
Evolutionary Tuning of Multiple SVM Parameters

Frauke Friedrichs, Christian Igel 1

Institut für Neuroinformatik, Ruhr-Universität Bochum, 44780 Bochum, Germany

Abstract

The problem of model selection for support vector machines (SVMs) is considered.
We propose an evolutionary approach to determine multiple SVM hyperparame-
ters: The covariance matrix adaptation evolution strategy (CMA-ES) is used to
determine the kernel from a parameterized kernel space and to control the regu-
larization. Our method is applicable to optimize non-differentiable kernel functions
and arbitrary model selection criteria. We demonstrate on benchmark datasets that
the CMA-ES improves the results achieved by grid search already when applied to
few hyperparameters. Further, we show that the CMA-ES is able to handle much
more kernel parameters compared to grid-search and that tuning of the scaling and
the rotation of Gaussian kernels can lead to better results in comparison to standard
Gaussian kernels with a single bandwidth parameter. In particular, more flexibility
of the kernel can reduce the number of support vectors.

Key words: support vector machines, model selection, evolutionary algorithms

1 Introduction

Support vector machines (SVMs, e.g., [5,22,24]) are learning machines based
on two key elements: a general purpose linear learning algorithm and a prob-
lem specific kernel that computes the inner product of input data points in
a feature space. The choice of the kernel function is the crucial step in han-
dling a learning task with an SVM. For example, it is important to achieve
a distribution of the data in the feature space that reflects the affiliation to
the class labels. Often a parameterized family of kernel functions is considered
and the problem reduces to finding an appropriate parameter vector for the
given problem. In case of noisy, non-separable data one also has to choose a
regularization parameter, which controls the trade-off between minimizing the

1 Christian.Igel@neuroinformatik.rub.de

Preprint submitted to Elsevier Science 12 October 2004

training error and the complexity of the decision function. The kernel parame-
ters together with the regularization parameter are called the hyperparameters
of the SVM.

In practice the hyperparameters are usually determined by grid search. That is,
the hyperparameters are varied with a fixed step-size through a wide range of
values and the performance of every combination is assessed using some perfor-
mance measure. Because of the computational complexity, grid search is only
suitable for the adjustment of very few parameters. Perhaps the most elabo-
rate systematic technique for choosing multiple hyperparameters are gradient
descent methods [3,4,8,15]. These algorithms iterate the following procedure:
The SVM is trained using the current hyperparameter vector, the gradient
of some generalization error bound w.r.t. the hyperparameters is calculated,
and a step is performed in the parameter space based on this gradient. How-
ever, this approach has some significant drawbacks. The kernel function has
to be differentiable. The score function for assessing the performance of the
hyperparameters (or at least an accurate approximation of this function) also
has to be differentiable with respect to kernel and regularization parameters.
This excludes reasonable measures such as the number of support vectors.
In [3, Sec. 6.2] separability of the dataset is assumed when computing the
derivative, which is a very restrictive assumption. Iterative gradient-based al-
gorithms, which usually rely on smoothed approximations of a score function,
do not ensure that the search direction points exactly to an optimum of the
original, often discontinuous generalization performance measure.

We propose an evolutionary method for hyperparameter selection that does
not suffer from the limitations described above. Evolutionary algorithms have
been successfully applied to model selection for neural networks [11,18,25].
This includes the recent applications of genetic algorithms for feature selec-
tion of SVMs [6,7,14,17]. We use the covariance matrix adaptation evolution
strategy (CMA-ES, [10]) to search for an appropriate hyperparameter vector.
The fitness function that is optimized directly corresponds to some generaliza-
tion performance measure. We apply our method to tuning Gaussian kernels,
where not only the scaling but also the orientation is adapted.

We give a short description of SVMs in Section 2 and of the CMA-ES in Section
3. The parameterization of general Gaussian kernels is introduced in Section
4. We present experimental results in Section 5 and draw our conclusions in
Section 6.

