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Oligo kernels for biological sequence classification have a high discriminative power. A new parameteri-
zation for the K-mer oligo kernel is presented, where all oligomers of length K are weighted individually.
The task specific choice of these parameters increases the classification performance and reveals informa-
tion about discriminative features. For adapting the multiple kernel parameters based on cross-validation
the covariance matrix adaptation evolution strategy is proposed. It is applied to optimize the trimer oligo
kernels for the detection of bacterial gene starts. The resulting kernels lead to higher classification rates,
and the adapted parameters reveal the importance of particular triplets for classification, for example of
those occurring in the Shine-Dalgarno Sequence.

1. Introduction

Kernel-based learning algorithms have been suc-

cessfully applied to a variety of sequence classifica-

tion tasks within the field of bioinformatics.45 Re-

cently, oligo kernels were proposed for the analysis

of biological sequences,34 where the term oligo refers

to oligomers, short single stranded DNA/RNA frag-

ments. Oligo kernels compare sequences by look-

ing for matching fragments. They allow for grad-

ually controlling the level of position-dependency

of the representation, that is, how important the

exact position of an oligomer is. Besides good

performance34,35,25, decision functions based on oligo

kernels are easy to interpret and to visualize and

can therefore be used to infer characteristic sequence

features.34,35

In the standard oligo kernel, all oligomers are
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weighted equally. Thus, all oligomers are considered

to have the same importance for classification. In

general this assumption is not reasonable. In this

study, we therefore propose the weighted oligo ker-

nel considering all oligomers of length K (K-mers),

in which the relative importance of all K-mers can

be controlled individually. A task specific choice

of the weighting parameters can potentially increase

the classification performance. Moreover, appropri-

ate weights for a particular classification task may

reveal sequence characteristics with high discrimina-

tive power and biological importance.

The question arises how to adjust the weight-

ing parameters for the K-mers for a given task. In

practice, appropriate hyperparameter combinations

for kernel-based methods are usually determined by

grid-search. This means that the hyperparameters

are varied with a fixed step size through a wide range

of values and the performance of every combination

is assessed using some performance measure. Be-

cause of the computational complexity, grid-search is

only suitable for the adjustment of very few param-

eters. Hence, it is not applicable for the adjustment

of the 4K parameters of the weighted oligo kernel.

Perhaps the most elaborated systematic technique

for choosing multiple hyperparameters are gradient

descent methods.3,4,15,17,25,28,49 If applicable, these

methods are highly efficient. However, they have sig-

nificant drawbacks. In particular, the score function

for assessing the performance of the hyperparameters

(or at least an accurate approximation of this func-

tion) has to be differentiable with respect to all hy-

perparameters. This excludes reasonable measures

such as the standard cross-validation error. Fur-

ther, the considered space of kernels has to have an

appropriate differentiable structure. Depending on

the performance measure, gradient-based algorithms

for kernel optimization have to be combined with a

multi-start strategy to deal with convergence to un-

desired local extrema.

Here a method for hyperparameter selection is

employed that does not suffer from the limitations

described above and is less prone to get stuck in

undesired local optima. We bring forward to use

the covariance matrix adaptation evolution strategy

(CMA-ES21), an adaptive variable-metric algorithm

for efficient direct real-valued optimization, to search

for appropriate hyperparameter vectors.13,26,23

As an application of our approach to kernel opti-

mization we consider the prediction of bacterial gene

starts in genomic sequences. Although exact local-

ization of gene starts is crucial for correct annota-

tion of bacterial genomes, it is difficult to achieve

with conventional gene finders, which are usually re-

stricted to the identification of long coding regions.

The prediction of gene starts therefore provides a bi-

ologically relevant signal detection task, well-suited

for the evaluation of our kernel optimization scheme.

We therefore apply the CMA-ES to the tuning

of weighted oligo kernels for detecting prokaryotic

translation initiation sites, that is, for classifying

potential gene starts in bacterial RNA. The perfor-

mance measure for the hyperparameter optimization

is based on the mean classification rate of five-fold

cross-validation.

In the following, we first introduce the oligo ker-

nel and our new parameterization. Then the adap-

tation of kernel parameters using evolutionary opti-

mization methods is described. After that we present

the experiments demonstrating the performance of

the kernel and the optimization of the hyperparam-

eters.

