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T. Bücher, C. Curio, J. Edelbrunner, C. Igel, D. Kastrup, I. Leefken, G. Lorenz, A. Steinhage, and

W. von Seelen

Abstract— Since the potential of soft-computing for driver

assistance systems has been recognized, much effort has

been spent in the development of appropriate techniques

for robust lane detection, object classification, tracking, and

representation of task relevant objects. For such systems in

order to be able to perform their tasks the environment

must be sensed by one or more sensors. Usually a complex

processing, fusion, and interpretation of the sensor data is

required and imposes a modular architecture for the over-

all system. In this paper, we present specific approaches

considering the main components of such systems. We con-

centrate on image processing as the main source of relevant

object information, representation and fusion of data that

might arise from different sensors, and behaviour planning

and generation as a basis for autonomous driving. Within

our system components most paradigms of soft-computing

are employed; in this article we focus on Kalman-Filtering

for sensor fusion, Neural Field dynamics for behaviour gen-

eration, and Evolutionary Algorithms for optimization of

parts of the system.
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I. Introduction

Driver assistance systems aim at increasing the comfort
and safety of traffic participants by sensing the environ-
ment, analysing the situation and signaling relevant in-
formation to the driver. In order to reliably accomplish
this demanding task, the information of different sensors
must be evaluated and fused to obtain a suitable represen-
tation of the traffic situation. The complexity of the whole
data processing architecture is determined by actual task
the driver assistance system is devoted to. Among others,
these tasks include lane departure warning, lane keeping,
collision warning or avoidance, adaptive cruise control, and
low speed automation in congested traffic.

Despite their different behaviours, driver assistance sys-
tems share a common architecture as well as common spe-
cialized data processing algorithms. From an industrial
point of view a modular and extensible architecture is
highly appreciated, due to the simplification of the imple-
mentation of the different system tasks. In this paper, we
put forward our architecture and some key components of
which driver assistance systems consist. The architecture
(fig. 1) is organized in four layers: a preprocessing layer,
a layer consisting of domain specific processing modules,
an integrating representation of the scene, and a reasoning

The authors are with the Institut für Neuroinfor-
matik, Ruhr-Universität Bochum, Germany. E-mail:
Thomas.Buecher@neuroinformatik.ruhr-uni-bochum.de.

layer working on behaviour planning or warning. In the
image processing stage relevant objects are extracted from
the video data stream. The geometric object informations
are transformed to world coordinates and are further pro-
cessed in the representation of the scene. At this stage the
information about the relevant objects observed by the im-
age processing stage can be fused with data stemming from
other sensors, like RADAR or LIDAR. The representation
is then accessed by the higher level modules, implement-
ing the actual task, i.e., the demanded behaviour of the
system.
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Fig. 1. Components of our driver assistance system. In the pre- and
domain specific processing our image analysis components are
depicted. Further sensors like RADAR and LIDAR may provide
physical measurements that will be processed in these stages. The
representation aims at fusing these informations with the image
data based scene description.

The organisation of this paper follows figure 1. At first,
image analysis including the preprocessing and domain spe-
cific processing, is presented in detail in section II. In
this section, it is demonstrated how the combination of
domain knowledge, imbedded by a flexible road lane esti-
mation mechanism and the coupling with object detection
modules, exploiting temporal redundancies, yield accurate
descriptions of scene elements. In section II-E we focus
in particular on pedestrian recognition in urban environ-
ments. In section II-F we present our work on how to
incorporate domain knowledge into the interpretation pro-
cess of segmentation results, here based on color features.

Working on the results of the image processing stage, in
section III an approach is presented for fusing additional
sensor data within an integrating array of Kalman filters.

Our work on behaviour generation, presented in section
IV, is motivated by the following issues. Being able to au-
tonomously generate a variety of basic driving behaviours,
the actual driver’s manoeuvre can be judged by dynami-
cally comparing the scene as observed by the sensing sys-



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. XX, NO. Y, MONTH 2001 101

tem with potential driving manoeuvres, as would be gen-
erated by the behaviour generation stage. On that basis it
should be possible to calculate a risk associated with the
current situation.

II. Image Processing for Driver Assistance

Research on vision-guided vehicles has become an im-
portant subject in the last decade. This is reflected by a
number of government as well as industry initiated research
projects and conferences. Most work has been done in the
field of detection, classification and tracking of task rele-
vant objects [1], [2], [3], [4], [5], [6], [7]. In the references [8],
[9] an overview about projects demonstrating long distance
autonomous driving is given.

A widely recognized approach to lane detection is pre-
sented in [10]. In this approach, a dynamical model con-
sisting of three almost decoupled subsystems is linked to
spatial motion in an extended Kalman-Filtering approach.
Within the subsystems, horizontal as well as vertical road
curvature and the lateral lane offset of the vehicle are recur-
sivly estimated. The GOLD system [1] aims at autonomous
driving and has been tested on some thousands of kilome-
ters on extra-urban roads. Both lane and vehicle detection
are based on inverse perspective mapping, which is per-
formed on a special purpose hardware in real-time. In this
system no temporal continuity is exploited and results of
the image processing are directly used for controlling the
vehicle, i.e., there is no intermediate representation of the
observed scene. In a number of papers different aspects
of the EMS-Vision (expectation based multifocal saccadic
vision) system are described [11], [12], [13], but in contrast
to our work the focus is put on software design issues. In
[14] a system for real-time vehicle and lane detection is
presented. Here, real-time processing is obtained by rely-
ing only on the grey-level intensity image, i.e., no image
features are calculated.

