
Evolution Strategies for Direct Policy Search

Verena Heidrich-Meisner and Christian Igel

Institut für Neuroinformatik, Ruhr-Universität Bochum, Germany
{Verena.Heidrich-Meisner,Christian.Igel}@neuroinformatik.rub.de

Abstract. The covariance matrix adaptation evolution strategy (CMA-
ES) is suggested for solving problems described by Markov decision pro-
cesses. The algorithm is compared with a state-of-the-art policy gradient
method and stochastic search on the double cart-pole balancing task us-
ing linear policies. The CMA-ES proves to be much more robust than
the gradient-based approach in this scenario.

1 Introduction

Reinforcement learning (RL) aims at maximizing accumulated reward over time
by improving a behavioral policy mapping states to actions. The learning is based
on interaction with the environment, where perceived transitions between states
and scalar reward signals, which may be sparse, noisy, and/or delayed, drive the
adaptation [1–3]. Various evolutionary algorithms (EAs) have been successfully
applied to RL problems (see, e.g., [4–7]) and performed well in comparison with
alternative approaches (see [8, 9] for recent studies). Still, EAs are often met with
scepticism from the RL community. The main argument is that a general purpose
optimization technique such as an EA, even if slightly tailored to the learning
problem, is not likely to compete with highly specialized methods developed
solely for canonical RL scenarios. Strong empirical evidence for the power of
evolutionary RL and convincing arguments why certain EAs are particularly
well suited for certain RL problem classes are needed to dispel this concern, and
this study is a further step in this direction.

Unfortunately, it is not easy to conduct a fair comparison of evolutionary and
standard RL techniques. Of course, they can be applied to the same benchmark
problems, as for example done in [8, 9]. However, usually the search spaces are dif-
ferent, which can introduce a strong bias in the comparison. Many RL algorithms
are value function approaches, which learn a function that predicts the expected
future reward given a state or an action in a particular state. The policy is then
defined on top of this value function [1–3]. In contrast, EAs are typically used
for direct policy search, that is, they directly optimize a mapping between states
and actions. Thus, it is insightful to compare EAs with other methods searching
directly in policy space such as policy gradient methods (PGMs), which are well
established in the RL community.

We propose variable metric evolution strategies (ESs) for RL [10–13]. Evo-
lution strategies are per se powerful direct search methods [14]. They usually

outperform gradient-based approaches in the presence of noise and on multi-
modal objective functions (especially if the local optima have only small basins
of attraction). We argue that this makes them particularly well-suited for RL.
In RL, noise arises from several sources. The state-transitions and the reward
signals may be stochastic. Further, the state observations may be noisy. In addi-
tion, the initial state usually varies. This makes it necessary to approximate the
quality of a behavioral policy based on a finite number of episodes (or roll-outs).
That is, the quality of a policy is a random variable. Evolution strategies adapt
the policy as well as parameters of their search strategy (such as the variable
metric) based on ranking policies, which is much less error prone than estimating
absolute performances or performance gradients [13]. But also for deterministic
tasks, evolutionary RL can be advantageous. As we will illustrate in this paper
for a non-noisy task, benchmarks problems typically used in RL can be multi-
modal and are therefore difficult for purely gradient-based methods.

In order to demonstrate the performance of ESs for RL, we compare the
covariance matrix adaptation ES (CMA-ES, [15, 16]) with random search and a
PGM, where we try to make the comparison as fair as possible. Here we con-
sider the natural actor-critic (NAC, [17–19]) algorithm, which is an established,
state-of-the-art method and our favorite PGM. The NAC is a powerful algorithm
for fine-tuning policies and it is arguably one of the best developed and most
elaborated PGMs. It is well-suited for comparison with the CMA-ES, because
the two algorithms have some conceptual similarities as discussed in [12, 13]. In
[12, 13] NAC and CMA-ES were compared on simple RL problems where the
policies had only very few parameters. It is an open question how these results
scale with problem dimensionality and difficulty. In this study, we therefore con-
sider convergence speed and success rate on a more difficult variant of the pole
balancing problem and take a look at the fitness landscape near optimal solu-
tions. In contrast to EAs, PGMs need a differentiable structure on the space of
candidate policies. Here, we consider simple linear policies, which are often used
in combination with the NAC.

