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Matthias Tuma, Valdemar Rørbech, Mark Prior, and Christian Igel, Senior Member, IEEE

Abstract—We designed and jointly optimized an integrated
signal processing chain for detection and classification of long-
range, passive-acoustic underwater signals recorded by the global
geophysical monitoring network of the Comprehensive Nuclear-
Test-Ban Treaty Organization (CTBTO). Starting at the level of
raw waveform data, a processing chain of signal detection, feature
extraction, and signal classification was designed and jointly
optimized to the task. Relevant waveform segments were in a
first step identified by a generic, flexibly parameterized detection
algorithm on a long- to short-term averages’ ratio of the spectral
energy. For representation, general-purpose sound processing
features, with an added focus on spectral and cepstral features,
were extracted from the detected segments. As classifiers, support
vector machines (SVMs) with different kernel functions were
employed alongside other baseline learning algorithms. The free
parameters of the overall toolchain (i.e., trigger algorithm param-
eters and classifier hyperparameters) were jointly optimized in a
cross-validation setting, either according to the cross-validation
classification error or the cross-validation area under the ROC
curve. Experiments demonstrate that our method outperforms
machine learning algorithms task-tailored to a previous, human
expert-designed preprocessing chain. The presented approach
can be adapted to a wide range of problems that can benefit from
jointly optimizing parameters of preprocessing and classification
algorithm.

I. INTRODUCTION

WE DEVISED and jointly optimized a combined pro-
cessing chain for detection, feature extraction, and

classification of hydroacoustic signals recorded by the global
geophysical monitoring network of the Preparatory Commis-
sion for the Comprehensive Nuclear-Test-Ban Treaty Orga-
nization (CTBTO). The CTBTO’s hydroacoustic sub-network
uses in-ocean acoustic sensors, placed at depths of the lo-
cal SOFAR channel axis [1], to monitor Earth’s oceans for
evidence of underwater nuclear explosions. Two previous
studies on machine learning approaches for classification of
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CTBTO hydroacoustic signals operate on features devised
and extracted by the CTBTO [2], [3]. Both studies task-
tailor machine learning methods to accommodate for missing
features in the predefined dataset (in which less than 5%
of samples have a complete feature vector). In contrast, the
present study starts at the level of the raw waveform data
from which the previous dataset originated. We construct a
generic architecture for signal detection, feature extraction, and
signal classification; and adapt the entire processing chain’s
free parameters in a joint cross-validation setting. In this
sense, the present study aims to explore the potential of an
alternatively structured and optimized processing chain for
CTBT hydroacoustic signal classification. At the same time,
it also represents a generic setup for (geophysical) waveform
processing and classification in that it optimizes the detection
algorithm parameters jointly with the classifier hyperparam-
eters. Despite its structural clarity, such an approach has
to our best knowledge not been used in trigger algorithm
optimization for related geophysical applications, which often
utilize well-established parameter values, heuristics, or expert
manual tuning [4], [5]. In an organizationally similar setting,
a joint optimization of representation and SVM classifier is
presented in [6].

In the following Section II, we give an overview of the
CTBTO’s geophysical verification system, its data processing
aspects, and implications for later design decisions. Section III
describes our integrated and jointly optimized processing
scheme for CTBTO hydroacoustic data. It discusses the indi-
vidual processing chain components, experimental setup, and
data attributes used for experiments. Experimental results are
presented and discussed in Section IV. An overall discussion
and directions for future work conclude the paper.

II. THE INTERNATIONAL MONITORING SYSTEM

The Comprehensive Nuclear-Test-Ban Treaty (CTBT) for
the first time in history foresees a universal legal ban on all
nuclear explosions in any setting for any purpose. The key
technical instrument for CTBT verification is the CTBTO’s
globe-spanning International Monitoring System (IMS) [7],
which collects geophysical data in order to monitor Earth for
nuclear explosions (atmospheric, underground, and underwa-
ter).

The official treaty text for the CTBT [8] specifies the
types, number, and location of IMS sensor stations, while
additionally imposing some constraints on data recording
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Fig. 1. Locations of hydroacoustic stations defined by the treaty. Sensor
stations are either installed on steep-sloped shores of mid-ocean islands, or
submerged off-shore of mid-ocean islands at depths of around 1 km.

and/or processing. For example, different high-level feature
groups permissible in data processing are given in the treaty.
Less formally established, but of equal relevance, are stand-
ing operating requirements, for example on algorithm clarity
and precise reproducibility of algorithmic outcomes – which
can thus concern models constructed by machine learning
algorithms. Within such technical and formal constraints, the
verification system is to provide maximum coverage of the
Earth, and capability for detecting evidence of any nuclear
explosion having occurred.

A. Sensor technology

The IMS foresees a network of 321 geophysical monitoring
stations, with the majority of these being seismic stations
(170); followed by radionuclide detectors for particulates and
noble gases (80); infrasound arrays (60); and hydroacoustic
sensors (11). The three regimes of seismic, hydroacoustic,
and infrasound monitoring constitute the so-called “waveform”
technologies, measuring energy propagated through the solid
earth, oceans, and atmosphere, respectively. As of January
2016, the IMS consists of 270 certified sensors (out of the
321 planned), and 10 (out of the 11 planned) hydroacoustic
sensors are in certified operations. In full operation, around
15 gigabytes of incoming data are expected daily, mostly
transmitted in real time through a global VSAT satellite net-
work. This amount of incoming data makes reliable automatic
processing mandatory; and is one of many factors fostering the
exploration of adaptive signal processing and machine learning
solutions for IMS data processing.

Figure 1 shows the locations of the 11 hydroacoustic
stations as defined by the treaty. Every (either on- or offshore)
station consists of several individual sensors, facing different
sides of the island that hosts its communication infrastruc-
ture. Raw sensor data are then transmitted to the CTBTO’s
International Data Centre (IDC) in Vienna for processing
and analysis. The relevant frequency range for passive long-
range hydroacoustics is between 1 and 100 Hz, with IMS
hydrophones sampling at 250 Hz.