2

2 Support Vector Machines

We consider L1-norm soft margin SVMs for the discrimination of two classes.
Let (xi, yi), 1 ≤ i ≤ `, be the training examples, where yi ∈ {−1, 1} is the
label associated with input pattern xi ∈ X. The main idea of SVMs is to map
the input vectors to a feature space F and to classify the transformed data by
a linear function. The transformation φ : X → F is implicitly done by a kernel
K : X × X → �

, which computes an inner product in the feature space, i.e.,
K(xi, xj) = 〈φ(xi), φ(xj)〉. The linear function for classification in the feature
space is chosen according to a generalization error bound considering a target
margin and the margin slack vector, i.e., the amounts by which individual
training patterns fail to meet that margin (cf. [5,22,24]). This leads to the SVM

decision function f(x) = sign
(
∑`

i=1 yiα
∗
i K(xi, x) + b

)

, where the coefficients
α∗

i are the solution of the following quadratic optimization problem: Maximize
W (α) =

∑`
i=1 αi − 1

2

∑`
i,j=1 yiyjαiαjK(xi, xj) subject to

∑`
i=1 αiyi = 0 and

0 ≤ αi ≤ C for i = 1, . . . , `. The optimal value for b can then be computed
based on the solution α∗. The vectors xi with αi > 0 are called support vectors.
The regularization parameter C controls the trade-off between maximizing the
target margin and minimizing the L1-norm of the margin slack vector of the
training data.

3 Evolution Strategies

Evolution strategies (ES, [2,20,23]) are one of the main branches of evolu-
tionary algorithms, i.e., a class of iterative, direct, randomized optimization
methods mimicking principles of neo-Darwinian evolution theory. Here, we
use the highly efficient CMA-ES [9,10]. A set of µ individuals that form the
parent population is maintained. Each individual has a genotype that encodes
a candidate solution for the optimization problem at hand, in this study an
m-dimensional real-valued object variable vector representing the SVM hy-
perparameters. The fitness of an individual is equal to the objective function
value at the point in the search space it represents. In each iteration of the
algorithm, λ > µ new individuals, the offspring, are generated by partially
stochastic variations of parent individuals. The fitness of the offspring is com-
puted and the µ best of the offspring form the next parent population. This
loop of variation and selection is repeated until a termination criterion is met.

In the following, we describe the covariance matrix adaptation ES (CMA-ES)
proposed in [9,10], which performs efficient real-valued optimization. Each in-
dividual represents an m-dimensional real-valued object variable vector. These
variables are altered by two variation operators, intermediate recombination
and additive Gaussian mutation. The former corresponds to computing the

3

center of mass of the µ individuals in the parent population. Mutation is real-
ized by adding a normally distributed random vector with zero mean. In the
CMA-ES, the complete covariance matrix of the Gaussian mutation distribu-
tion is adapted during evolution to improve the search strategy. More formally,
the object parameters g

(t)
k of offspring k = 1, . . . , λ created in generation t are

given by

g
(t)
k = 〈g̃〉(t) + σ(t)B(t)D(t)z

(t)
k ,

where 〈g̃〉(t) = 1
µ

∑µ
i=1 g̃i

(t) is the center of mass of the parent population

in generation t and the z
(t)
k ∼ N (0, I) are independent realizations of an

m-dimensional normally distributed random vector with zero mean and co-
variance matrix equal to the identity matrix I. The covariance matrix C (t) of
the random vectors

σ(t)B(t)D(t)z
(t)
k ∼ N (0, C(t))

is a symmetric positive m × m matrix with

C ′(t) = C(t)/σ(t)2 = B(t)D(t)
(

B(t)D(t)
)T

.

The columns of the orthogonal m × m matrix B(t) are the normalized eigen-
vectors of C ′(t) and D(t) is a m × m diagonal matrix with the square roots of
the corresponding eigenvalues.