In the next section, the basic formalism of RL is introduced before we briefly
describe the NAC, random weight guessing, and our approach of using the CMA-
ES for RL. After that, we describe our experiments in Section 3. Then the results
are presented and discussed.

2 Algorithms for Adapting Policy Parameters

Markov decision processes (MDP) are the basic formalism to describe RL prob-
lems. An MDP 〈S,A,P ,R〉 consists of the set of states S, the possible actions
A, and for all a ∈ A and s, s′ ∈ S the probabilities Pa

s,s′ that action a taken
in state s leads to state s′ and the expected rewards Ra

s,s′ received when going
from state s to s′ after performing action a. We consider agents interacting with
the environment on a discrete time scale. The agent follows its actions accord-
ing to a behavioral policy π : S × A → R, where π(s, a) is the probability to
choose action a in state s (for deterministic policies we write π : S → A). The

goal of RL is to find a policy π such that some notion of expected future re-
ward ρ(π) is maximized. For example, for episodic tasks we can define ρ(π) =
∑

s,s′∈S,a∈A
dπ(s)π(s, a)Pa

s,s′Ra
s,s′ , where dπ(s) =

∑∞

t=0 γt Pr{st = s | s0, π} is
the stationary state distribution, which we assume to exist, and st is the state
in time step t and γ ∈]0, 1] a discount parameter.

In the following, we briefly describe the RL algorithms compared in this
study.

2.1 Natural Policy Gradient Ascent

In this section, we introduce the NAC algorithm according to [19]. Policy gra-
dient methods operate on a predefined class of stochastic policies. They require
a differentiable structure to ensure the existence of the gradient of the perfor-
mance measure and ascent this gradient. Let the performance ρ(π) of the current
policy with parameters θ be defined as above. Because in general neither dπ, R,
nor P are known, the performance gradient ∇θρ(π) with respect to the policy
parameters θ is estimated from interaction with the environment.

The policy gradient theorem [20] ensures that an unbiased estimate of the
performance gradient can be determined from unbiased estimates of the state-
action value function Qπ(s, a) = E [

∑∞

t=0 γtrt+1|π, s0 = s, a0 = a] (where rt+1 ∈
R is the reward received after the action in time step t) and the stationary
distribution. For any MDP it holds

∇θρ(π) =
∑

s∈S

dπ(s)
∑

a∈A

∇θπ(s, a)Qπ(s, a) . (1)

This formulation contains explicitly the unknown value function, which has to
be estimated. It can be replaced by a function approximator fv : S × A → R

(the critic) with real-valued parameter vector v satisfying the convergence con-

dition
∑

s∈S
dπ(s)

∑

a∈A
π(s, a) [Qπ(s, a) − fv(s, a)] ∇vfv(s, a) = 0. This leads

directly to the extension of the policy gradient theorem for function approxima-
tion. If fv satisfies the convergence condition and is compatible with the policy
parametrization in the sense that

fv = ∇θ ln(π(s, a))v + const , (2)

then the policy gradient theorem holds if Qπ(s, a) in (1) is replaced by fv(s, a)
[20].

Stochastic policies π with parameters θ are parametrized probability dis-
tributions. The Fisher information matrix F (θ) induces a metric in the space
of probability distributions that is independent of the coordinate system [21].
The direction of steepest ascent in this metric space is given by ∇̃θρ(π) =
F (θ)−1

∇θρ(π), thus inducing ”natural” gradient ascent in this direction. We
have F (θ) =

∑

s∈S
dπ(s)

∑

a∈A
π(s, a)∇θ ln(π(s, a))(∇θ ln(π(s, a)))T using the

definitions above. This implies ∇θρ(π) = F (θ)v, which leads to the simple
equality ∇̃θρ(π) = v.