B. Processing of IMS data

In preparation for entry into force of the treaty, and during
build-up of the IMS, the CTBTO is tasked with continuing
analysis of incoming data already today. The automated IDC

algorithms for the three waveform technologies use similar
processing flows: in a first phase, data is processed at the level
of individual IMS stations (each of which may or may not be
an array of individual sensors). This begins with continuous
monitoring of the ambient noise stream for signals. When a
signal is detected (i.e., when the detection algorithm “trig-
gered”), representative features are extracted from it. These are
next used to categorize the signal, where the list of possible
classes depends on the sensing technology.

In a second phase called global association, detected and
categorized signals are cross-processed between sensor sta-
tions (and also, sensor technologies). All individual detections
within certain time windows become associated with postu-
lated hypothesis source events physically able, and most likely,
to have caused them. The current global association system
in an intricate way combines expert experience, beam form-
ing, physics of wave propagation, and iterative least-squares
inversion [9]. The IDC processing routines autonomously
reach a first set of hypotheses of what events caused which
observations at what station. All claimed events (ca. 100-200
per day) and associated detections are then reviewed by human
analysts, who refine or correct about half of them, as well as
create new ones (also see [10]).

Within that overall processing scheme, this paper is ded-
icated to one sub-task of automatic hydroacoustic station-
level processing, namely the classification of hydroacoustic
signals from single-sensor stations into two categories (non-
explosive or explosive-like). The IDC’s current categorization
module for hydroacoustic signals is a rule-based expert system.
Two previous, related studies explore machine-learning-based
classifiers for CTBTO hydroacoustic signal classification [2],
[3]. Both operate on feature sets computed by the IDC,
and deploy highly task-specific variants of machine learning
algorithms in order to account for missing feature information
in the dataset. In contrast, the current study designed and
jointly optimized a processing chain starting from the level of
raw waveform data in a more generic and transferable setting.
It thus aims to explore the potential of optimizing to the task
at hand a generic abstraction of the IDC’s current processing
chain which does not rely on machine learning approaches for
missing data-problems. It seeks to stay as structurally close as
possible to current IDC processing, in order to facilitate both
comparability and further side-by-side evaluation.

The current work presented here has a number of sibling
projects, likewise established over the last five years (see
[11], [12] for a broad overview), and which also apply
classification and other machine learning algorithms for a
broad range of well-defined tasks in IMS data processing.
A non-exhaustive list of recent studies includes the training
of dynamic Bayesian networks on wavelet representations of
IMS seismic waveforms [13]; the identification of seismic
aftershock sequences by using a template-based correlation
detector in the time domain [14]; or Bayesian inference for
detection and localization of seismic events framed as an open
universe probability model [10]. Another emerging field of
research concerns CTBT on-site inspections, which are the
final verification measure taking place at the coordinates of a
suspected nuclear test site. Here, Sick et al. use a clustering
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approach for processing extremely low-magnitude seismic data
obtained during on-site inspections [15]. As such, the present
contribution is one among a progressing series of research on
adaptive signal processing for sensor data from the CTBTO’s
verification network.

III. AN OPTIMIZED PROCESSING CHAIN FOR
HYDROACOUSTIC SIGNAL CLASSIFICATION

Hydroacoustic processing of IMS data at single-sensor level
includes a signal classification step which serves to flag signals
with explosive-like signature. Explosive-like events in this
sense are not limited to large, uninhibited underwater nuclear
explosions, but include eruptions of underwater volcanoes, dy-
namite fishing, seismic airgun surveys, military exercises, and
accidental explosions, among others. IDC hydroacoustic pro-
cessing further identifies three non-explosive categories: earth-
quakes (waterborne propagation path), earthquakes (crustal
path), and noise (all other sources). For the purpose of this
study, the latter three categories are regarded as one joint non-
explosive, or noise, class. Examples of such non-explosive
detections are thus those generated by earth- or seaquakes,
iceberg calving, shipping activity, or marine mammals. Noise
in this sense hence refers to the broader class of non-explosives
signals, even when not noise in the stricter sense of signal
processing terminology.

A. Processing chain layout
Three components can be identified as structurally relevant

to the task of classifying IMS hydroacoustic signals. First, a
detection or trigger algorithm, which identifies all incoming
signals (explosive-like and noise-type) among the backdrop
of ambient noise. Second, a feature extraction routine, which
transforms the detected signal into a condensed representation
better suited for classification. Third, the discriminative stage,
in which a classifier, operating on the extracted features, casts
vote on the source type of origin (explosive or non-explosive).
Note that the boundary between trigger and classifier cannot
always be well defined. To provide for a processing flow
as compatible with current IDC processing as possible, the
present study structurally follows the IDC’s setup, which im-
plements the three-stage framework outlined above. The IDC’s
discrimination algorithms for hydroacoustic signals are mildly
parameterized rule-based expert systems, with its parameters
partially inferred from existing data.

In this paper, the parameters of our main processing stages
were jointly optimized according to one mutual objective
commonly used for hyperparameter optimization in machine
learning. Cross-validation was used [16], and, depending on
the experiment, either the classification error or the area under
the ROC curve [17] on hold-out data were considered as opti-
mization criteria. While cross-validation is standard procedure
for SVM model selection, it is, to our best knowledge, not
common to jointly optimize trigger algorithm (or comparable
preprocessing) parameters according to the same objective.
Yet, our very general layout imposes few structural limitations
on the processing chain, and may serve as blueprint for
other applications requiring optimized signal detection and
classification.