The strategy parameters, both the matrix C ′(t) and the so called global step-
size σ(t), are updated online using the covariance matrix adaptation (CMA)
method. The key idea of the CMA is to alter the mutation distribution in a
deterministic way such that the probability to reproduce steps in the search
space that have led to the current population is increased. This enables the
algorithm to detect correlations between object variables and to become in-
variant under orthogonal transformations of the search space (apart from the
initialization). In order to use the information from previous generations effi-
ciently, the search path of the population over a number of past generations
is taken into account.

In the CMA-ES, rank-based (µ, λ)-selection is used for environmental selec-
tion. That is, the µ best of the λ offspring form the next parent population.
After selection, the strategy parameters are updated:

s(t+1) = (1 − c) · s(t) + cu · √
µB(t)D(t) 〈z〉(t)

µ

︸ ︷︷ ︸

√
µ

σ(t)

(

〈g̃〉(t+1) − 〈g̃〉(t)
)

C ′(t+1)
= (1 − ccov) · C ′(t) + ccov · s(t+1)

(

s(t+1)
)T

.

4

Herein, s(t+1) ∈ �
m is the evolution path—a weighted sum of the centers of

the population over the generations starting from s(1) = 0. The factor
√

µ
compensates for the loss of variance due to computing the center of mass. The
parameter c ∈]0, 1] controls the time horizon of the adaptation of s; we set

c = 1/
√

m. The constant cu =
√

c(2 − c) normalizes the variance of s (viewed

as a random variable) as 12 = (1−c)2 +c2
u. The expression 〈z〉(t)

µ = 1
µ

∑µ
i=1 z

(t)
i:λ

is the average of the realizations of the random vector that led to the new
parent population, where i:λ denotes the index of the offspring having the ith
best fitness value of all offspring in the current generation (g̃

(t+1)
i = g

(t)
i:λ, i =

1, . . . , µ). The parameter ccov ∈ [0, 1[controls the update of C ′(t) and we set
it to ccov = 2/(m2 + m). This update rule shifts C ′(t) towards the m × m

matrix s(t+1)
(

s(t+1)
)T

making mutation steps in the direction of s(t+1) more

likely. The evolution path does not only represent the last (adaptive) step of
the parent population, but a time average over all previous adaptive steps.
The influence of previous steps decays exponentially, where the decay rate is
controlled by c.

The adaptation of the global step-size parameter σ is done separately on a
shorter timescale (a single parameter can be estimated based on less samples
compared to the complete covariance matrix). We keep track of a second
evolution path sσ without the scaling by D:

s(t+1)
σ = (1 − cσ) · s(t)

σ + cuσ
· √

µB(t) 〈z〉(t+1)
µ

σ(t+1) = σ(t) · exp

(

‖s(t+1)
σ ‖ − χ̂n

d · χ̂n

)

,

where χ̂n is the expected length of a m-dimensional, normally distributed
random vector with covariance matrix I. The damping parameter d ≥ 1 de-
couples the adaptation rate from the strength of the variation. We set d =

√
m

and start from s(1)
σ = 0. The parameter cσ ∈]0, 1] controls the update of sσ.

Here, we use cσ = c. Setting cuσ
=
√

cσ(2 − cσ) normalizes the variance of sσ.
The evolution path sσ is the sum of normally distributed random variables.
Because of the normalization, its expected length would be χ̂n if there were
no selection. Hence, the update rule basically increases the global step-size if
the steps leading to selected individuals have been larger than expected and
decreases the step size in the opposite case.

The CMA-ES needs only small population sizes. In the following, they are
chosen according to the heuristics λ = max(5, min(m, 4 + b3 ln mc)) and µ =
max(1, bλ/4c) based on [10], where m is the number of object variables. The

initializations of C ′(1) and σ(1) allow for incorporation of prior knowledge about
the scaling of the search space (see section 5.1). Note that all other parameters
of the algorithm can be set to the carefully determined default values given

5

in [9,10]. Of course, tuning for example the cumulation by changing c and cσ

for a particular class of cost functions can increase the search performance,
but without additional knowledge about the objective function we stick to the
robust default values, see [10] for a detailed discussion.