2. Oligo Kernels

The basic idea of kernel methods for classifica-

tion is to map the input data, here biological se-

quences, to a feature space endowed with a dot prod-

uct. Then the data is processed using a learning algo-

rithm in which all operations in feature space can be

expressed by dot products. The trick is to compute

these inner products efficiently in input space using

a kernel function.44 Here the feature space can be de-

scribed in terms of oligo functions.34 These functions

encode occurrences of oligomers in sequences with

an adjustable degree of positional uncertainty. This

is in contrast to existing methods, which provide

either position-dependent8 or completely position-

independent representations31. For an alphabet A
and a sequence s, which contains K-mer ω ∈ AK

at positions Ss
ω = {p1, p2, . . . }, the oligo function is

given by

µs
ω(t) =

∑

p∈Ss

ω

exp

(

− 1

2σ2
(t − p)2

)

(1)

for t ∈ R. The smoothing parameter σ adjusts

the width of the Gaussians centered on the ob-

served oligomer positions and determines the degree
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of position-dependency of the function-based feature

space representation. While small values for σ im-

ply peaky functions, large values imply flatter func-

tions. For a sequence s the occurrences of all K-

mers contained in AK = {ω1, ω2, . . . , ωm} can be

represented by a vector of m oligo functions. This

yields the final feature space representation Φ(s) =

[µs
ω1

, µs
ω2

, . . . , µs
ωm

]T of that sequence. The feature

space objects are vector-valued functions. This can

be stressed using the notation

φs(t) = [µs
ω1

(t), µs
ω2

(t), . . . , µs
ωm

(t)]T . (2)

This representation is well-suited for the interpreta-

tion of discriminant functions and visualization.34 To

make it practical for learning, we construct a kernel

function to compute the dot product in the feature

space efficiently. The inner product of two sequence

representations φi and φj , corresponding to the oligo

kernel k(si, sj), can be defined as

〈

φi, φj

〉

=

∫

φi(t) · φj(t)dt

∝
∑

ω∈AK

∑

p∈Si
ω

∑

q∈S
j
ω

exp

(

− 1

4σ2
(p − q)2

)

=k(si, sj) (3)

writing φi for φsi
. The feature space representations

of two sequences may have different norms. In or-

der to improve comparability between sequences of

different lengths, we compute the normalized oligo

kernel

k̃(si, sj) =
k(si, sj)

√

k(si, si)k(sj , sj)
. (4)

From the above definition of the oligo kernel, the

effect of the smoothing parameter σ becomes obvi-

ous. For the limiting case σ → 0 with no positional

uncertainty, only oligomers which occur at the same

positions in both sequences contribute to the sum. In

general it is not appropriate to represent oligomer oc-

currences without positional uncertainty. This would

imply zero similarity between two sequences if no

K-mer appears at exactly the same position in both

sequences. For σ → ∞ position-dependency of the

kernel completely vanishes. In this case, all terms

of oligomers occurring in both sequences contribute

equally to the sum, regardless of their distance and

the oligo kernel becomes identical to the spectrum

kernel.31

2.1. Weighted Oligo Kernel

So far, the different K-mers are weighted equally

in the K-mer oligo kernel. However, some K-mers

may be more discriminative than others. Therefore,

we introduce new parameters wi, i = 1, . . . , 4K , for

their weighting and define

kweighted(si, sj) =

∑

ω∈AK

exp(wi)
∑

p∈S
si
ω

∑

q∈S
sj
ω

exp

(

− 1

4σ2
(p − q)2

)

.

(5)

The normalized weighted oligo kernel k̃weighted is

then given by

k̃weighted =
kweighted(si, sj)

√

kweighted(si, si)kweighted(sj , sj)
. (6)

The parameterization ensures a valid oligo kernel for

w1, ..., w4K , σ ∈ R. This makes unconstrained opti-

mization methods directly applicable to the 1 + 4K

kernel parameters.

2.2. Combined Oligo Kernel

Meinicke et al. already showed that it is bene-

ficial to employ combinations of oligo kernels that

consider oligomers of different lengths.34 The κ-

combined oligo kernel

k̃κ-combined(s1, s2) =
1

κ

κ
∑

i=1

k̃i(s1, s2) (7)

was introduced, where the subscript i indicates

that the normalized oligo kernel k̃i is defined on

the oligomers of length i. The level of position-

dependency can be controlled for each oligomer

length individually using κ parameters σ1, . . . , σκ.