B. Main components – overview

For detection, we adhere to a well-established and often-
used class of triggers based on a threshold on the ratio of
short- to long-term energy averages (STA/LTA triggers, [4],
[5], [18] – where STA and LTA refer to short- and long-
term average, respectively, and the term STA/LTA to the ratio
of a short- to long-term average). These are implemented in
the current IDC system, motivating us to use a generalized
variant thereof. Alternatives would have been, for example, the
optimization of general time-frequency representations jointly
with the trigger and classifier operating on them (see, e.g., [6],
[19], [20]). For representation, we use general-purpose sound
processing features with an added emphasis on spectral and
cepstral features, while still reasonably overlapping with the
IDC’s current feature set [21].

For signal discrimination, we employ support vector ma-
chines [22], [23] with linear, radial basis function (RBF), and
automatic relevance detection (ARD) kernels (see below). We
also evaluate nearest-neighbor and linear discriminant analysis
classification as baseline comparison approaches. The search
for trigger parameters and classifier hyperparameters is carried
out jointly according to a low cross-validation classification
error. Alternatively, we also explore the area under the ROC
curve as optimization criterion in the joint search for trigger
and classifier parameters.

C. Data basis and preparation

A small and well-reviewed reference dataset was specifi-
cally assembled by the IDC to support research on machine
learning for CTBTO hydroacoustic signal classification (also
see [18], [24], [25]). That reference dataset consists of 778
data samples, all of which triggered a detection in the original
IMS processing system. All detections were again screened
for the reference dataset’s construction by a human expert,
even though they had previously been routine-processed by
the IDC’s system (which already ensures correct labeling
in its final human-analyst stage). This additional step of
quality control reflects the relevance of having a reliably and
consistently labeled dataset as basis for studies which might
inform decisions on future developments of the automatic
processing system. For example, re-screening ensures that
borderline cases between classes are decided on in a consistent
manner. Human labeling of detections (both as part of IDC
routine processing and the present additional screening) is
predominantly informed by the analyst’s visual inspection of a
spectral representation of the waveform segment in question.
For example, harmonics from gas bubble oscillations following
underwater explosions can have a clear visual correspondence
as scalloping effects in a signal’s spectrum [18]. The analyst
may in addition consult network information on other stations’
arrivals across the network, as well as on system-postulated
source events. In the case of explosive events, analysts may
also make use of or investigate independent supporting ev-
idence. For example, industrial or other accidents may be
well documented externally, both spatially and temporally.
Likewise, external information on airgun surveys or similar
activities may be available.
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TABLE I
PARAMETERS OF THE TRIGGER ALGORITHM USED, AND VALUES CONSIDERED.

Parameter Symbol Grid values

STA window length Ns 5, 10, 15, 20, 25 s
LTA window length N` 40, 50, 60, 70, 80 s
LTA delay Nd 0, 20, 35, 50 s
Trigger threshold rS 1.1, 1.2, 1.3, 1.4, 1.5
Release threshold (relative to rS) rR 0.0, -0.1, -0.2, -0.3, -0.4
Pre- and post-event time Na, Nz 0, 5, 10 s

In the compiled reference dataset, 307 examples (or 40 %)
come from explosion-like sources, and 471 examples (or 60 %)
are of non-explosive origins (and, as stated above, all of
these triggered a detection in the IDC’s original processing
system). This close-to-even ratio between the two classes
does not reflect the true proportion at which both classes
are encountered in routine IDC processing operations, but
is the result of undersampling the majority (non-explosive)
class during IDC dataset construction (see Section III-F for
a discussion). Those samples labeled non-explosive may not
contain any signal at all (i.e., false positives by the original
detection algorithm), or represent signals from non-explosive
origins. Each hydroacoustic sensor recording in this reference
dataset was extracted from the continuous data stream in such
a way that a constant 100 s of original ambient noise were
preserved before the detection, and varying lengths after it.

D. Trigger algorithm

Triggers in the STA/LTA class are, despite their structural
simplicity, both a de-facto standard in geophysical signal
processing [4] and currently used in several IDC processing
components. In consequence, we define a generic, or canoni-
cally parameterized variant of STA/LTA trigger; and then ask
the question under which parameter values it best lends itself
to an ensuing classification of the signal snippets extracted by
it. Instead of postulating a surrogate or intermediate objective,
we approach the question directly by including the trigger
parameter optimization in the optimization of the classifier
hyperparameter values, namely according to a low cross-
validation classification error on the training set.

In its most basic form, an STA/LTA detector at each time
step t computes the normalized energy STA/LTA ratio rx of
a discrete-time signal x(t) as

rx(t) =
N`
Ns

∑t
τ=t−Ns+1 x(τ)

2∑t
τ=t−N`+1 x(τ)

2
, (1)

where Ns and N` are the short- and long-term window lengths,
respectively. Given a pre-defined detection threshold rS , a
detection is declared whenever and as long as rx > rS . This
basic trigger has the three parameters Ns, N`, and rS . A range
of specializations exist [4]: for example, x may be mapped to
x̂ via some preprocessing filter before calculating rx̂(t) [26].
Other enhancements mitigate the effect of “shadow zones”,
which cause detections to terminate too early if signals last
longer than N` [4]. One such strategy uses a second threshold
rR < rS , below which rx̂ must fall before a detection is

terminated. The LTA window can also be delayed with respect
to the STA window by an offset, or delay, Nd [5]. Furthermore,
detections may always be prolonged by a fixed amount Nz ,
the post-event time. Likewise, a pre-event time of length Na
can be used to extract representative noise before the arrival.
Incorporating these additions yields:

rx̂(t) =
N`
Ns

∑t
τ=t−Ns+1 x̂(τ)

2∑t−Nd

i=t−Nd−N`+1 x̂(τ)
2

(2)

In our setup, we let Na and Nz share the same value. This
generalized STA/LTA trigger thus has six real values and one
mapping function x 7→ x̂ as degrees of parameterization.
Table I lists each parameter with the values considered in this
study (see below).