Algorithm 1: episodic Natural Actor-Critic

initialize θ, Φ = 0, R = 0, dimension n1

for k = 1, . . . do2

// k counts number of policy updates

for e = 1, . . . , emax do3

// e counts number of episodes per policy update, emax ≥ n + 1
for t = 1, . . . , T do4

// t counts number of time steps per episode

begin5

observe state st6

choose action at from πθ7

perform action at8

observe reward rt+19

end10

for i = 1, . . . , n do11

Φ(e, i)← Φ(e, i) + γt ∂

∂θi

ln πθ(st, at)12

R(e)← R(e) + γtrt+113

Φ(e, n + 1)← 114

// update policy parameters:

θ ← θ + (ΦT
Φ)−1

Φ
T
R15

The function approximator fv estimates the advantage function Aπ(s, a) =
Qπ(s, a) − V π(s), where V π(s) = E [

∑∞

t=0 γtrt+1|π, s0 = s] is the state value
function. Inserting this in the Bellman equation for Qπ leads to

Qπ(st, at) = Aπ(st, at) + V π(st) =
∑

s′

P at

st,s′

(

Rat

st,s′ + γV π(s′)
)

.

Now we sum over a sample path:

T
∑

t=0

γtAπ(st, at) =

T
∑

t=0

γtrt+1 + γT+1V π(sT+1) − V (s0) .

For an episodic task that is in its terminal state in time step T it holds that
V π(sT+1) = 0, thus, after replacing Aπ using (2), we get:

T
∑

t=0

γt(∇θ lnπ(st, at))
T
v − V (s0) =

T
∑

t=0

γtrt+1 .

For fixed start states we have V π(s0) = ρ(π), and we get a linear regression
problem with n + 1 unknown variables w = [vT, V π(s0)]

T that can be solved
after n + 1 observed episodes (where n is the dimension of θ and v):

T (ei)
∑

t=0

(

γt
∇θ lnπ(sei

t , aei

t)
]T

,−1

T

v =

T (ei)
∑

t=0

γtrei

t+1 , i = 1, . . . , n

The superscripts indicate the episodes. In Algorithm 1 the likelihood information
for a sufficient number of episodes is collected in a matrix Φ and the return for
each episode in R. In every update step one inversion of the matrix Φ

T
Φ is

necessary [19].

2.2 Random Weight Guessing

We use simple random search (random weight guessing) as a baseline compari-
son [9]. In every iteration new policy parameters are drawn uniformly from an
interval [−θmax, θmax]

k, where k is the number of policy parameters. This candi-
date solution is evaluated and is maintained if it outperforms the best solution
so far and discarded otherwise.

2.3 Evolution Strategies

We promote using the CMA-ES for solving MDPs. The highly efficient use of
information and the fast adaptation of step size and covariance matrix (which
corresponds to learning the metric underlying the optimization problem) makes
the CMA-ES one of the best direct search algorithms for real-valued optimization
[14]. For a detailed description of the CMA-ES we refer to the articles by Hansen
et al. [15, 16].

For the first time the CMA-ES was proposed for RL in [10]. It was found that
the CMA-ES outperforms alternative evolutionary RL approaches on variants
of the pole balancing benchmark in fully and partially observable environments.
In a more recent study by [9], these results were compared to 8–12 (depending
on the task) other RL algorithms including value-function and policy gradient
approaches. On the four test problems where the CMA-ES was considered, it
ranked first, second (twice), and third. In [11] the CMA-ES was applied to learn
the behavior of a driver assistance system, where neural attractor dynamics
were used to represent the policies. In [22] and [23] the CMA-ES was used for
RL in robotics. The authors combined the CMA-ES with evolutionary topology
optimization to evolve artificial neutral networks.