The learning machines using k̃6-combined per-

formed better than the machines using single oligo

kernels k̃i(s1, s2) with i = 1, . . . , 6.34,35

Igel et al. optimized the parameters of the

combined oligo kernel k̃6-combined using gradient-

based optimization of the kernel-target alignment.25

Roughly speaking, the kernel-target alignment is

large if the similarity measure induced by the ker-

nel is large for input patterns of the same class and

small for patterns from different classes.7 Choosing

a kernel with large kernel-target alignment aims at
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choosing a feature space in which class membership

and neighborhood of patterns are related. The align-

ment can be optimized very efficiently, because it

only depends on the kernel function and the training

data (and not on the learning machine) and is well

suited for gradient-based adaptation. However, the

search space of potential kernels has to be carefully

restricted, because otherwise the kernel-target align-

ment can lead to overfitting the training data. This

could be observed in the study by Igel et al., where

optimizing the 6-combined oligo kernel significantly

improved the classification results of SVMs, while the

authors note that adaptation of the weighted oligo

kernel with K = 3, having ≈ 10 times more degrees

of freedom than k̃6-combined, led to overfitting.

3. Evolutionary Model Selection

Evolutionary algorithms are iterative, direct, ran-

domized optimization methods inspired by prin-

ciples of neo-Darwinian evolution theory. They

have proven to be suitable for hyperparameter

and feature selection for kernel-based learning

algorithms.9,13,14,24,26,27,36,37,42,46,23 Here we apply a

real-valued evolutionary algorithm to adapt the pa-

rameters of weighted oligo kernels.

Evolution strategies (ES1) are one of the main

branches of evolutionary algorithms. Here the

highly efficient covariance matrix adaptation ES

(CMA-ES19,21) for real-valued optimization is ap-

plied, which learns and employs a variable metric

by means of a covariance matrix for the search dis-

tribution. The CMA-ES has successfully been ap-

plied to tune Gaussian kernels for SVMs considering

a cross-validation error as optimization criterion.13,26

Visualization of the objective function for a bench-

mark problem depicts an error surface that shows

a global trend superimposed by local minima, and

ES are usually a good choice for such kind of prob-

lems, which are difficult for purely gradient-based

algorithms.13

In the CMA-ES, a set of µ individuals forming

the parent population is maintained. Each individ-

ual has a genotype that encodes a candidate solution

for the optimization problem at hand, here a real-

valued vector containing the hyperparameter combi-

nation of the kernel parameters to be optimized. The

fitness of an individual is equal to the objective func-

tion value—here the five-fold cross-validation error—

at the point in the search space it represents. In each

iteration of the algorithm, λ > µ new individuals,

the offspring, are generated by partially stochastic

variations of parent individuals. The fitness of the

offspring is computed and the µ best of the offspring

form the next parent population. This loop of vari-

ation and selection is repeated until a termination

criterion is met. The object variables are altered by

weighted intermediate recombination and Gaussian

mutation. That is, an offspring is created by com-

puting the weighted center of mass of the parents to

which a realization of a normally distributed random

vector with zero mean and covariance matrix that is

updated online using the covariance matrix adapta-

tion method (CMA). The key idea of the CMA is to

alter the mutation distribution in a deterministic way

such that the probability to reproduce steps in the

search space that led to the actual population (i.e.,

produced offspring that were selected) is increased.

This enables the algorithm to detect correlations be-

tween object variables and to become invariant under

transformations of the search space. The search path

of the population over the past generations is taken

into account, where the influence of previous steps

decays exponentially. The CMA does not only ad-

just the mutation strengths in m directions, but also

detects correlations between object variables. The

CMA-ES is invariant under order-preserving trans-

formations of the fitness function and in particular

against rotation and translation of the search space—

apart from the initialization. The CMA-ES algo-

rithm is described in detail in the appendix.

4. Detection of Bacterial Gene Starts

We apply 1-norm soft margin support vector ma-

chines (SVMs5) with 3-mer weighted oligo kernels

to the detection of prokaryotic translation initiation

sites.18 We first introduce the problem and then the

locality improved kernel, as well as simple Markov

chain models30, which we consider for comparison.

Then the experimental setup is described. Finally,

the results are presented.