In practice, STA/LTA parameters are often set by hand. For
example, fixed values have been passed down in the literature,
with additional heuristics like allowing the window lengths to
adapt to the zero-crossing rate [5]. Also, manual tuning can
be conducted on example signals until the detections approach
those of a human analyst [4] (one might imagine automat-
ing the latter in a least-squares setting). We here combine
trigger parameter optimization with the joint final objective
of minimizing the expected generalization error for signal
classification. The coarse parameter ranges of Table I were first
determined by structural and computational considerations,
by variations on common values, and by visual inspection.
We likewise conducted preliminary experiments with different
preprocessing filters x 7→ x̂ [21]. There, computing the
STA/LTA on the spectral energy, calculated within sliding
windows of 4.1 s length, gave more robust results than in the
time-domain. We hence apply the generalized trigger described
above to a sliding-window spectral representation of the signal
(also see next Section).

E. Feature extraction

Features were selected on the basis of a precursor
study [21], according to existing knowledge, general-purpose
sound processing, computational considerations, and, again,
similarity to the current system. In contrast to the detection
and classification stages, no parameters or other specifics of
the feature extraction procedure were tuned within the overall,
joint optimization procedure.

In comparison to the IDC system, our representation puts
somewhat stronger emphasis on spectral and cepstral features.
The latter are known to be well-suited for spotting harmonics
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TABLE II
FEATURES EXTRACTED FROM DETECTED SIGNALS. NUMBERS IN PARENTHESES GIVE THE TOTAL NUMBER OF FEATURES IN THAT FEATURE GROUP (FOR

EXAMPLE AS A RESULT OF BAND-WISE SPECTRAL OR CEPSTRAL CALCULATIONS).

Domain Features # of features

Temporal Duration, zero-crossing rate, total and maximum energy, temporal 37
centroid, energy envelope (4), energy statistical moments (28)

Spectral Spectral flatness, flux, roll-off (21), average statistical moments (28) 49

Cepstral MFCC means and variances (16), average cepstrum statistical moments (4) 20

Total: 106

from gas bubble oscillations following underwater explo-
sions [18]. Table II lists the features used, grouped into time,
frequency, and cepstral domain. For the frequency domain,
overlapping segments of 4.1 s are Fourier transformed every
second. The spectral features are then obtained as averages
over those extracted from each of the Fourier transformed
segments. Some features were extracted after filtering the
entire signal through a filter bank (with frequency ranges 1–
3, 3–7, 7–15, 15–31, 31–63, and 63–127 Hz). The features
extracted once from every frequency band as well as the
unfiltered signal are: the first four energy statistical moments,
the first four spectrum statistical moments, the spectral flux,
roll-off, and flatness. The extraction of the mel-frequency
cepstral coefficients (MFCCs) and average cepstrum statis-
tical moments followed equivalent procedure in the cepstral
domain.

F. Classifiers

In total, we evaluated six different learning machines, four
of them support vector machine (SVM) classifiers with dif-
ferent kernel functions (see below) and/or optimization objec-
tives. The other two, linear discriminant analysis and nearest-
neighbor classification, can be seen as baseline comparison
methods, complementing results from previous studies. Of the
SVM classifiers, one used a radial basis function (RBF) kernel,
one a linear kernel, one an automatic relevance detection
(ARD) kernel, and the last one again an RBF kernel, but with
the cross-validation area under the ROC curve (see below) as
optimization criterion for the overall optimization run instead
of the cross-validation classification error. In the following, we
briefly reiterate the general problem of supervised learning and
classification, as well as each classifier used.

a) Supervised learning and regularized risk minimiza-
tion: In the supervised learning scenario, adaptation (or
training) of a classifier is driven by sample data S (see
Section III-C). Let S = {(xi, yi) | 1 ≤ i ≤ `} be drawn
from an unknown distribution p over X × Y , with X the
input set (corresponding to the feature space RN in common
classification problems like the present one) and Y the output
set (here, the binary label set {−1,+1}). Formally, the goal
of binary classification is to infer a hypothesis h : X → Y
that minimizes the expected risk Rp(h):

Rp(h) =

∫
X×Y

L0−1(y, h(x)) dp(x, y) , (3)

where L0−1(y, z) is 0 if y = z and 1 otherwise (i.e., the zero-
one loss). Simply put, the classifier should make as few mis-
takes as possible in guessing an input’s label when considering
the problem’s overall distribution. The loss function need not
be symmetric. It can be reasonable to choose a different loss
function with L(0, 1) 6= L(1, 0) to emphasize, for instance,
that overlooking an explosive-like event is worse than a false
alarm.

As p is unknown, the expected risk in practice has to be
estimated using the only known manifestation of p – namely,
the sample data S. Different paradigms exist in the literature
on how to abstract from a performance measure on S to a
valuation of the performance of h on the entire distribution p.
One common and successful paradigm is that of regularized
risk minimization [27]. Regularized risk minimization (RRM)
formalizes the intuitive strategy of looking for a hypothesis
that is both “simple” and performing well on the training
data. Congruence with the training set alone is not a good
indicator of a hypothesis’ generalization capability to all of
p, as, for example, the input-label distribution of S is exactly
reproducible if the hypothesis function is only complex enough
(i.e., in any sufficiently powerful hypothesis space). Phenom-
ena of a hypothesis representing idiosyncrasies of S instead
of properties of p is commonly referred to as overfitting. To
avoid overfitting on S, RRM adds a regularization term to
the learning objective that penalizes complicated solutions.
Therefore, the hypothesis spaces considered are understood to
be endowed with a (semi-)norm ‖.‖H, serving as a measure of
complexity of a hypothesis. The preference for a simple, but
well-performing hypothesis h is then expressed by minimizing
the regularized risk PS ,

PS(ĥ) = ‖ĥ‖H + C
∑̀
i=1

L(yi, ĥ(xi)) . (4)

Here, C > 0 is the so-called regularization parameter, balanc-
ing preference for low training error (right summand) against
keeping the hypothesis simple (left summand), where, and
because, complexity is assumed to correlate to the norm in H.
Within the above framework of regularized risk minimization,
different learning methods can be realized by different choices
for the loss L and the admissible hypothesis class H.