4 Encoding General Gaussian Kernels

We consider SVMs with general Gaussian kernels

K � (x, z) = e−(� − �)T � (� − �) ,

where A is a symmetric positive definite matrix. We use three different param-
eterizations of these kernels yielding three nested spaces of kernel functions.
Firstly, there are the ordinary Gaussian kernels Kτ� , where I is the unit ma-
trix and τ > 0 the only adjustable parameter. Secondly, we allow independent
scalings of the components of the input vectors and consider the kernel family
K � , where D is a diagonal matrix with positive entries. Finally, we allow
arbitrary symmetric positive definite matrices A, i.e., the input space can be
scaled and rotated. This kernel family is denoted simply by K � .

The individuals in the ES encode the regularization parameter C and the ker-
nel parameters. The ES obeys restrictions of parameters to

� + when necessary
(see below). However, when encoding K � kernels, we have to ensure that after
variation the genotype still corresponds to a feasible (i.e., symmetric, positive
definite) matrix. We use the fact that for any symmetric and positive definite
n × n matrix A there exists an orthogonal n × n matrix T and a diagonal
n × n matrix D with positive entries such that A = T T DT and

T =
n−1∏

i=1

n∏

j=i+1

R(αi,j) ,

see [21]. The n × n matrices R(αi,j) are elementary rotation matrices which
are equal to the unit matrix except for [R(αi,j)]ii = [R(αi,j)]jj = cos αij and

[R(αi,j)]ji = − [R(αi,j)]ij = sin αij. Each genotype encodes the n + (n2 −
n)/2 + 1 parameters

(C ′, d1, . . . , dn, α1,2, α1,3, . . . , α1,n, α2,3, α2,4, . . . , α2,n, . . . , αn−1,n) ,

and we set D = diag(|d1|, . . . , |dn|) and C = |C ′|.

6

5 Experimental Evaluation

5.1 Experiments

For the evaluation of our hyperparameter optimization method we used the
common medical benchmark datasets Breast-Cancer, Diabetes, Heart, and
Thyroid with input dimension n equal to 9, 8, 13, and 5, and total number of
patterns 277, 768, 270, and 215, respectively. The data were preprocessed and
partitioned as in [19]. Each component of the input data is normalized to zero
mean and unit standard deviation. There are 100 partitions of each dataset
into disjoint training and test sets. In [16], appropriate SVM hyperparameters
for the Gaussian kernel Kτ� were determined using a two-stage grid-search and
the following score function: For each hyperparameter combination, five SVMs
are built using the training sets of the first five data partitions and the average
of the classification rates on the corresponding five test sets determines the
score value (Test-5) of this parameter vector. The hyperparameter vector with
the best score is selected and its performance is measured by calculating the
score function using all 100 partitions (Test-100). 2

We used this scenario as a basis for our evolutionary hyperparameter adapta-
tion approach: We took the results of the grid search performed in [16] as initial
values for the CMA-ES and used the score function described above to deter-
mine the fitness. The initializations of τ and C were approximately 0.00661
and 280, 0.00090 and 274, 0.00120 and 8.8, and 0.05863 and 401 for Breast-

Cancer, Diabetes, Heart, and Thyroid, respectively. Grid-search reveals that
the hyperparameter optimization problem is indeed multi-modal, see Fig. 1
for an example. It is not necessary to determine the starting points for the ES
by grid-search. Typically, we start the CMA-ES from a randomly chosen point
or in an area which was roughly determined by a very coarse grid-search.

For each benchmark data set and each of the three kernel families, 20 evo-
lutionary optimizations over 250 generations were performed. In each trial,
the hyperparameter vector with the best fitness value (Test-5) was regarded
as the solution. The performance of each solution was assessed by calculating
the score using all 100 data partitions (Test-100). The SVMs were trained
using SVMlight [13]. We set the parameters of the initial CMA mutation distri-

bution to σ(1) = 1 and C ′(1) = diag(0.001, 0.00001, . . . , , 0.00001), because the
regularization parameter C should be varied stronger compared to the kernel
parameters in the beginning.