4.1. Problem Description

To extract protein-encoding sequences from nu-

cleotide sequences is an important task in bioinfor-

matics. For this purpose it is necessary to detect
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locations at which coding regions start. These loca-

tions are called translation initiation sites (TIS). In

most cases a TIS contains the start codon ATG or

rarely GTG or TTG. The start codon marks the posi-

tion at which the translation starts. The codon ATG

codes for the amino acid methionine, and not every

ATG triplet is a start codon. Therefore, it must be

decided whether a particular candidate triplet corre-

sponds to a start codon or not. This classification

problem can be solved automatically using machine

learning techniques, in which the neighborhood of

nucleotides observed around potential TISs is used as

input pattern to a classifier.22,25,32,34,35,38,40,43,48,50

Here we have to distinguish between eukaryotes

and prokaryotes, that is, between organisms in which

the genetic material is organized into membrane-

bound nuclei and organisms without a cell nucleus,

like bacteria. In contrast to prediction of eukaryotic

TIS there is no biological justification for using a

general learning machine across different species for

prediction of prokaryotic TIS. For this reason, learn-

ing of prokaryotic TISs is always restricted to a lim-

ited amount of species-specific examples and model

selection methods have to cope with small data sets.

As in previous studies, we tested our approach

on E. coli genes from the EcoGene database.41 Only

those entries with biochemically verified N-terminus

were considered and the neighboring nucleotides

were looked up in the GenBank file U00096.gbk.2

From the 732 positive examples we created asso-

ciated negative examples. For the negative exam-

ples we extracted sequences centered around a codon

from the set {ATG, GTG, TTG}. Such a sequence is

used as a negative example if the codon is in-frame

with one of the correct start sites used as a posi-

tive case, its distance from a real TIS is less than

80 nucleotides, and no in-frame stop codon occurs in

between. This procedure generates a difficult bench-

mark data set, because the potential TISs in the

neighborhood of the real start codon are the most

difficult candidates in TIS discrimination. We cre-

ated 1248 negative examples. The length of each

sequence is 50 nucleotides, with 32 located upstream

and 15 downstream with respect to the potential

start codon.

To minimize random effects, we generated 50 dif-

ferent partitionings of the data into training and test

sets. Each training set contained 400 sequences plus

the associated negatives, the corresponding test set

332 sequences plus the associated negatives.

4.2. Alternative Classification Methods

We compare the classification performance of our

approach with the results achieved with SVMs us-

ing the locality improved kernel and simple Markov

models.

4.2.1. Locality Improved Kernel

The locality improved kernel counts matching nu-

cleotides and considers local correlations within local

windows of length 2l + 1.45,50 For two sequences si,

sj of length L the locality improved kernel computes

klocality(si, sj) =

L
∑

p=1





min(L,p+l)
∑

t=max(1,p−l)

vt+l−p · matcht(si, sj)





d

. (8)

The function matcht(si, sj) is equal to one if si and sj

have the same nucleotide at position t and zero oth-

erwise. The weights vt allow to emphasize regions of

the window which are of special importance. In our

experiments they are fixed to vt = 0.5 − 0.4|l − t|/l.

The hyperparameter d determines the order to which

local correlations are considered.

4.2.2. Markov Model

As a baseline we consider simple inhomogeneous

Markov chain models, also referred as weight array

matrix models.30,40 Given a Markov chain M of or-

der n over an alphabet A for stings of a fixed length

l the likelihood of a sequence s = s1s2 . . . sl is given

by

PM (s) =

PM
1 (s1) · PM

2 (ss|s1) . . . PM
n (sn|s1, . . . , sn−1)

·
l
∏

i=n+1

PM
i (si|si−n, . . . , si−1) . (9)

The conditional probabilities are estimated form the

frequencies in the training data plus a pseudo count

cpseudo.
30 A sequence s is classified based on the

sign of lnPM+

(s) − lnPM−

(s), where M+ and M−

denote the Markov models build from positive and

negative examples in the training data, respectively.
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Our simple Markov model has only two hyperparam-

eters, its order n and the value of the pseudo count

cpseudo, which serves as a regularization parameter.

4.3. Experiments

In our experiments, we optimize weighted trimer

oligo kernels with adjustable σ and 64 weighting

parameters as well as the combined oligo kernel

k̃6-combined with 6 parameters. For comparison the

locality improved kernels with hyperparameters l

and d, and simple Markov chain models with pa-

rameters n and cpseudo were considered.

As kernel-based learning machines we consid-

ered 1-norm soft margin SVMs. Therefore we had

to adjust an additional hyperparameter, namely

the parameter C ∈ R+ controlling the regular-

ization of the SVM. For an introduction to SVMs

we refer to the standard literature.5,6,10,44,45 The

quadratic optimization problem corresponding to the

SVM training is solved efficiently using sequential

minimal optimization (SMO39) using second order

information.11,16

For each of the 50 partitionings into training and

test data and each classification method indepen-

dent optimizations of the hyperparameters were con-

ducted.

