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Gradient-based optimizing of Gaussian kernel functions is considered.

The gradient for the adaptation of scaling and rotation of the input

space is computed to achieve invariance against linear transformations.

This is done by using the exponential map as a parametrization of the

kernel parameter manifold. By restricting the optimization to a con-

stant trace subspace, the kernel size can be controlled. This is, for

example, useful to prevent overfitting when minimizing radius-margin

generalization performance measures. The concepts are demonstrated

by training hard margin support vector machines on toy data.

1 Introduction

We consider hyperparameter selection for kernel methods using general Gaussian
kernels1

KB(x, z) = e−
1

2
(Bx−Bz)T (Bx−Bz) , (1)

where x, z ∈ R
n and B is a positive definite symmetric n × n matrix. The

most elaborated methods for adjusting these kernels are gradient-based approaches
(Chapelle et al., 2002; Keerthi, 2002; Chung et al., 2003; Gold and Sollich, 2003)
that restrict B to diagonal matrices. However, only by dropping this restriction
one can achieve invariance against linear transformations of the input space. A re-
lated geometrically inspired idea is carried out by Galleske and Castellanos (2002)
for probabilistic neural networks. Indeed it has been shown empirically by direct
search that adapting the rotation of Gaussian kernels improves the performance
on benchmark problems (Friedrichs and Igel, 2005). Therefore, we compute the
gradient for optimizing B in the manifold of positive definite symmetric matrices.
It is shown how to decouple adaptation of shape and orientation from the size of
the kernel, which becomes necessary, for example, to overcome inherent problems

1The more common notation K(x, z) = e−
1

2
(x−z)T Q (x−z) is recovered by using

the map B 7→ BTB = Q which is a diffeomorphism on the manifold of symmetric
positive definite matrices. Many implementations of kernel-based methods only
support Gaussian kernel with BTB = γI, where I is the unit matrix. Transforming
the input space according to B and using the standard Gaussian kernel for training
is a simple way to overcome this restriction in practice.
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when minimizing radius-margin generalization performance measures for support
vector machines (SVMs).

2 Kernel Parameterization & Gradient

In order to ensure that gradient-based optimization does not lead to invalid ma-
trices, we use a parameterization that maps symmetric to symmetric and positive
definite matrices. Let m := {A ∈ R

n×n |A = AT } be the vector space of symmetric
n × n matrices. The manifold M := {B ∈ R

n×n | ∀x 6= 0 : xT Bx > 0 ∧ B = BT}
of positive definite symmetric n × n matrices can be parameterized using a single
map2, the natural choice is

exp : m → M A 7→

∞
∑

i=0

Ai

i!
. (1)

It holds exp(0) = I and ∂
∂aij

∣

∣

∣

A=0
exp(A) = ∂A

∂aij
for each of the n(n + 1)/2 hyper-

parameters aij = aji. The idea is to use at each point B a parametrization that
maps the origin 0 ∈ m to B. We define the map

M → M H 7→ HBH , (2)

which is a diffeomorphism3 mapping the unit matrix I to B. To compute the
gradient of (1.1), we express B by exp(A)B exp(A) with A = 0. The trick is that
in A = 0 the partial derivatives of exp(A) can be computed easily. We consider

∂
∂aij

∣

∣

∣

A=0
Kexp(A)B exp(A) for each hyperparameter aij = aji:

ξij :=
∂

∂aij

∣

∣

∣

∣

A=0

Kexp(A)B exp(A)(x, z)

=
∂

∂aij

∣

∣

∣

∣

A=0

e−
1

2
· (x−z)T exp(A)T BT exp(A)T exp(A)B exp(A)(x−z)

= −
1

2
KB(x, z) · (x − z)T ∂

∂aij

∣

∣

∣

∣

A=0

(

exp(A)B(exp(A))2B exp(A)
)

(x − z)

= −
1

2
KB(x, z) · (x − z)T

(

∂A

∂aij
B2 + 2B

∂A

∂aij
B + B2 ∂A

∂aij

)

(x − z)

setting S :=
∂A

∂aij
B + B

∂A

∂aij
and using S = ST it follows

= −
1

2
KB(x, z) · (x − z)T (SB + BS) (x − z)

= −
1

2
KB(x, z) ·

[

(x − z)T S(B(x − z)) + (B(x − z))T S(x − z)
]

= −
1

2
KB(x, z) · (x − z)T (S + ST )(B(x − z))

= − KB(x, z) · (x − z)T SB(x − z) . (3)

2The manifold M is a subset of the Lie group GLn(R) and the vector space m

a corresponding subspace of the Lie algebra gln(R), cf. Baker (2002).
3The map is invertible and the map as well as its inverse map are differentiable.
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For example, a simple steepest-descent step with learning rate η > 0 would
lead to the new matrix exp(−ηξ)B exp(−ηξ).