2 We have chosen this evaluation procedure in order to compare our results one-to-
one with [16]. As in [16,19], the data for computing Test-5 and Test-100 overlap and
hence Test-100 is only a weak indicator for the generalization performance. However,
we tested other evaluation criteria which gave qualitatively the same results.

7

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

50

100

150

200

250

300

55

60

65

70

75

80

PSfrag replacements

τ

C

Test-5

Fig. 1. Score function (average classification rates on the five test sets, Test-5, in
percent) for the Heart dataset using Kτ� with different combinations of C and τ .

5.2 Results

We compared the start values of Test-5 and Test-100 with the results obtained
by the ES, see Table 1. Except for a few cases, we achieved significantly (t-
test, p < 0.05) better results by evolutionary optimization. The ES could
even improve the performance when adapting Kτ� in some cases, although the
initial values were already tuned for Kτ� by intensive grid search.

We also used a t-test to compare the performance of the resulting SVMs
when the evolutionary search was performed in the three spaces of kernel
functions. The scaled kernels K � as well as the scaled and rotated kernels
K � led to significantly (p < 0.05) better results compared to the ordinary
Gaussian kernel Kτ� (except for Diabetes: Test-100 with kernel K �). The major
improvement was already achieved by allowing scaling. However, in one case
(Breast-Cancer: Test-5) the kernel K � with the additional rotation parameters
gave significantly (p < 0.05) better results than just scaling.

There is another remarkable advantage of the scaled kernel K � and the scaled
and rotated kernel K � : The number of support vectors decreases. Evolutionary
adaptation of kernels K � and K � led to SVMs having significantly less support
vectors compared to the ordinary kernel Kτ� optimized by the ES or grid-
search, see Table 1. Again, in one case (Diabetes) the kernel K � with additional
rotation parameters yielded a significantly (p < 0.05) better result than just

8

Table 1
Results averaged over 20 trials ± standard deviations. The first column specifies
the benchmark: Breast-Cancer (C), Diabetes (D), Heart (H), and Thyroid (T). The
second column indicates whether the results refer to the initial grid search values
(init, [16]) or to the evolutionary optimized kernels Kτ� , K � , or K � . The t̂ values are
the generations needed to evolve the final solution on average and λ is the number
of offspring per generation (µ is chosen according to the heuristic given in section 3).
Thus, t̂ · λ indicates the average computational costs to find the final parameters,
of course, good values are already found earlier in the evolutionary process. The
percentages of correctly classified patterns on the 5 and 100 test sets are given by
Test-5 and Test-100. The average numbers of support vectors over the 100 training
sets is #SV-100. Results statistically significantly better compared to grid-search
(init) are marked with ? (two-sided t-test, p < 0.05).

Data Kernel t̂ λ Test-5 Test-100 #SV-100

init 73.77 74.51 113.52

Kτ� 10 ± 15 5 74.00 ± 0.08? 74.56 ± 0.04? 114.58 ± 1
C

K � 83 ± 42 10 76.91 ± 0.96? 75.17 ± 0.65? 113.10 ± 0.89?

K � 179 ± 59 15 77.47 ± 0.53? 75.38 ± 0.42? 112.70 ± 0.68?

init 76.34 76.67 247.83

Kτ� 102 ± 78 5 76.84 ± 0.11? 76.67 ± 0.04 251.63 ± 8.14
D

K � 149 ± 56 9 78.10 ± 0.22? 76.88 ± 0.25? 239.31 ± 2.84?

K � 181 ± 56 14 78.07 ± 0.19? 76.73 ± 0.32 235.73 ± 3.43?

init 83.80 84.79 106.33

Kτ� 10 ± 17 5 83.81 ± 0.04 84.74 ± 0.04 103.37 ± 0.97?

H
K � 97 ± 41 11 85.71 ± 0.43? 84.98 ± 0.36? 76.52 ± 2.10?

K � 153 ± 47 17 85.86 ± 0.17? 85.14 ± 0.33? 75.51 ± 1.5?

init 96.27 95.83 16.36

Kτ� 3 ± 5 5 96.56 ± 0.08? 95.74 ± 0.2 15.99 ± 1.01
T

K � 16 ± 35 6 97.29 ± 0.1? 96.01 ± 0.04? 15.46 ± 0.12?