b) Support vector machine classification: In their canon-
ical form, support vector machines (SVMs) are learning ma-
chines for two-class classification tasks on arbitrary input sets,
that is, Y = {−1,+1} and X can be any set on which a
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suitable kernel function can be defined (see below). SVMs
utilize as loss function L in eq. (4) a convex relaxation
of the zero-one loss to facilitate optimization, namely the
hinge loss Lhinge(y, f(x)) = max{0, 1 − yf(x)}. Second,
SVMs obtain their hypothesis space by applying the so-called
kernel trick [23] to all linear expansions of the input data
points. In detail, consider a positive semi-definite (Mercer)
kernel function K : X × X → R [28]. Then, SVMs build
on the feature space HK = span{K(x, ·) |x ∈ S} and the
function class HbK = {f = g + b | g ∈ HK , b ∈ R}. The
decision boundary between the two classes is induced by the
sign of a function f ∈ HbK , and is a hyperplane in HK .
Applying the hinge loss and kernelized hypothesis space to
the optimization problem of regularized risk minimization (4)
gives the quadratic optimization problem of 1-norm binary soft
margin SVMs:

minimize
f∈Hb

K

‖f‖2K + C
∑̀
i=1

Lhinge(yi, f(xi)) . (5)

In summary, the parameter C > 0 controls the trade-off
between reducing the empirical loss Lhinge and the complexity
of the hypothesis, as measured by its (semi-)norm ‖.‖K in
the kernel-induced feature space HbK (where the norm is
transferred from HK to HbK as a semi-norm).

In general, the kernel function K is a crucial element in
SVM classification. Its choice, as well as that of C, needs to
be made prior, and in addition to solving the subsequent opti-
mization problem (5). Examples of common kernel functions,
all of which were also used in this study, are the simple linear
kernel, K(x, z) = 〈x, z〉, which yields decision boundaries
linear in the input space; the arguably most often used radial
basis function (RBF) kernel, K(x, z) = e−γ‖x−z‖

2

, which
introduces the bandwidth parameter γ > 0 as single free pa-
rameter; and the automatic relevance detection (ARD) kernel,
K(x, z) = e−

∑
i γi(xi−zi)2 , where i, 0 < i < m, indexes the

m feature dimensions of the input data. The ARD kernel owes
its name to the fact that the learned values for its m parameters
γi > 0 can provide insight into the relevance of individual
features for classification. The regularization parameter C plus
any additional kernel parameters are so-called hyperparame-
ters, which need external tuning or optimization in addition
to the training phase itself. This process is referred to as
model selection. While the ARD kernel introduces as many
free parameters as there are input space dimensions, efficient
parameter optimization for the ARD kernel and generalizations
thereof exist [29], [30].

c) Baseline algorithms: As baseline methods, we consid-
ered linear discriminant analysis (LDA) and nearest-neighbor
(NN) classification [31], [16]. We optimized the number k
of nearest neighbors through cross-validation jointly with the
trigger parameters in the same way as for the SVM hyperpa-
rameters (see below). Linear discriminant analysis in its basic
form has no hyperparameters, and optimization applies here
to the trigger parameters only.

d) Data imbalance: In IDC routine operations, there is a
clear imbalance between the frequencies of explosive-like and
nonexplosive-like hydroacoustic events and detections, with

the former occurring at a much scarcer rate. This would give
rise to a highly imbalanced classification problem, for which
application of the class-insensitive loss of objective (5) may
lead to reduced relative accuracy for samples of the under-
represented class. Imbalanced data problems occur widely
across application domains, and an extensive array of mitiga-
tion strategies exist (see [32] for a comprehensive review, and
also [33], [34]). The two canonical types of mitigation strategy
intervene either on the data side (e.g., by resampling of the
dataset) or algorithm side (e.g., by modifying the learner’s loss
or cost function). For the present hydroacoustic application
task, a decision for undersampling of the non-explosive class
to create a close-to-balanced dataset was made by IDC early
during dataset compilation, before any application studies
commenced. This resulting, almost-balanced IDC dataset was
described in Section III-C. As also stated there, all events
included in the dataset had triggered a detection in the IDC’s
original processing system.

Our strategy here is to apply standard classifiers to the
given dataset, which is not sampled i.i.d. from the underlying
distribution. The oversampling of the explosive-like class
reflects the importance of a high true positive rate (TPR) (i.e.,
a high detection rate of explosive-like events). The degree of
oversampling is to a certain extent arbitrary. Therefore, we
focus on the area under the ROC (receiver operating character-
istic) curve ([17], AUC) as important evaluation criterion (both
in the sense of final performance measure as well as, in one
optimization run, as objective function for model selection).
To this end, we consider a graded output of each classifier (in
contrast to just binary decisions). For SVMs, we take the real-
valued output of the decision function f ; for LDA we consider
the predicted probability to belong to the positive class; and for
k-NN we use the most basic approach and consider the fraction
of the k nearest neighbors voting for the positive class. This
continuous output is mapped to a {0, 1}-classification decision
by comparing it to a decision threshold t. A ROC graph plots
the TPR against the false alarm rate (i.e., the fraction of non-
explosive events classified as explosive-like) of the classifier
when varying t. This curve reflects what kind of trade-offs
between TPR and false alarm rate the classifier can realize
by adjusting t. This enables the trade-off to be adjusted after
the classifier has been constructed, which is highly desirable
for the present application case. The AUC is the area under
the ROC graph, and the AUC value is independent of the
proportion of positive to negative instances in the test set [17],
which makes it ideal for evaluating the classifiers in this study.