Recently, we performed a systematic comparison between the CMA-ES and
policy gradient methods with variable metrics [12, 13]. The preliminary experi-
ments indicate that the CMA-ES is much more robust regarding the choice of
hyperparameters and initial policies.

3 Experiments

The experiments conducted in this paper extend our previous work described
in [12], where we analyzed the cart pole balancing task, which is a well-known
benchmark in RL. In this paper we study a more difficult variant, double-pole
balancing, which has already been solved successfully with evolutionary methods,
see [24, 10, 9].

 0

 200

 400

 600

 800

 1000

 0 2000 4000 6000 8000 10000

m
ed

ia
n

of
 p

er
fo

rm
an

ce
s

number of fitness evaluations

σ=1
σ=0.1

σ=25

σ=0.01
σ=0.001

σ=5

σ=15
σ=10

σ=50

PSfragreplaements a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 2000 4000 6000 8000 10000

m
ed

ia
n

of
 p

er
fo

rm
an

ce
s

number of fitness evaluations

[-50,50]

[-30,30]
[-25,25]

[-20,20]

[-15,15]

[-10,10]

[-5,5]

[-1,1]
[-0.1,0.1][-0.01,0.01] [-0.001,0.001]

PSfragreplaements b)

 0

 5

 10

 15

 20

 25

 0 2000 4000 6000 8000 10000 12000 14000

m
ed

ia
n

of
 p

er
fo

rm
an

ce
s

number of fitness evaluations

σNAC=1

σNAC=0.1

σNAC=0.01

σNAC=15

σNAC=5

σNAC=10

σNAC=25 σNAC=50, σNAC=100

PSfragreplaements)

 300

 400

 500

 600

 700

 800

 900

 1000

 0 2000 4000 6000 8000 10000

m
ed

ia
n

of
 p

er
fo

rm
an

ce
s

number of fitness evaluations

α=0.01, σNAC=1, r=0.1, η=296/500

PSfragreplaements d)

Fig. 1. Performance of CMA-ES, NAC, and random weight guessing on the double pole
balancing task. The median over 500 independent trials is shown for the CMA in a)
and for random weight guessing in b). For the NAC only exemplary the performance
for learning rate α = 0.1 is shown in c). The performance of the NAC with initial
policy parameters drawn uniformly from a hypersphere with radius r = 0.1 centered
at a global optimum at (−4.19408,−13.2605,−1.54318,−36.91, 4.39037, 3.53484) and
parameter values α = 0.01 and σNAC = 1 is shown in d).

Double-pole balancing. Two poles of different length (l1 = 1m for the first pole
with mass m1 = 0.1kg and l2 = 0.1m for the second pole with mass m2 = 0.01kg)
are mounted side by side on the same 1-dimensional cart with mass mc = 1kg
and are to be balanced simultaneously. The equations of motion for two poles
are given in [25].1 This task is only solvable if the two poles differ in length.
The state s = [x, ẋ, ζ1, ζ̇1, ζ2, ζ̇2]

T is given by the cart’s distance to the center of

1 For i ∈ {1, 2} we have:

ẍ =
F − µc sgn(ẋ) +

P2

i=1
F̃i

mc +
P2

i=1
m̃i

, ζ̈i = −
3

8 li

„

ẍ cos ζi + g sin ζi +
2µi ζ̇i

mi li

«

F̃i = 2mi li ζ̇2
i sin ζi +

3

4
mi cos ζi

„

2µi ζ̇i

mi li
+ g sin ζi

«

, m̃i = mi

„

1−
3

4
cos2 ζi

«

Here g = 9.81 m/sec2 is the acceleration due to gravity and µc = 5 · 10−4 Ns/m
the coefficient of friction of the cart, µ1 = µ2 = 2 · 10−6 Nms are the coefficients of
friction for the first and second pole, respectively. The effective force from pole i on

the track x ∈ [−2.4, 2.4] and velocity ẋ, the current angle ζ1 of the longer pole
and its angular velocity ζ̇1 and the current angle ζ2 of the second pole together
with its angular velocity ζ̇2. Actions are continuous forces a = F applied to the
cart parallel to the x-axis. The dynamical system is numerically solved using
fourth-order Runge-Kutta integration with step size τ = 0.01 s.