Adapting the parameters changes three properties of the kernel: the shape,
which is determined by the eigenvalues of B; the orientation, when non-diagonal
matrices B are allowed; and the size, which we define as the smallest volume where
a certain amount, say 95 %, of the kernel is concentrated. The size is controlled
by the determinant of B.

As we will see, it is sometimes reasonable to restrict the adaptation to kernels
with a fixed size. This is achieved by considering the one co-dimensional linear
subspace

n := {A ∈ m | tr(A) = 0} ⊂ m

of matrices A fulfilling det(exp(A)) = 1. The gradient descent can be restricted to
this subspace4 by orthogonally projecting the gradient matrices ξ to n subtracting
tr(ξ)/n from the diagonal entries of ξ.

3 Application to Radius-Margin Quotients of Hard Margin SVMs

As an example, we consider model selection for hard margin SVMs for binary clas-
sification (e.g., Vapnik, 1998). The most frequently used differentiable performance
measure, derived from a bound on the generalization error, is the radius-margin
quotient

(

R

γ

)2

, (1)

where R denotes the radius of the smallest ball in feature space containing all
training examples and γ the margin of the SVM classifier (Schölkopf et al., 1995;
Vapnik, 1998; Chapelle et al., 2002; Keerthi, 2002; Chung et al., 2003; Gold and
Sollich, 2003). Of course, our approach also works in combination with other per-
formance criteria, such as those discussed by Chapelle et al. (2002). The advantage
of (5) is that its gradient can be computed very efficiently (Chapelle et al., 2002;
Keerthi, 2002).

As a proof of concept, we consider an artificial chessboard test problem: Each
of the ` training patterns (x, y) is generated by drawing a vector x̃ = (x1, ..., xd)

T

from a uniform distribution on ] − 2, 2[d⊂ R
d labeled using the rule

y =

{

+1 if
∑d

j=1bxjc is even

−1 if
∑d

j=1bxjc is odd
.

Then x is determined from x̃ by multiplication with a fixed positive definite sym-
metric matrix x := B · x̃. In the experiments we set d = 2, ` = 500, and
B = DT · diag(3, 1

3) · D, where in each trial an orthogonal matrix D is drawn
randomly from the uniform distribution on the (compact Lie group On(R) of)
orthogonal n × n matrices.

Five different kernel parameterizations are optimized:

4n = m ∩ sln(R) is the subspace of the Lie-Algebra sln(R) corresponding to m.
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constraint #variables impact on kernel

(A) B = λI 1 size
(B) B diagonal, det(B) const. n − 1 shape
(C) B diagonal n size & shape
(D) det(B) const. n(n + 1)/2 − 1 shape & orientation
(E) none n(n + 1)/2 size, shape, & orientation

Gradient descent (using adaptive individual step-sizes) is performed using the
parameterization (2.1), (2.2) with derivative (2.3) combined with the results from
Chapelle et al. (2002). The optimization starts from an isotropic kernel whose
variance is initialized to the median of the distances from each positive training
point to the nearest negative training point, a heuristics suggested by Jaakkola
et al. (1999). In (B) and (D) the optimization is restricted to n.

In all five scenarios the radius-margin generalization performance measure de-
creases, see Fig. 1. However, in all cases where the size of the kernels is not kept
constant, (A), (C), and (E), the number of support vectors drastically increases due
to an inherent disadvantage of the optimization criterion: Having a training dataset
consisting of ` elements, the radius is bounded by R ≤

√

1 − 1/` ≈ 1 − 1/(2`).
In many applications this bound is almost reached, such that the derivative of
R is comparatively small and the gradient of (3.1) w.r.t. the kernel parameters
is governed by the gradient of γ−2. Then, the margin can easily be enlarged by
increasing det(exp(A)), that is, by concentrating the kernel mass to smaller areas
in input space. This leads to solutions with smaller (3.1) but increasing number
of support vectors. These complex solutions using nearly all points as support
vectors are highly adapted to the training dataset and are not desirable, because
they tend to overfit (leading to worse test error in (A) and (C), see Fig. 1). This
effect can be avoided by early stopping, by changing the optimization criterion
(e.g., to the smoothed error of an external validation data set, e.g., see Chapelle
et al., 2002), or by controlling the kernel size (e.g., by fixing the trace).

Comparing (C) with (E) and in particular (B) with (D) demonstrates in accor-
dance to Friedrichs and Igel (2005) that better results can be achieved when the
kernel adaptation is not restricted to diagonal matrices. The final test error in
case (D) is significantly (20 trials, Wilcoxon rank-sum test, p < 0.01) lower than
in all other cases.
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Figure 1: The diagrams show the radius-margin generalization performance mea-
sure (R/γ)2/(` · 20), the fraction of support vectors, and the test error on a large
separate dataset over the number of gradient descent steps. All Quantities are
averaged over 20 trials. From left to right: (A) multiples of the unit matrix, (B)
diagonal with fixed trace, (C) diagonal, (D) fixed trace, (E) no constraints.
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