G. Processing chain optimization

As outlined above, we view the entire processing chain from
detection to classification as one algorithm the parameters of
which are to be optimized. We advocate the use of one single
objective function for the entire optimization process, here
the cross-validation classification error. We also explore the
cross-validation area under the ROC curve, and examine if
this translates to improved ROC curves in the final classifier.

a) Data partitioning and repeated cross-validation:
For the cross-validation procedures, we randomly split the
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available data into five class-stratified outer folds (see, e.g.,
[16, Sec. 7.10.1] for a discussion of the choice of the number
of folds). Four of these five folds were used for model selection
and training, and the fifth, otherwise unused, test fold for the
final evaluation of the respective classifier. This was repeated
for five times with each outer fold serving once as otherwise
unused test partition. This five-fold outer cross-validation error
calculation was then repeated for a total of 10 times on
10 different, random realizations of outer partitionings. This
procedure is known as repeated cross-validation (see, e.g.,
[35]). Note that the 50 resulting performance scores obtained
through this repeated cross-validation are not fully statistically
independent. Still, they were viewed and evaluated as if they
had been 50 independent trials (see Section IV), slightly
violating the assumptions underlying the follow-up statistical
significance testing.

For those classification algorithms requiring model selec-
tion, additional inner five-fold cross-validation partitions were
defined splitting each training set. Only the outer procedure
used repeated cross-validation.

b) Trigger parameters: As detailed in Section III-D, we
used a grid of 7500 trigger parameter combinations as resulting
from Table I. For each combination, its corresponding trigger
was applied to all raw waveform snippets (which, as described
above, each contain a segment of data having triggered a detec-
tion in the current processing system, embedded in ambient
noise). Each different trigger parameter combination selects
different waveform segments from the raw waveform data,
and will thus lead to different values being extracted for each
of the features listed in Table II.

c) Treatment of false negatives: Some trigger parameter
combinations may not yield a detection on some of the wave-
form snippets that constitute the dataset. Our treatment of these
non-detections depends on whether the example lies in the
training or test partition for the current evaluation run. If one
or more false negatives by the trigger were observed within the
training set (that is, the trigger failed to detect an explosive-like
signal), that trigger parameter combination was not admitted
to competing for the best overall trigger and hyperparameter
parameters; in fact, cross-validation performance scores were
not even determined. This rationale is driven by the fact that
the CTBTO’s mission requires special care that no explosive-
like signals are missed by the classification algorithm. An
additional view is analogue to typical requirements in cascaded
classifier design [36], with the trigger algorithm functioning as
primary classification stage. If a trigger did not detect a non-
explosive signal in a training set, the only consequence was
that the training data for the subsequent classifier comprised
one less training example for this trigger parameter combina-
tion. In the second case of one or more non-detections by the
trigger in the test partition, this did not have any consequences
until the very last stage of performance score evaluation on
the otherwise unused test partition. There, each false negative
by the trigger was counted in the same way as a false negative
by the classification algorithm, that is, as a classification error.
Likewise, a non-detection by the trigger of a non-explosive
signal was regarded as correct classification.

d) Further preprocessing: The training set was normal-
ized to have zero mean and unit variance. The corresponding
transformation was applied to the test data. For all classifiers
using radial basis function (RBF) kernels, a starting grid value
for the bandwidth parameter γ0 was determined from the
training set using Jaakkola’s heuristic [37].

e) SVM hyperparameter search: For each of the trigger
parameter combinations described above, a joint SVM hyper-
parameter search was carried out, thus mutually optimizing a
cross-validation based performance measure over both trigger
and classifier parameters. For the linear kernel, we probed
for each trigger parameter combination a linear “grid” for the
regularization parameter C with values of e−7+i∗0.32, where
i ∈ {0, . . . , 50}. For all RBF kernels, the two-dimensional
grid used values of e−7+i∗0.8, i ∈ {0, . . . , 20}, for C;
and eln γ0−5+i∗0.5, i ∈ {0, . . . , 20}, for γ, where the base
bandwidth value γ0 was determined by Jaakkola’s heuristic as
stated above. Thus, for each trigger parameter combination, 50
SVM parameters were probed for the linear kernel, and 400
combinations for the RBF kernel.

Once the best-performing combination of trigger parameters
and SVM hyperparameters according to the cross-validation
error on the training set was found, this combination was either
noted and used in the subsequent final evaluation on the so far
unused test set. Or, in case of the SVMs using RBF kernels,
a second, finer grid search for the bandwidth parameter γ
and regularization parameter C was conducted (again on the
training set). This is motivated by the fact that the relatively
large number of trigger parameter combinations tested required
somewhat coarser grid values for the SVM hyperparameters
during the mutual search. A second, refining grid on the SVM
hyperparameters only thus corresponds to a nested grid search
with decreasing search dimensionality, where the first stage
serves to fix the trigger parameters and identify a region of
stronger interest for the SVM hyperparameters. Letting γ̂ and
Ĉ denote the best-performing SVM hyperparameters of the
joint grid over trigger parameters and hyperparameters, then
the second, refined, and also exponentially spaced grid for
only the SVM hyperparameters used values of eln γ̂−3+i∗0.15,
where i ∈ {0, . . . , 40} for γ, and values of eln Ĉ−3+i∗0.15 for
C, where i ∈ {0, . . . , 40}.

For all grid runs – both the primary and, if applicable, the
secondary, finer, lower-dimensional grid – it was verified that
the best SVM hyperparameters did not lie on the grid border.
This checks that the overall grid area was initially chosen large
enough (i.e., that the cross-validation error landscape does not
slope toward better values beyond the grid borders). For the
trigger parameters however, the value ranges are for some
parameters bounded by construction, and can also contain
as few as three discrete values. For these reasons, boundary
checks did not extend to trigger parameters.