K � 5 ± 3 12 97.33 ± 0? 96.01 ± 0.05? 15.42 ± 0.18?

scaling.

6 Conclusions

The CMA evolution strategy is a powerful, general method for SVM hyperpa-
rameter selection. It can handle a large number of kernel parameters and does

9

neither require differentiable kernels and model selection criteria nor separa-
bility of the data. As typical selection criteria exhibit multiple local optima
(e.g., see Fig. 1 and [8]), we claim that evolutionary optimization is generally
better suited for SVM model selection than gradient-based methods.

It is often argued that evolutionary optimization of kernels is too time consum-
ing for real-world applications. Given a certain amount of time for designing
the classifier, there is a maximum number of objective function evaluations—
and the question is how to spend these evaluations. Grid-search, for example,
scales exponentially in the number of objective parameters. In contrast, a
simple evolution strategy scales linearly on functions that are monotone with
respect to the distance to the optimium [1,12]. The objective functions in
case of SVM optimization seem to be well suited for evolution strategies (see
Fig. 1), which can follow a global trend that is superposed by local minima.
Thus, in problems which are currently addressed by grid-search the number
of objective parameters and the accuracy of the optimization can be increased
when using an evolutionary algorithm.

We demonstrated that extended Gaussian kernels with scaling (and rotat-
ing) parameters can lead to a significantly better performance than standard
Gaussian kernels. To our knowledge, for the first time a method that adapts
the orientation of Gaussian kernels—i.e., that can detect correlations in the
input data space relevant for the kernel machine—was presented. Our exper-
iments show that by increasing the flexibility of the kernels the number of
support vectors can be reduced. Future work will address other, especially
non-differentiable kernels and optimization criteria.

Acknowledgement

We thank the authors of [16] for providing their grid-search results and the
reviewers for their careful study of the manuscript.

References

[1] H.-G. Beyer. The Theory of Evolution Strategies. Springer-Verlag, 2001.

[2] H.-G. Beyer and H.-P. Schwefel. Evolution strategies: A comprehensive
introduction. Natural Computing, 1(1):3–52, 2002.

[3] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple
parameters for support vector machines. Machine Learning, 46(1):131–159,
2002.

10

[4] K.-M. Chung, W.-C. Kao, C.-L. Sun, and C.-J. Lin. Radius margin bounds for
support vector machines with RBF kernel. Neural Computation, 15(11):2643–
2681, 2003.

[5] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines
and other kernel-based learning methods. Cambridge University Press, 2000.

[6] D. R. Eads, D. Hill, S. Davis, S. J. Perkins, J. Ma, R. B. Porter, and J. P. Theiler.
Genetic algorithms and support vector machines for time series classification.
In B. Bosacchi, D. B. Fogel, and J. C. Bezdek, editors, Applications and Science
of Neural Networks, Fuzzy Systems, and Evolutionary Computation V., volume
4787 of Proceedings of the SPIE, pages 74–85, 2002.

[7] H. Fröhlich, O. Chapelle, and B. Schölkopf. Feature selection for support
vector machines by means of genetic algorithms. In 15th IEEE International
Conference on Tools with AI (ICTAI 2003), pages 142–148. IEEE Computer
Society, 2003.

[8] C. Gold and P. Sollich. Model selection for support vector machine classification.
Neurocomputing, 55(1-2):221–249, 2003.

[9] N. Hansen and A. Ostermeier. Convergence properties of evolution
strategies with the derandomized covariance matrix adaptation: The (µ/µ, λ)-
CMA-ES. In 5th European Congress on Intelligent Techniques and Soft
Computing (EUFIT’97), pages 650–654. Aachen, Germany: Verlag Mainz,
Wissenschaftsverlag, 1997.

[10] N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in
evolution strategies. Evolutionary Computation, 9(2):159–195, 2001.