Experimental setup. The agent follows a deterministic policy πdeter(s) = s
T
θ,

with θ ∈ R
6. The policy parameters θ are initialized with zero.2 For learning,

the NAC uses the stochastic policy πstoch
θ

(s, a) = N(πdeter
θ (s), σNAC), where the

standard deviation σNAC is viewed as an additional adaptive seventh parameter
of the method and is initialized independently. After every time step the agent
receives a reward signal of rt+1 = 1. A time step corresponds to 0.02s simulation
time. An episode ends after 1000 time steps (20s) or when either of the poles
leaves the feasible region [−36◦, 36◦] or the cart leaves the interval [−2.4, 2.4].
All episodes start in the same initial state s0 = [0, 0, 1◦, 0, 0, 0]T. Since the task
is episodic we use a discount factor of γ = 1 in the performance measure. The
fitness function used by the CMA-ES is the accumulated reward observed over
one episode (one episode is sufficient because the task is deterministic in our

experiments) ρ(π) =
∑T

t=1 rt = T . Thus the fitness of a policy is determined
by the number of time steps T the poles are balanced without the cart leaving
the feasible region. The same function is used for evaluation of the NAC and of
random weight guessing.

We employ the CMA-ES with rank-µ covariance update [16], where all pa-
rameters are set to default values. The population sizes are µ = 3 and λ = 6,
accordingly. Candidate solutions outside the box [−50, 50]6 are discarded and
a new offspring is generated. We test different initial global step sizes σ ∈
{0.001, 0.1, 1, 1, 10, 15, 20, 25, 50}.

In the case of random weight guessing, we vary the interval lengths θmax ∈
{0.001, 0.1, 1, 1, 10, 15, 20, 25, 30, 35, 50}. For the NAC, we test all combinations
of α ∈ {0.0001, 0.001, 0.01, 0.1, 0.3} and σNAC ∈ {0.1, 1, 5, 10, 15, 25, 50, 100}.

Each algorithm gets a budget of 10000 episodes per trial. A trial is stopped
and regarded as successful when the poles are balanced for 1000 time steps.

4 Results

Selected results are shown in Fig. 1. Table 1 lists the success rates for the different
hyperparameters. The episodic NAC never managed to balance the poles, except
for (α = 0.001, σNAC = 100), and (α = 0.01, σNAC = 50), where it found a
solution in 1 and 2 out of 500 trials, respectively.

While the double-pole balancing benchmark is not very difficult for evolu-
tionary RL with neural network policies [10, 9], it is obviously a challenging

the cart is given by F̃i and its effective mass by m̃i. The sign function sgn “inherits”
the unit of measurement of its argument.

2 We assume that the measurement units of the single components of θ are chosen
such that s

T
θ is a force.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900
 1000

-50 -40 -30 -20 -10 0 10 20 30 40 50 -4
-2

 0
 2

 4
 6

 8
 10

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

PSfragreplaements

�2 �6
�(�)�(�)

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900
 1000

-20
-15

-10
-5

 0 -2 0 2 4 6 8 10 12 14

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

PSfragreplaements�2�6�(�)

�3 �6
�(�)�(�)

Fig. 2. 2-dimensional projection of the fitness landscape around a global optimum.
On the left, the parameters θ2 and θ6 are varied while the other parameters are fixed
(θ1 = −4.19408, θ3 = −1.54318, θ4 = −36.91, θ5 = 4.39037). On the right, θ2 and θ5

are varied (θ1 = −4.19408, θ3 = −1.54318, θ4 = −36.91, θ6 = 3.53484).