For the feature sets used in this study, the ARD kernel has
106 parameters (see Section III-E, Table II), making direct pa-
rameter search computationally prohibitive. Instead, gradient-
based SVM hyperparameter optimization on a maximum-
likelihood based model selection criterion was employed for
each trigger parameter combination according to the procedure
and setup described in [29]. That approach relies on cross-
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TABLE III
EVALUATION OF THE SIX CLASSIFIERS APPLIED IN THIS STUDY (SEE TEXT FOR DESCRIPTIONS). DIAGONAL ENTRIES SHOW MEAN CLASSIFICATION

ERRORS (UPPER ROWS) AND MEAN ROC-AUCS (LOWER ROWS) IN % AVERAGED OVER 50 VALUES OBTAINED THROUGH 10 REPEATED RUNS OF OUTER
FIVE-FOLD CROSS-VALIDATION. OFF-DIAGONAL ENTRIES SHOW SIGNIFICANCES OF PAIR-WISE TWO-SIDED WILCOXON SIGNED-RANK TESTS WITHOUT
CORRECTION FOR MULTIPLE COMPARISONS (SEE TEXT FOR RESULTS OF CORRECTIONS). THE SYMBOLS < OR > INDICATE THAT THE ROW ENTRY HAS
A SMALLER OR LARGER VALUE, RESPECTIVELY, THAN THE COLUMN ENTRY AT A SIGNIFICANCE LEVEL p < 0.05; AND CORRESPONDINGLY, � OR �

DENOTE A TIGHTER SIGNIFICANCE LEVEL OF p < 0.01. THE SYMBOL – DENOTES NO DIFFERENCE AT THESE SIGNIFICANCE LEVELS.

[%] svm-rbf svm-rbf-auc svm-lin LDA k-NN svm-ard

svm-rbf 3.5± 0.6 – – � < �
99.0± 0.4 – – � � �

svm-rbf-auc 3.3± 0.3 � � � �
99.2± 0.3 > � � �

svm-lin 3.9± 0.3 � � �
98.7± 0.3 – � –

LDA 4.2± 0.2 – �
98.5± 0.4 – –

k-NN 4.5± 0.6 –
98.0± 0.6 –

svm-ard 5.1± 0.4
98.4± 0.4

validation as well, and the same folds as above were used.
Once the best overall trigger parameters and, where appli-

cable, SVM hyperparameters or number of nearest neighbors
k were determined, the performance of the corresponding
overall ensemble was evaluated on the previously unused test
set (and false negatives by the trigger algorithm counted as
classification errors as detailed above).

All machine learning experiments were implemented using
the Shark machine learning library1 [38], [39]. All SVM ex-
periments employed 1-norm binary SVMs with bias term [23].

f) ROC analysis and optimization: Tuning and evaluation
of receiver operating characteristic (ROC) curves was ad-
dressed in two ways. For all classifiers, ROC curves were con-
structed from the classifier’s decision function scores obtained
on the previously unused test set. Furthermore, for an RBF
kernel, we in an additional run also selected the best trigger
parameters and SVM hyperparameters according to maximum
area under the ROC curve (ROC-AUC) as obtained during
cross-validation on the training set, instead of using the cross-
validation classification error for parameter optimization. In
other words, trigger and SVM hyperparameters were deemed
fit for final classification if they yielded high ROC-AUC values
on the validation fold of the training partition. This classifier
(termed svm-rbf-auc) was in turn also characterized by ROC-
analysis on the decision function scores on the previously
unused test set.

IV. RESULTS

Table III lists the average test classification errors and ROC-
AUC values obtained by the evaluation procedure described
above. All values are averages over 50 values obtained through
10 repeated runs of outer five-fold cross-validation as laid
out in Section III-G. As noted above, the values obtained by
repeated cross-validation are not fully independent, slightly
violating the assumptions for common statistical hypothesis
testing. Keeping this in mind, Table III also shows the results

1Available for download from http://image.diku.dk/shark/ .

of comparing the performances between classifiers by pair-
wise non-parametric significance testing (two-sided Wilcoxon
signed-rank test), carried out as if the performances on the
different partitions were statistically independent.

The first two entries in Table III, denoted svm-rbf and svm-
rbf-auc, are SVM classifiers using an RBF kernel. For svm-rbf,
the trigger parameters and hyperparameters were optimized
according to minimization of the cross-validation classification
error, and for svm-rbf-auc according to the maximization
of the cross-validation area under the ROC curve. Both ap-
proaches yield similar performances; while the latter obtains
better performance values, the differences between both are
not significant. The third entry, svm-lin, denotes an SVM with
linear kernel, which performs somewhat worse. The fourth and
fifth entry are the two baseline comparison approaches LDA
and k-NN (see Section III-F). Both perform again somewhat
worse than the linear SVM and comparatively similar to each
other, with the k-NN classifier yielding the worst AUC of all
classifiers (which can be explained by the coarse interpretation
of the k-NN output for ROC computation).

The last classifier, svm-ard, is an SVM utilizing the above
introduced ARD kernel with one kernel parameter for every in-
put feature dimension. This classifier exhibits the significantly
worst classification error. This is most likely due to there being
only a few times as many training examples in the dataset as
the ARD kernel has hyperparameters.

In summary, the significance levels in Table III show
no significant differences between the two best-performing
approaches svm-rbf and svm-rbf-auc. These two in turn
significantly differentiate themselves from the two baseline
approaches LDA and k-NN. All approaches perform better
(and almost all significantly so) than the SVM with ARD
kernel in terms of classification error; and likewise better
than the k-NN classifier in terms of AUC value. These tests
are not yet corrected for multiple comparisons (i.e., do not
take into account that with an increasing number of pair-wise
comparisons there is an increasing probability that one or more
discoveries are false).
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Fig. 2. Left subplot: ROC curve of the best-performing approach svm-rbf-auc (solid line in both plots) compared to that of one previous state-of-the-art
approach (svm-miss, dotted line). Curves were obtained by horizontal averaging over individual trials, although on a different number of trials (see text).
Right subplot: the solid line (svm-rbf-auc) is repeated from the left; overlaid, ROC curves of all 50 individual sub-trials that were used in the averaging are
shown. The proposed classifier reaches full sensitivity at much higher specificity values than svm-miss, which is desired in the application scenario. Also note
the cutoff on both axes.