The parameters l, d, and C of the SVM with

locality improved kernel were optimized using three-

dimensional grid-search. After determining an inter-

val of parameters leading to well generalizing clas-

sifiers, the grid-search varied l, d ∈ {1, . . . , 6}50 and

C ∈ {j/500 | j = 1, ..., 10}. This amounts to 360 grid

points.

For the Markov chain model, we use our results

obtained in a previous study25, where the two param-

eters n ∈ {0, . . . , 5} (order) and cpseudo ∈ {j/5 | 1 ≤
j ≤ 10} were optimized by grid-search.

The 1 + 43 + 1 = 66 parameters of SVMs with

weighted trimer oligo kernels were optimized using

the CMA-ES. Objective vectors x ∈ R are mapped

to the non-negative hyperparameters according to

(w1, . . . , w64, σ, C)T =

(exp(x1), . . . , exp(x64), |x65|, |x66|)T . (10)

All evolutionary optimizations started from x1 =

· · · = x64 = 0 and x65 = x66 = 1 (i.e., the ini-

tial triplet weights were one). For each of the 50

partitionings an independent optimization trial was

started. The offspring population size was λ = 16

(e.g., a default choice for this dimensionality19) and

each trial lasted 200 generations.

In case of the combined oligo kernel k̃6-combined

we employed the CMA-ES with λ = 9 and set the

maximum number of generations to 100.

The optimization criterion in the grid-searches

and the evolutionary optimization was the five-fold

cross-validation error based on the classification er-

ror. The training data set was partitioned into five

disjoint subsets. For each of the subsets, the classi-

fier was trained using the union of the four other sets

and a test error was computed on the left-out sub-

set. The final cross-validation error is the average of

the five test errors. The partitioning of the data is

schematically shown in Fig. 1.

1st

part.

50th

part.

CV1

CV1 CV2

CV2

CV3

CV3

CV4

CV4

CV5

CV5

train

train test

test

Fig. 1. The experimental results refer to 50 partitionings
of the available data into training and test sets. To com-
pute the cross validation error, every training data set is
again split into five subsets (CV1,. . . ,CV5).

The computational complexity of training and

model selection of course varied between the different

classifiers in our application. The training of the sim-

ple Markov models was much faster compared to the

SVMs. The time to determine a final SVM solution

was basically proportional to the number of hyper-

parameter combinations that were tested. For the

three parameters of the SVM with locality improved

kernel we spent 360 evaluations. To adjust the seven

parameters of the SVM with combined kernel we al-

lowed 9 · 100 = 900 training processes. For the SVM

with weighted trimer oligo kernels having 66 param-

eters we spent 16 · 200 = 3200 evaluations. As we

were not interested in the time needed for training

and model selection but only in the quality of the

resulting classifiers, we did neither tune the grid-size

∗An upper bound on the maximum number of generations can be viewed as some kind of regularization of the model selection pro-
cedure. Using the cross-validation test error does not prevent the evolutionary model selection from overfitting to the data available
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nor selected a tight upper bound on the number of

generations.∗

It has to be stressed that 200 generations were

more than sufficient for optimizing the trimer oligo

kernel. This indicates the good scaling behavior of

the CMA-ES.

4.4. Results

We first interpret the outcome of the optimiza-

tion of the parameters of the weighted oligo kernel.

Then we compare the classification performance of

the oligo kernels, the locality improved kernel and

the Markov chain model.

Table 1. Optimized smoothing parameter and regular-
ization parameter for the 64 weight oligo kernel.

sigma C
mean 0.81 0.96
25% quantile 0.60 0.71
median 0.69 0.91
75% quantile 0.82 1.11

The results of the optimization of the smoothing

parameter σ and the regularization parameter C of

the SVM are shown in Table 1. The optimized val-

ues of σ are rather small, that is, the position of the

triplets is very important.

To analyze the relevance of particular oligomers,

the 64 triplets were sorted according to the mean

of the corresponding evolved weighting parameters.

The weight values indeed vary, see Fig. 2. The

triplets on the first 10 ranks are given in Table 1. Be-

sides the start codon ATG also GAG, AGG, and GGA

are among the triplets with the largest weight val-

ues. These triplets are known to be associated with

the so-called Shine-Dalgarno Sequence.29,47 This se-

quence is of importance for translation initiation sites

because it corresponds to the ribosome binding site.

 0.6
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Fig. 2. Means of the weight values of the 64 triplets after
optimization sorted by value.