problem using linear policies. Although the CMA-ES is usually much better
than random weight guessing [13], this difference is not so clear in this study.
The performance of both methods depends on the choice of the hyperparameter,
the initial global step size and the bounds of the search interval, respectively.
For θmax ∈ {5, 10, 15} random weight guessing succeeds significantly more fre-
quently (χ2-test, p < .05) to balance the poles compared to the CMA-ES with
the worst hyperparameter choice σ = 20. For all other values of θmax (except
θmax ∈ {5, 20}) the purely random search performed significantly worse (χ2-
test, p < .05) than the CMA-ES regardless of the choice of intial global step
size σ. The CMA-ES is always significantly better than the episodic NAC. The
performance of the CMA-ES is comparatively independent of the choice of the
initial step size. Random weight guessing requires that the search intervals fit
the problem. If the boundaries are too large, it will not sample a good solution,
if they are too small, there might be no good solutions in the parameter ranges
at all.

The bad performance of the episodic NAC is striking. To understand the
results, we visualized the objective function landscape around a global optimum
found by the CMA-ES, see Fig. 2. In these projections, the objective function
is clearly multi-modal and contains plateaus of equal (bad) quality. Thus, in
these two-dimensional plots the landscapes are almost worst case scenarios for
purely gradient-based methods. The objective function is also difficult for ESs,

Table 1: Success rates for CMA-ES and random weight guessing.

Success rate η of CMA-ES for different values of the initial global step size σ.

σ 0.001 0.01 0.1 1 5 10 15 20 25 50

η 151

500

172

500

201

500

245

500

154

500

144

500

145

500

141

500

161

500

161

500

Success rate η of stochastic search for different intervals [−θmax, θmax].

θmax 0.001 0.01 0.1 1 5 10 15 20 25 30 35 50

η 0

500

0

500

0

500

0

500

171

500

182

500

191

500

159

500

113

500

85

500

77

500

20

500

but at least there is some structure in the fitness landscape they can exploit
and they are much less likely to get stuck in local optima with small basins of
attraction. However, when initializing the policy parameters close to the difficult
global optimum shown in Fig. 2 the NAC works very efficiently, see Fig. 1 d).

5 Conclusion

Evolutionary reinforcement learning (RL) using the covariance matrix adapta-
tion evolution strategy (CMA-ES) resembles policy gradient methods, in partic-
ular the episodic natural actor-critic (NAC) algorithm. Both strategies search
directly in the space of policies, are variable metric methods, and rely on nor-
mally distributed variations for exploration. Of course, the frequency and the
level at which the variations are applied vary. We claim that in practice the
CMA-ES is much more robust w.r.t. the choice of hyperparameters, policy ini-
tialization, and especially noise, while, given appropriate hyperparameters, the
NAC can outperform the CMA-ES in terms of learning speed if initialized close
to a desired policy. This is supported by the experiments on the double-pole
balancing benchmark in this study, which turns out to be surprisingly difficult
when linear policies are considered. Because of plateaus and undesired local op-
tima in the objective function landscape, the CMA-ES is superior compared
to approaches purely based on estimated performance gradients. However, even
the CMA-ES has difficulties on this landscape as shown by the comparison with
random search.

In future work we will extend the experiments to different, higher dimensional
benchmark tasks and to other direct policy search methods.

Acknowledgment. The authors acknowledge support from the German Federal
Ministry of Education and Research within the Bernstein group “The grounding
of higher brain function in dynamic neural fields”.

References

1. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press (1998)
2. Bertsekas, D., Tsitsiklis, J.: Neuro-Dynamic Programming. Athena Scientific

(1996)
3. Heidrich-Meisner, V., Lauer, M., Igel, C., Riedmiller, M.: Reinforcement learning in

a Nutshell. In: 15th European Symposium on Artificial Neural Networks (ESANN
2007), Evere, Belgien: d-side publications (2007) 277–288

4. Whitley, D., Dominic, S., Das, R., Anderson, C.W.: Genetic reinforcement learning
for neurocontrol problems. Machine Learning 13(2–3) (1993) 259–284