[11] C. Igel, S. Wiegand, and F. Friedrichs. Evolutionary optimization of
neural systems: The use of self-adaptation. In 4th International Meeting on
Constructive Approximation (IDoMAT 2004). Birkhäuser Verlag. To appear.

[12] J. Jägersküpper. Analysis of a simple evolutionary algorithm for minimization
in euclidian spaces. In Proceedings of the 30th International Colloquium on
Automata, Languages, and Programming (ICALP 2003), volume 2719 of LNCS,
pages 1068–1079. Springer Verlag, 2003.

[13] T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf,
C. Burges, and A. Smola, editors, Advances in Kernel Methods – Support Vector
Learning, chapter 11, pages 169–184. MIT Press, 1999.

[14] K. Jong, E. Marchiori, and A. van der Vaart. Analysis of proteomic pattern
data for cancer detection. In G. R. Raidl, S. Cagnoni, J. Branke, D. W. Corne,
R. Drechsler, Y. Jin, C. G. Johnson, P. Machado, E. Marchiori, F. Rothlauf,
G. D. Smith, and G. Squillero, editors, Applications of Evolutionary Computing,
number 3005 in LNCS, pages 41–51. Springer-Verlag, 2004.

[15] S. S. Keerthi. Efficient tuning of SVM hyperparameters using radius/margin
bound and iterative algorithms. IEEE Transactions on Neural Networks,
13(5):1225–1229, 2002.

11

[16] P. Meinicke, T. Twellmann, and H. Ritter. Discriminative densities from
maximum contrast estimation. In S. Becker, S. Thrun, and K. Obermayer,
editors, Advances in Neural Information Processing Systems 15, pages 985–992,
Cambridge, MA, 2002. MIT Press.

[17] M. T. Miller, A. K. Jerebko, J. D. Malley, and R. M. Summers. Feature selection
for computer-aided polyp detection using genetic algorithms. In A. V. Clough
and A. A. Amini, editors, Medical Imaging 2003: Physiology and Function:
Methods, Systems, and Applications, volume 5031 of Proceedings of the SPIE,
pages 102–110, 2003.

[18] S. Nolfi. Evolution and learning in neural networks. In M. A. Arbib, editor, The
Handbook of Brain Theory and Neural Networks, pages 415–418. MIT Press, 2
edition, 2002.

[19] G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for adaboost. Machine
Learning, 42(3):287–32, 2001.

[20] I. Rechenberg. Evolutionsstrategie ’94. Werkstatt Bionik und
Evolutionstechnik. Frommann-Holzboog, Stuttgart, 1994.

[21] G. Rudolph. On correlated mutations in evolution strategies. In R. Männer
and B. Manderick, editors, Parallel Problem Solving from Nature 2 (PPSN II),
pages 105–114. Elsevier, 1992.

[22] B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, 2002.

[23] H.-P. Schwefel. Evolution and Optimum Seeking. Sixth-Generation Computer
Technology Series. John Wiley & Sons, 1995.

[24] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag,
1995.

[25] X. Yao. Evolving artificial neural networks. Proceedings of the IEEE,
87(9):1423–1447, 1999.

12

Frauke Friedrichs received her diploma in biology in 2001 and her diploma
in mathematics in 2003 from the University of Bochum, Germany. In 2003
she joined the Department of Theoretical Biology at the Institute for Neu-
roinformatics in Bochum. Since 2004 she is a PhD student at the Department
of Genetic Epidemiology which belongs to the Institute for Arteriosclerosis
Research in Münster, Germany.

Christian Igel received the diploma degree in computer science from the
University of Dortmund, Germany, in 1997. Since then he has been with the
Institut für Neuroinformatik (INI) at the Ruhr-Universität Bochum, Germany.
He received the doctoral degree from the Technical Faculty of the University
of Bielefeld, Germany, in 2002. In 2003, he was appointed Juniorprofessor
for the Optimization of Adaptive Systems at the INI. His research focuses
on biological and technical aspects of neural and evolutionary information
processing.

13