The mean of the weights for the potential start

codons were 2.49 for ATG, 1.12 for TTG (rank 16),

and 0.82 for GTG (rank 56). That is, the presence of

ATG appears to be a relevant feature, whereas GTG

and TTG are not as important as ATG. In all posi-

tive as well as negative sequence patterns there is a

potential start codon at the positions 33–35. Still,

the frequency of ATG at this position is considerably

higher in positive than in negative examples. The ini-

tiation codon of more than 90% of prokaryotic genes

is ATG.18 The rule of thumb “a pattern is positive

if the start codon is ATG and negative otherwise”,

which would lead to a classification accuracy of about

72% when applied to our data, can be implemented

with the evolved kernel weights. However, more so-

phisticated features based on the triplets with large

weights in Table 1 can overrule the presence or ab-

for model building. However, we did not investigate such effects in this study.
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sence of ATG.
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locality improved kernel,

weighted oligo kernel

combined oligo kernel
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ti
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1−specificity

Fig. 3. Median ROC curves of the adapted classifiers
based on 50 trials. Here the simple Markov performed
worst, the combined oligo kernel best.

The classification results are given in Table 2.

The table shows mean values as well as 25%, 50%

and 75% quantiles over the 50 partitions of the

classification error (accuracy), sensitivity, specificity,

and Matthews correlation coefficient.33 Sensitivity

is defined by TP
(TP+FN) , specificity by TN

(TN+FP ) and

Matthews correlation coefficient by

TP × TN − FP × FN
√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
.

(11)

Here TP, TN, FP, and FN denote the true positives,

true negatives, false positives, and false negatives,

respectively.

The SVMs with oligo kernels optimized by the

CMA-ES gave the best results. The combined oligo

kernel achieved an average accuracy of 93.3%, the

weighted oligo kernel follows with a classification per-

formance of 92.9%. Thus, while the trimer oligo ker-

nel provided interesting results about the relevance

of particular triplets, it did not outperform the 6-

combined oligo kernel.

The means of the locality improved kernel pa-

rameters adjusted by grid-search were 2 for l, 4.92

for d, and 0.00684 for C. That is, the nucleotides

were only compared within a small window. This is

in accordance with the results for σ in the oligo ker-

nels. The median of the classification performance

reached by the locality improved kernel is 92.53%. In

our scenario, the highly adapted weighted oligo ker-

nel is significantly better than the locality improved

kernel.†For the Markov model the parameters n and

cpseudo were optimized to 1.32 and 0.712 (mean over

the 50 trials), respectively. For the Markov model

the median of the classification rate is 91.42%, and

the weighted oligo kernel is significantly better than

the Markov model†.

Our results are also supported by the ROC (re-

ceiver operating characteristic) curves of the opti-

mized classifiers shown in Fig. 3, which were gener-

ated by simply shifting the classification threshold.25

Each curve in the plot corresponds to the median of

the 50 trials (similar to the attainment surfaces12).

Considering previous results achieved with SVMs

and oligo kernels, it is possible to compare the

CMA-ES applied to the cross-validation error with

the gradient-based optimization of the kernel-target

alignment.25 When applied to the combined oligo

kernel, cross-validation and CMA-ES yielded com-

petitive results. While the gradient-based optimiza-

tion of the kernel-target alignment is computation-

ally more efficient, the evolutionary optimization is

more general in the sense that it is not restricted

to search spaces having differentiable structure. The

cross-validation error proved to be the more robust

performance measure compared to the kernel-target

alignment. We did not observe overfitting in the

evolutionary optimization of the very flexible trimer

weighted oligo kernel, whereas the optimization of

the kernel-target alignment resulted in overfitting in

this example.25

5. Conclusion

A task specific choice of the kernel can signifi-

cantly improve kernel-based machine learning. Often

a parameterized family of kernel functions is consid-

ered so that the kernel adaptation reduces to real-

valued optimization. Still, the adaptation of complex

kernels requires powerful optimization methods that

can adapt multiple parameters efficiently. When the

considered space of kernel functions lacks a differ-

entiable structure or the model selection criterion is

non-differentiable, a direct search method is needed.

The covariance matrix adaptation evolution strategy

†As the data sets in the different experiments of the cross-validation procedure are not fully independent of each other, the precondi-
tions for standard statistical test are not met. Still we think that the test statistics give a good idea about the quality of the results.
A Wilcoxon rank-sum test would indicate that the differences are highly statistically significant (p < 0.001).
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(CMA-ES) is such a powerful, direct algorithm for

real-valued hyperparameter selection.

