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Abstract

In this paper we employ an Evolutionary Algo-
rithm (EA) to improve the parameters of a visual
obstacle detection method called Inverse Perspec-
tive Mapping. We show that the EA leads to a
better parameter setting than the one found by
an expert. The obstacle detection method is suc-
cessfully implemented on our autonomous mobile
robot ARNOLD to navigate in an unknown and dy-
namically changing environment in a fast and reli-
able manner.

1 Introduction

The control of an autonomous mobile robot in an
unknown and dynamically changing environment
by an active stereo vision system needs a fast an
reliable obstacle detection. For this task we use the
Inverse Perspective Mapping (IPM) (Mallot et al.,
1991; Bergener and Bruckhoff, 1999). This al-
gorithm is based on a camera model. The qual-
ity of the IPM depends on the hard to determine
internal and external camera parameters. Evolu-
tionary algorithms (EAs), i.e. the family of algo-
rithms that mimic mechanisms of natural evolu-
tion, have proven to be powerful tools for solv-
ing multi-modal, non-linear and non-differentiable
optimization tasks (Bäck and Schwefel, 1993). In
this article we employ an elaborated EA to find the
parameters of our camera model with the required
accuracy needed for the IPM.

The IPM has been implemented on our au-
tonomous mobile Robot ARNOLD (see Figure 1)
developed in the framework of NEUROS1 (NEU-
ral RObot Skills) (Bergener et al., 1999). We ex-
perimentally show that the evolved results are bet-
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Figure 1: Arnold

ter than the results found by an expert who has im-
plemented the IPM.

In the next section, the IPM is introduced. In
Section 3 we describe the employed EA. The re-
sults are shown in Section 4. The last section draws
a conclusion.

2 Inverse Perspective Mapping

Visual obstacle detection for mobile robots can
be achieved by observing the floor in front of the
robot from two different camera perspectives and
comparing the image contents. A solution of this
correspondence problem by image correlation is
suitable to construct a 3D representation of the
scene and thus to detect obstacles. At the same
time the method is computational expensive. Since
we are not interested in a complete 3D represen-
tation but only in a segmentation into free and
blocked areas of the floor plane, we can assume an
obstacle free floor in front of the robot. A suitable
mathematical camera model and complete knowl-
edge of all internal and external parameters of the



stereo camera system then allows to reconstruct the
texture of the floor from the camera image. In the
same way this texture can be mapped back to the
camera image by a sequence of image transforma-
tions. Therefore, it is possible to predict the con-
tents of the left camera image from the right cam-
era image, at least for the so called binocular range,
i.e. the part of the floor that is visible in both cam-
era images. A comparison of the predicted content
of the left camera image with an acquired image
by simply subtracting the grey-level values shows
deviations at all points where the hypothesis of a
free way is violated. Thresholding the difference
image leads to a segmentation of the camera im-
age into obstacles and free space. This technique
of a purposeful change of perspective is called In-
verse Perspective Mapping (IPM) and is described
in detail by Bergener and Bruckhoff (1999).

In practice it is crucial to find good values for
the required camera parameters that are needed for
the mapping, camera positions and rotations, exact
focal length, optical image center, pixel size, hori-
zontal scan ratio of camera and frame grabber and
the coefficients of a radial lens distortion. All of
these are hard to determine for off-the-shelf cam-
eras and active vision heads. Especially when the
system is stressed mechanically, e.g. by vibrations
of the moving robot, a regular re-tuning of the pa-
rameters is necessary to achieve a small remaining
error in the image mapping. An experienced user is
able to improve the mapping by observing the dif-
ference image and fine tuning the several parame-
ters since he qualitatively knows the effect of the
different parameters. This work is unsatisfactory
and time-consuming. Standard optimization meth-
ods like estimated gradient descent or simulated
annealing turned out to be ineffective. This makes
an alternative automatic and systematic technique
for finding good parameter settings very attractive.

The obstacle detection module based on the IPM
is successfully used in a navigation task (Bruck-
hoff and Dahm, 1998) where the robot moves in a
cluttered indoor environment avoiding obstacles.

3 Evolution Strategy with Derandomized
Self-Adaptation

3.1 Outline of the Algorithm

A typical EA starts with a parent population of in-
dividuals each representing a trial solution of the
problem at hand. Each individual is assigned a fit-
ness that is determined by the quality of the solu-
tion it represents. Here test pictures are used to

calculate the fitness of a set of camera parameters.
The quality of a solution is equal to the number of
correctly matched pixels (see next section).

New solutions are generated by randomly alter-
ing the existing individuals. A selection mecha-
nism that prefers solutions with better fitness val-
ues determines which individuals form the next
parent apopulation. This (easily to parallelize)
loop of creating new individuals from the parents,
fitness evaluation, and selection is iterated until
a termination criterion is fulfilled, e.g. a suitable
solution is found or a certain amount of compu-
tation time has been consumed (see the work of
Rudolph (1997) for an overview of general con-
vergence properties of EAs).