When correcting via Holm-Bonferroni correction [40] the
significance levels from Table III for multiple comparisons
(i.e., for the fact that 15 pair-wise comparisons were conducted
between the 6 classifiers), these findings stay qualitatively cor-
rect: almost all differences between classification error values
significant at the 1 % level remained significant at a weaker
significance level of 5 %, except that between the svm-rbf and
LDA (results not shown). Similarly, when Holm Bonferroni-
correcting significance levels for the AUC values in Table III,
differences significant at the 1 % level remained significant at
the weaker significance level of 5 % with exception of that
between svm-rbf and svm-ard (results not shown).

Table III also lists standard deviations for the error and AUC
values: the highest standard deviations were exhibited by the
svm-rbf and k-NN approaches with up to 0.6 %, which informs
the reduced significance level for the comparison between
these two methods. 2

We next review outcomes established in previous work,
comparing to the results from Table III. The rule-based expert
system developed by IDC reaches classification errors of
around 10 % [41]. A naive comparison baseline study also
initiated by the authors of this paper used the same raw signal-
with-noise snippets as in this study. There, the waveform
segments were only minimally preprocessed by trivial filtering
and smoothing, before passing raw waveform segments of
equal length (which were obtained by naive clipping, and

2For completeness, we also report the hyperparameter values that would
result from hyperparameter selection with svm-rbf-auc using all of the
available data: Ns = 10 s, N` = 60 s, Nd = 20 s, rS = 1.1, rR = 0.0,
Na = Nz = 10 s, γ = 0.00627, C = 12.807.

thus lacking a proper trigger algorithm altogether) directly to
an SVM. This baseline classification method, circumventing
as well as possible a trigger and feature extraction stage,
reached a classification error of 8.6 % (results not shown).
For the hydroacoustic binary classification task, the two ap-
proaches presented in [3] and [2] achieve classification errors
(depending on the exact sub-approach taken) between 6.5 %
and 4.0 % , and between 4.9 % to 4.3 %, respectively. The best
approaches in Table III of the present study reach classification
errors of 3.3 % and 3.5 %. In summary, applying state-of-the-
art machine learning methods and additionally tailoring them
to the application problem at hand successively lowered the
classification error for this hydroacoustic application problem
from 10 % to above or around 4 % in previous studies [3], [2];
and to 3.3 % – 3.5 % in the current study.

It should be noted that the previous approaches used one
trial of five-fold outer cross-validation instead of ten as in the
present study. In addition, not all individual sub-results of five-
fold outer cross-validation runs were available for comparison
in non-averaged form. Hence, statistical significance testing
was limited to non-parametric location tests. For completeness,
we performed one-sample, two-sided Wilcoxon signed-rank
location tests, which indicated significant differences (at the
1 % level) of the two SVMs with RBF kernels from this study
vis-a-vis previously reported methods when not correcting
for multiple comparisons. After correction for multiple com-
parisons (Holm-Bonferroni correction), differences remained
significant at the 5 % level.

In overall summary, the best results were achieved by the
two SVM classifiers using an RBF kernel from this study.
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While the variant optimizing for a low AUC reached slightly
better performance values, we again note that the differences
were not significant. This matches our general experience that
optimizing for high AUC does not necessarily imply better
test AUC values when compared to canonical optimization
for low cross-validation error. We overall interpret the results
as showing both approaches to perform at equal level, while
improving on the SVMs with linear and ARD kernel, the
baseline algorithms LDA and k-NN, as well as the reference
approaches established in previous work [2], [3], which both
used highly task-specific machine learning methods to account
for missing values in IDC-extracted feature sets.

Figure 2 shows a comparison of ROC curves from the best-
performing approach of the current study (svm-rbf-auc) and
one of the previous state-of-the-art approaches (svm-miss) for
which ROC data was available [2]. The two curves in the left
subplot represent horizontal averages over the individual trials
conducted (although over 50 individual runs for svm-rbf-auc,
and five individual runs for svm-miss, see above; also note
the cutoff on both axes). The proposed svm-rbf-auc classifier
exhibits 100 % sensitivity already at higher specificity values
than the previous approach svm-miss, which is desired in the
hydroacoustic classification task. In particular, the approach
svm-miss reaches full sensitivity only at rather low specificity
values of around 0.2 (outside the plot axes).

Comparing to previously established results, those of the
present study highlight, for one, the relevance of high-quality
representation of the respective samples to be classified: im-
proved features can inform common baseline algorithms to
perform on par with highly specialized algorithms on less
informative features. At the same time, it is remarkable how
well an SVM is able perform on raw waveform data with
intentionally close to no preprocessing.

V. CONCLUSIONS AND FUTURE WORK

The interest in machine learning for IMS data processing
has notably risen over the last years. This is, among others,
caused by a steady increase in certified sensor stations as the
IMS nears its completion. Second, as IDC processing rules
matured over more than a decade of operations, collaborative
studies can explore the potential benefit of incorporating
advances made in adaptive processing and pattern recognition
since the general inception of the IDC’s processing system.

We showed that for the CTBTO hydroacoustic signal
classification task, our approach of constructing and jointly
optimizing a generic processing pipeline is able to significantly
improve on the current state of the art, while at the same
time remaining structurally similar to the one currently in IDC
operations. Our proposed approach of optimizing aspects of
preprocessing together with the classifier may in addition serve
as general blueprint for similar problem settings of combined
signal preprocessing and classification.

Testing the proposed framework on longer streams of
continuous data, in particular to examine the generalization
behavior and robustness of the selected trigger algorithm,
as well as its interplay with downstream processing phases,
would be the next steps. Independent of this application task,

it would be interesting to jointly optimize more powerful
signal representation techniques together with the detectors
and classifiers operating on them (see, e.g., [6], [19], [20]).

In overall conclusion, we see the present work as one
successful example of how mutual optimization of several
processing stages can make pattern recognition algorithms
perform better in practical application tasks.
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