In biological sequence analysis, the CMA-ES

allows for a more task specific adaptation of se-

quence kernels. Because multiple parameters can

be adapted, it is possible to adjust new weighting

variables in the oligo kernel to control the influence

of every oligomer individually. Further, the cross-

validation error can directly be optimized (i.e., with-

out smoothing).

We demonstrated the discriminative power of

the oligo kernel and the benefits of the evolution-

ary model selection approach by applying them to

prediction of prokaryotic translation initiation sites

(TISs). The weighted oligo kernel leads to improved

results compared to locality improved kernel, which

was optimized by grid-search, as well as to simple

Markov models. Furthermore, it is possible to reveal

biologically relevant information from analyzing the

evolved weighting parameters. For the prediction of

bacterial gene starts, for example, triplets referring

to the Shine-Dalgarno Sequence are of particular im-

portance for discrimination.
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Appendix A

Details of the CMA-ES

In the following, we present the CMA-ES with

weighted recombination and rank-µ-update, (µw, λ)-

CMA-ES.20 The object parameters x
(g+1)
k of off-

spring k = 1, . . . , λ created in generation g + 1 are

given by

x
(g+1)
k = 〈x〉(g)

v + σ(g)B(g)D(g)z
(g)
k , (A.1)

where the z
(g)
k ∼ N (0, I) are independent realiza-

tions of an n-dimensional normally distributed ran-

dom vector with zero mean and covariance matrix

equal to the identity matrix I and

〈x〉(g)
v =

µ
∑

i=1

vix
(g)
i:λ (A.2)

is the weighted mean of the selected individuals with
∑µ

i=1 vi = 1 and vi > 0 for i = 1, . . . , µ. The in-

dex i:λ denotes the i-th best individual. We use

superlinear weighted recombination and set vi =

ln(µ + 1) − ln(i). The covariance matrix C(g) of the

random vectors

B(g)D(g)z
(g)
k ∼ N(0,C(g)) (A.3)

is a symmetric positive n × n matrix with

C(g) = B(g)D(g)
(

B(g)D(g)
)T

. (A.4)

The columns of the orthogonal n × n matrix B(g)

are the normalized eigenvectors of C(g) and D(g) is

a n×n diagonal matrix with the square roots of the

corresponding eigenvalues.

In the CMA-ES, rank-based (µ, λ)-selection is

used. That is, the µ best of the λ offspring form the

next parent population. After selection, the strategy

parameters, both the matrix C(g) and the step size

σ(g), are updated. The update of the matrix C(g) is

governed by

p(g+1) = (1 − cc) · p(g)

+
√

cc(2 − cc)

√
µeff

σ(g)

(

〈x〉(g+1)
v − 〈x〉(g)

v

)

,

(A.5)

C(g+1) = (1 − ccov) · C(g)

+ ccov ·
(

1

µcov
U

(g+1)
1 +

(

1 − 1

µcov

)

U(g+1)
µ

)

,

(A.6)

where

U
(g+1)
1 = p(g+1)

(

p(g+1)
)T

, (A.7)

U(g+1)
µ =

µ
∑

i=1

vi

σ(g)2

·
(

x
(g+1)
i:λ − 〈x〉(g)

v

)(

x
(g+1)
i:λ − 〈x〉(g)

v

)T

.

(A.8)

The vector p(g+1) ∈ Rn is the evolution path, a

weighted sum of the centers of the population over

the generations starting from p(0) = 0. The fac-

tor
√

µeff compensates for the loss of variance due

to computing the center of mass. The parameter
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cc ∈ ]0, 1] controls the time horizon of the adapta-

tion of p. The constant
√

cc(2 − cc) normalizes the

variance of p viewed as a random variable, because

12 = (1 − cc)
2 + (

√

cc(2 − cc))
2. The parameter

ccov ∈ [0, 1[ controls the update of C(g). The vector

p does not only represent the last (adaptive) step of

the parent population, but a time average over all

previous adaptive steps. The influence of previous

steps decays exponentially, where the decay rate is

controlled by ccov.

The update rule (A.6) for the covariance matrix

shifts C(g) towards the n × n matrices U
(g+1)
1 and

U
(g+1)
µ . The relative importance of the two matri-

ces is controlled by the parameter µcov. The matrix

U
(g+1)
1 has rank one, and the normal distribution

with zero mean and covariance matrix U
(g+1)
1 is the

normal distribution with zero mean that makes the

mutation p(g+1) most likely. That is, the shift to-

wards U
(g+1)
1 exploits the information gathered in

the evolution path over several generations. The

matrix U
(g+1)
µ results from the weighted sum over

all selected offspring. It has (almost surely) rank

min(µ, n). That is, the shift towards U
(g+1)
1 exploits

the information from selection in the last generation.