A variety of EAs exists, in our application an
evolution strategy (ES) is employed (Schwefel,
1995; Rechenberg, 1994). Each individual repre-
sents a real-valued vector, in this case 14 parame-
ters (see section 4.1 for a description of the param-
eters) of our camera model. These so called object
variables are altered (mutated) by adding a nor-
mally distributed random vector with zero mean.
The covariance matrix of the mutation vectors is
adapted to improve the search process. The so
called strategy parameters that determine the mu-
tation distribution are incorporated into the repre-
sentation of each individual. Derandomized self-
adaptation of individual step-sizes and one direc-
tion is used (Ostermeier, Gawelczyk, and Hansen,
1995; Hansen, Ostermeier, and Gawelczyk, 1995).
This adaptation scheme has mainly the following
advantages. Firstly, the change of the strategy pa-
rameters is based on the same realization of a ran-
dom variable as the mutation of the object vari-
ables. It is guaranteed that the selection of a small
or large mutation step-size leads to a correspond-
ing decrease or increase of the step-size parame-
ter. Secondly, each individual uses history infor-
mation about its evolution path stored in the strat-
egy parameters. Thirdly, the step-size variations
are damped before they are transmitted to the de-
scendants in order to avoid random fluctuations of
the step-size parameters.

We use a (µ, λ)-selection scheme with one eli-
tist. This means, the new parent population con-
sists of the best individual found so far and the
µ − 1 best of the λ offsprings.

3.2 Details of the EA

The ES as proposed by Hansen, Ostermeier, and
Gawelczyk (1995) works as follows:



1. An initial parent population of µ individuals
is randomly created and evaluated.

2. From the parent population λ offsprings are
created. For each k = 1, . . . , λ:

(a) The object variables are mutated. For
each i = 1, . . . , n:
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(b) The individual step sizes are adapted.
For each i = 1, . . . , n:
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(c) The preferred direction vector is
adapted:

sNk
r = max

{
0, (1 − c) · sEζk

r

+ c · (cuzk
r )

} (4)

r
′ = (1 − cr) · σ

Eζk
r r

Eζk

+ cr · (xNk − x
Eζk )

(5)

r
Nk = r

′/||r′|| (6)

σNk
r = max

{
α · ||σNk ||, σ

Eζk
r

· exp{βr(|sNk
r | − χ̂1)

} (7)

3. The offsprings are evaluated.

4. The best individual found so far and the µ−1
best of the λ offsprings are selected to form
the new parent population.

5. If the termination criterion is not fulfilled go
to step 2.

An explanation of the various parameters and sym-
bols is given in Table 1. Each individual encodes
one set of camera model parameters which are
used to calculate the IPM. We have seven real-
valued parameters for each camera, so the individ-
uals encode points x ∈ IR14.

Two different terms contribute to the mutation
of the object variables, see Eq. (1). Firstly, each
objective variable is mutated independently. The
n individual step-sizes are stored in a vector σ.
Each individual stores information about the his-
tory of the realizations of the random vector z in
a n-dimensional vector s needed for a kind of mo-
mentum effect, see Eq. (2). Correlated mutations
are realized by an additional line mutation along
an adaptive preferred direction r. The line muta-
tion has another step-size σr and stores its history
in the parameter sr (see Eq. (4)) and the normal-
ized (see Eq. (6)) n-dimensional vector r (see Eq.
(5)). If an actual step is larger (smaller) than its ex-
pectation, the corresponding step-size is increased
(decreased), see Eqs. (3) and (7).

Altogether, the employed self-adaptation mech-
anism uses 3n+2 strategy parameters. Not any ar-
bitrary normal distribution with zero mean can be
produced by this mutation scheme (if n > 2), but
in practice this algorithm has proven to be a good
compromise between adapting too many parame-
ters (which can describe any covariance matrix but
may take too long to adapt) and a too strong re-
striction of the possible mutation distributions.

Instead of initializing s and sr with zero(s)
(Hansen, Ostermeier, and Gawelczyk, 1995) we
suggest to replace Eqs. (2) and (4) in the first it-
eration by

s
Nk = z

k and sNk
r = zk

r , (8)

respectively. So in every generation sr (sNk )
can be viewed as a realization of a normally dis-
tributed random variable (vector) with variance
one — which is the underlying assumption for us-
ing χ̂1, χ̂n and the choice of cu. This modification
is just of theoretical interest, in practice its effect
can be neglected, because of the exponential decay
of its influence.

4 Experiments

4.1 Setup

The experiments shown were done using the
camera setup of the autonomous service robot
ARNOLD (Bergener et al., 1997).



The internal camera parameters were deter-
mined using an implementation of the calibration
algorithm described by Tsai (1987). Knowing the
internal parameters we could mechanically adjust
the cameras on the head with simple calibration
patterns making the nodal lines and image rows
parallel for a vergence angle of zero. This gives
a good estimation of the three external camera pa-
rameters. Since we map the image of one camera
to the perspective of the other, we have to optimize
the parameters of both cameras. We have chosen
the seven most important parameters for optimiza-
tion, these are the radial lense distortion, the focal
length, the image center and the three external ro-
tation parameters of the cameras, pan, tilt and yaw.
The initial values of the parameter set is calculated
by the calibration scheme described above.