5. Moriarty, D., Schultz, A., Grefenstette, J.: Evolutionary Algorithms for Reinforce-
ment Learning. Journal of Artificial Intelligence Research 11 (1999) 199–229

6. Chellapilla, K., Fogel, D.: Evolution, neural networks, games, and intelligence.
IEEE Proc. 87(9) (1999) 1471–1496

7. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evolutionary Computation 10(2) (2002) 99–127

8. Whiteson, S., Stone, P.: Evolutionary function approximation for reinforcement
learning. Journal of Machine Learning Research 7 (2006) 877–917

9. Gomez, F., Schmidhuber, J., Miikkulainen, R.: Efficient non-linear control through
neuroevolution. In: Proc. European Conference on Machine Learning (ECML
2006). Volume 4212 of LNCS., Springer-Verlag (2006) 654–662

10. Igel, C.: Neuroevolution for reinforcement learning using evolution strategies. In:
Congress on Evolutionary Computation (CEC 2003). Volume 4., IEEE Press (2003)
2588–2595

11. Pellecchia, A., Igel, C., Edelbrunner, J., Schöner, G.: Making driver modeling
attractive. IEEE Intelligent Systems 20(2) (2005) 8–12

12. Heidrich-Meisner, V., Igel, C.: Similarities and differences between policy gradient
methods and evolution strategies. In: 16th European Symposium on Artificial
Neural Networks (ESANN), Evere, Belgien: d-side publications (2008) 149–154

13. Heidrich-Meisner, V., Igel, C.: Variable metric reinforcement learning methods ap-
plied to the noisy mountain car problem. In: European Workshop on Reinforcement
Learning. (2008) Accepted.

14. Beyer, H.G.: Evolution strategies. Scholarpedia 2(8) (2007) 1965
15. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution

strategies. Evolutionary Computation 9(2) (2001) 159–195
16. Hansen, N., Müller, S., Koumoutsakos, P.: Reducing the time complexity of the

derandomized evolution strategy with covariance matrix adaptation (CMA-ES).
Evolutionary Computation 11(1) (2003) 1–18

17. Peters, J., Vijayakumar, S., Schaal, S.: Reinforcement learning for humanoid
robotics. In: Proc. 3rd IEEE-RAS Int’l Conf. on Humanoid Robots. (2003) 29–30

18. Riedmiller, M., Peters, J., Schaal, S.: Evaluation of policy gradient methods and
variants on the cart-pole benchmark. In: Proc. 2007 IEEE Internatinal Symposium
on Approximate Dynamic Programming and Reinforcement Learning (ADPRL
2007). (2007) 254–261

19. Peters, J., Schaal, S.: Natural actor-critic. Neurocomputing 71(7-9) (2008) 1180–
1190

20. Sutton, R., McAllester, D., Singh, S., Mansour, Y.: Policy gradient methods for
reinforcement learning with function approximation. In: Advances in Neural In-
formation Processing Systems. Volume 12. (2000) 1057–1063

21. Amari, S., Nagaoka, H.: Methods of Information Geometry. Number 191 in Trans-
lations of Mathematical Monographs. American Mathematical Society and Oxford
University Press (2000)

22. Siebel, N.T., Sommer, G.: Evolutionary reinforcement learning of artificial neural
networks. International Journal of Hybrid Intelligent Systems 4(3) (2007) 171–183

23. Kassahun, Y., Sommer, G.: Efficient reinforcement learning through evolutionary
acquisition of neural topologies. In: 13th European Symposium on Artificial Neural
Networks, d-side (2005) 259–266

24. Gomez, F., Miikkulainen, R.: Solving non-Markovian control tasks with neuroevo-
lution. Proceedings of the 16th International Joint Conference on Artificial Intel-
ligence (1999) 1356–1361

25. Wieland, A.: Evolving neural network controllers for unstable systems. Neural
Networks, 1991., IJCNN-91-Seattle International Joint Conference on 2 (1991)