This is particularly useful in case of large popula-

tions.

The adaptation of the global step-size parameter

σ is done separately on a shorter timescale (a single

parameter can be estimated based on less samples

than the complete covariance matrix). We keep track

of a second evolution path pσ without the scaling by

D:

p(g+1)
σ = (1 − cσ) · p(g)

σ

+
√

cσ(2 − cσ) · B(g)D(g)−1
B(g)T

·
√

µeff

σ(g)

(

〈x〉(g+1)
v − 〈x〉(g)

v

)

, (A.9)

σ(g+1) = σ(g) · exp

(

cσ

dσ

(

‖p(g+1)
σ ‖ − χ̂n

χ̂n

))

,

(A.10)

where χ̂n is the expected length of a n-dimensional,

normally distributed random vector with covariance

matrix I. It is approximated by
√

n(1 − 1
4n

+ 1
21n2 ).

The damping parameter dσ decouples the adaptation

rate from the strength of the variation. The param-

eter cσ ∈ ]0, 1] controls the update of pσ.

If there were no selection (i.e., if the new parents

were selected from the offspring uniformly at ran-

dom), the evolution path pσ would be a weighted

sum of independently normally distributed random

variables starting form p
(0)
σ = 0. Because of the nor-

malization, its expected length would tend to χ̂n for

growing g. Hence, the update rule basically increases

the global step size if the evolution path pσ is larger

than expected under uniform random selection and

decreases the step size in the opposite case. If the

path pσ is shorter than χ̂n then the steps that led

to selected individuals canceled out each other more

strongly than expected (i.e., they tended to be an-

ticorrelated) or the selected steps were smaller than

expected. Thus, the step size σ should be decreased.

Many successive steps in the same direction, which

do not cancel out in pσ and could have been realized

by a single long step, lead to an evolution path pσ

that is larger than expected and the step size should

be increased.

The standard parameters20 of the CMA-ES using

the rank-µ-update and superlinear weighted recom-

bination are

vi = ln(µ + 1) − ln i , (A.11)

cσ =
10

n + 20
, (A.12)

dσ = max

(

1,
3µeff

n + 10
)

)

+ cσ , (A.13)

cc =
4

4 + n
, (A.14)

µcov = µeff , (A.15)

ccov =
1

µcov

2

(n +
√

2)2

+

(

1 − 1

µcov

)

min

(

1,
2µeff − 1

(n + 2)2 + µeff

)

.

(A.16)

The population sizes are chosen according to the fol-

lowing heuristics20

λ = 4 + ⌊3 lnn⌋ , (A.17)

µ = ⌊λ/2⌋ . (A.18)

These default values are used throughout this study.
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Table 1. The 3-mers of major importance for classifica-
tion

oligomer ATG AGG GGA GAG GGC GGT ACT TCG TGG GAT
weight 2.490 2.166 2.004 1.888 1.646 1.455 1.389 1.339 1.327 1.295

Table 2. Performance of the 64 weight oligo kernel SVM,
the locality improved kernel SVM and the Markov chain
model.

model accuracy specificity sensitivity correlation
SVM, 64 weight oligo kernel 92.92% 95.73% 88.13% 84.13%

25% quantile 92.37% 95.06% 86.79% 82.65%
median 92.90% 95.64% 87.84% 84.07%
75% quantile 93.46% 96.47% 89.19% 85.43%

SVM, 6-combined oligo kernel 93.28% 95.73% 89.12% 85.04%
25%-quantile 93.25% 95.83% 89.34% 84.90%
median 92.82% 95.16% 87.99% 83.92%
75%-quantile 93.90% 96.20% 90.69% 86.67%

SVM, locality improved kernel 92.54% 95.15% 88.10% 83.47%
25% quantile 92.02% 94.55% 87.09% 82.50%
median 92.53% 95.03% 88.14% 83.46%
75% quantile 93.03% 95.85% 89.19% 84.61%

Markov chain model 91.51% 92.01% 90.64% 82.69%
25% quantile 90.86% 90.96% 89.49% 81.45%
median 91.42% 91.88% 90.69% 82.91%
75% quantile 91.94% 93.01% 91.89% 83.68%
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