 5.6  
    MCI-NC18 17 77.1 ± 6.7 52.9 27.6 ± 1.6

e
  

    MCI-C18 8 80.7 ± 7.6 62.5 25.6 ± 2.0  
Metropolit 
    CTRL 95 58.4 ± 0.6 100.0 29.5 ± 0.8 96.0 ± 3.2

g
 

    CL 97
c
 58.6 ± 0.7 100.0 29.2 ± 1.0 92.1 ± 5.0 

Key: ACE, Addenbrooke’s cognitive examination; AD, Alzheimer’s disease; ADNI, The Alzheimer's 
Disease Neuroimaging Initiative; AIBL, The Australian Imaging, Biomarker & Lifestyle Flagship Study 
of Ageing; CL; cognitive loss; CTRL, normal control; MCI, mild cognitive impairment; MCI-Cn, month 
n MCI-to-AD converter; MCI-NCn, month n MCI non-converter; MMSE, mini-mental state 
examination. 
Baseline data is reported for ADNI and AIBL whereas follow-up data is reported for Metropolit. 
Differences were tested at a p < 0.05 significance threshold using Student’s t-test except when 
comparing sex where a χ

2
 test was used. 

a
 One MCI excluded; missing month 24 diagnosis. 

b
 Four MCIs excluded; missing month 18 diagnosis. 

c
 One observation from the CL group excluded; missing ACE measurement. 

d
 CTRL differ from subjects with AD. 

e
 Non-converters differ from converters. 

g
 CTRL differ from subjects with cognitive loss. 

 



Table II. Prognostic (MCI-to-AD conversion) AUCs in the ADNI cohort. 

MRI biomarker Conversion within  12 months Conversion within 24 months 

Texture 0.740
***

 0.742
***

 
Volume 0.705

***
 0.672

***
 

Texture + volume 0.739
***

 0.720
***

 

Key: AD, Alzheimer’s disease; ADNI, The Alzheimer's Disease Neuroimaging Initiative; AIBL, 
The Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing; AUC, area under the 
receiver operating characteristic curve; MCI, mild cognitive impairment; MRI, magnetic 
resonance imaging. 
*** : p < 0.001. 

 



Table III. Pearson correlation with general cognition in the ADNI and Metropolit cohort. 

MRI biomarker 
ADNI  Metropolit 

MMSE  MMSE ACE 

Texture -0.54
***

  -0.21
**

 -0.25
***

 
Volume  0.51

***
    0.17

*
   0.02

NS
 

Texture + volume -0.56
***

  -0.26
***

 -0.14
NS

 

Key: ACE, Addenbrooke’s cognitive examination; AD, Alzheimer’s disease; 
ADNI, The Alzheimer's Disease Neuroimaging Initiative; CTRL, normal 
control; MCI, mild cognitive impairment; MMSE, mini-mental state 
examination; MRI, magnetic resonance imaging. 
NS : not significant; * : p < 0.05; ** : p < 0.01; *** : p < 0.001. 
 

 