To generate an error measure needed by the EA,
we put sheets of paper on the floor to get a struc-
tured horizontal plane z = 0 in the world coor-
dinate system. After calculating the mapping, the
number of pixels exceeding the threshold should
be close to zero, since the assumption of an obsta-
cle free plane is fulfilled. We compute the number
of pixels exceeding the threshold for five different
pictures. The sum of these values serves as the er-
ror measure which equals the negative fitness. We
would like to stress that the error cannot vanish,
because the pinhole-camera model can only ap-
proximate real cameras up to a certain extend. Fur-
thermore, only the seven most important parame-
ters for each camera are optimized. This was done
because there is a trade-off between computational
effort and accuracy.

4.2 Results

We performed 10 independent runs of the EA de-
scribed in the previous section. We used a parent
population size of µ = 10 and the number of off-
springs in each generation was set to λ = 150. The
µ/λ ratio was chosen after monitoring the prob-
ability of fitness improvement (Schwefel, 1995)
which constantly dropped below 0.075. The pop-
ulation size is comparatively large for this kind of
ES. Smaller values for µ seemed to decrease the
performance, but the corresponding trials were not
comprehensive.

The results of the evolutionary parameter op-
timization have to be compared with the results
achieved by an expert.

After calibration the initial mean error was
9869.8 per image. The adjustment by hand took
several hours and reduced the error to 5217.8. It

(a) Image of the left camera

(b) Initial result

(c) Result after optimization

Figure 2: Result of the evolutionary optimization
of the parameters. The white pixels in
Figs. (b) and (c) indicate mismatches.

has to be stressed that it needs a lot of experience
and exact knowledge of the mapping, i.e. the in-
fluence of the parameters, to achieve such good
results. The average error of our ten trials of the
(10, 100)-ES was 5122.6 and the best run achieved
a final error value of 4422 after 212 generations,
see Figure 3.

Figure 2 shows one test image of the left camera
(a), the initial result (b) and the result after opti-
mization (c).
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Figure 3: Results for 250 generations of the
(10, 150)-ES, based on 10 trials

5 Conclusion

Evolutionary optimization has proven to be a suit-
able means to optimize the parameters of a camera
model used for visual obstacle detection. It can be
successfully employed to automate the setting of
the parameters for the IPM. The results shown here
were even on average superior to the settings sug-
gested by an expert. The enhancement of the best
parameter setting was more than 50% in compar-
ison to the initial parameter estimation and about
20% compared to the tuning by the expert.

The IPM is used to control the mobile robot
ARNOLD in an unknown and dynamically chang-
ing environment (Bruckhoff and Dahm, 1998). Af-
ter optimization the obstacle detection leads to bet-
ter results so that the robot can move faster and
more reliable.

We are confident that the results of the mapping
can be further enhanced by optimizing all camera
model parameters. Furthermore, we also believe
that there is room for further refinements of the EA
we used in this study.

Acknowledgments

We would like to thank Martin Kreutz for pro-
viding the EALib software package and Bernhard
Sendhoff for proofreading the manuscript.

References
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n 14 dimension of the problem
µ 10 number of parents
λ 150 number of offsprings

x object variable vector, (x1, . . . , xn)′ ∈ IRn

σ vector of individual step-sizes, (σ1, . . . , σn)′ ∈ IRn

s weighted sum of the realized random vectors z, s ∈ IRn

σr step-size for line mutation
sr weighted sum of the realized random numbers zr with a lower bound of

zero

r direction of the line mutation, r ∈ IRn

z, zr z = (z1, . . . , zn)′, z1, . . . , zn, zr are independent random numbers
drawn according to a normal distribution with zero mean and variance
one

Nk index of the k-th offspring
Eζk

index of the ζk-th parent, ζk = 1, . . . , µ with equal probability

cu

√

(2 − c)/c sr and s are realizations of sums of normally distributed random vari-
ables and vectors, respectively, and can therefore be viewed as realiza-
tions of single normally distributed random variables (vectors); the factor
cu normalizes the variance of these random variables (vectors) to one

χ̂1

√

2/π the expectation of the one-dimensional χ-distribution, i.e. the expecta-
tion of the absolute value of a normally distributed random variable with
zero mean and variance one

χ̂n

√
n(1 − 1

4n
+ 1

1+21n2 ) approximation of the expectation of the n-dimensional χ-distribution

c
√

1/n determines the accumulation time of the individual steps
cr 3/n determines the accumulation time of the direction adaptation
α 1/3 factor that controls the minimum value of σr; there has to be a lower

bound in order to ensure that the line mutation keeps relevant
β 2/n damping factor of the “global” step-size adaptation
βind 1/(4n) damping factor of the individual step-size adaptation
βr

√

1/(4n) damping factor of the direction step-size adaptation

Table 1: Symbols and parameters of the derandomized ES, for α, β, βr , βind, c and cr the default parameters
(found by simulations) given by Hansen et al. (1995) are used