In contrast to most of these approaches, our goal is to
provide a complete scene representation, on the basis of
which the actual task of the driver assistance system can be
implemented. For this reason we calculate high level image
features, by which the development of the domain specific
image processing modules is significantly simplified. The
presented system serves as a fundamental image processing
basis for a number of ’Intelligent Vehicles’ projects carried
out in collaboration with industry partners. For this reason
the architecture must benefit the development of different
driver assistance applications by providing the task rele-
vant information in a world-coordinate system based scene
representation, which can be read out by the modules re-
alizing the driver assistance task.

In the following, we will give an overview about the pre-
processing, the higher level image processing modules, and
the strategies for integrating lane and vehicle hypotheses.

A. Preprocessing

The image features calculated in the preprocessing stage
should be meaningful and accurately estimated, while com-
putation time is restricted. To meet this requirement we

compute a pixel mask, to which the subsequent image pro-
cessing operations will be restricted. This mask is ob-
tained by adaptive thresholding of an estimated1 entropy
image. By applying the pixel mask we efficiently calcu-
late local image orientations and line-segments on the ba-
sis of a Canny-Edge-Detector [15]. The line-segments are
obtained by clustering pixel chains having identical orien-
tations. Each segment is characterized by the pixel coor-
dinates of its end-points and the mean gradient along that
segment, and therefore it provides a sparse coding of the
image contours.

We believe that the calculation of these high level fea-
tures are beneficial for at least two important reasons: On
the hand the development of the task specific modules
based on these features is significantly simplified, and on
the other hand they are less sensitive to varying lightning
conditions and noise. Even the computation required for
the whole image processing can be reduced, due to less
costly processing in the higher level modules, as demon-
strated further below.

Fig. 2. Results of the preprocessing stage. Top row: camera image
and entropy image, Center Row: camera image masked by en-
tropy thresholding and image with gradient energy, Bottom row:
binary image and resulting line-segments.

In figure 2 the main results of the preprocessing stage
are shown.

B. Image to World Transformation

The transformation from image to world coordinates
serves a number of purposes. On the one hand geomet-
rical relationships can be easily evaluated in world coordi-
nates, on the other hand parametric lane border estimation
is remarkable simplified in this domain. Furthermore, the
world coordinate system is a reasonable domain for fusing
data, that stem from different sensors.

The image to world mapping makes use of the constraints
given in the context of driver assistance systems and is de-
scribed in [16] in detail. The mapping requires the van-
ishing line to be horizontal in the image, and the points
mapped are assumed to lie on a plane (ground plane con-
straint). Due to space limitations, here we only depict an
extension, which is aimed at coping with rotations of the
vehicle.

It can be shown, that the angle between the projection
of the optical axis onto the ground plane and the linear

1In order to save computation time, the local entropy image is effi-
ciently estimated by making use of sampling and quantization tech-
niques.
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lane borders is given by

φ(t) = tan−1(kx

vx(t − 1) − xc

ky1

) . (1)

The constants kx, ky0, ky1 are derived from the projections
of the standardized road markings (see [16]), xc is the hor-
izontal image coordinate of the center of projection, and
vx(t−1) denotes the horizontal image coordinate of the in-
tersection of the linear lane borders (estimated in the pre-
vious time step) with the horizon. By rotating the world
coordinates by the angle φ(t) the linear parts of the lane
borders are parallel to vertical world coordinate axis in-
dependent of the vehicle’s actual orientation. Therefore,
lane changes result in a horizontal shift of the world coor-
dinates. This effect significantly simplifies parametric lane
border estimation in the world domain.

C. Vehicle Detection

In vision based driver assistance systems the vehicle de-
tection task is usually divided in a segmentation and a sub-
sequent tracking stage. Obviously, the results obtained by
segmentation algorithms and the tracking module are not
independent. Therefore, we have built a coupling archi-
tecture, aiming to suppress false detections and thereby to
increase the reliability of the whole vehicle detection stage.
In our system we implemented two different vehicle seg-
mentation algorithms, which are based on different image
features.

The first segmentation algorithm employs the line-
segments calculated in the preprocessing stage for gener-
ating a list of potential vehicle positions. The middle of
each approximately horizontal segment serves as a starting
position for searching lateral vehicle borders. Two signals
are calculated by vertically projecting image and gradient
data in an image area defined by the line-segment and the
expected height of the vehicle. The lateral borders of a po-
tential vehicle are determined by thresholding the signals
obtained by the projection. If the vehicle’s width matches
the expected width at the given image position (estimated
in the lane-detection module), the ROI (region of interest)
is accepted.

The second strategy for detecting potential vehicle po-
sitions utilizes the lane border estimates, i.e., is based on
higher-level knowledge. The outline of the algorithm is as
follows: Each lane is scanned from the lowest image row
to a certain vertical coordinate that corresponds to a pre-
defined maximal distance in the world. Potential vertical
vehicle positions are obtained if a certain number of pixel
in a row (delimited by the lane borders) exceed a significant
vertical gradient level. In order to accept or to reject the
hypotheses obtained by scanning the rows, the same test
for lateral vehicle borders as in the segmentation module I
is performed.

We take advantage of the redundant information pro-
vided by the different segmentation algorithms by tempo-
ral integration and coupling with an object tracker. The
tracker we employ is based on the Hausdorff-Distance [17]

and is described in [18] in detail. But instead of calculat-
ing the distance transform on the basis of the features as
given in [18] the corner image obtained in the preprocess-
ing stage is used. In figure 3 the integrating architecture
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Fig. 3. Architecture for the integration of initial segmentation results
and the coupling with an object tracker. The dotted lines indicate
a potential feedback for online adapting the coupling weights and
the internal parameters of the segmentation algorithms.

is depicted. The basic integration of evidence for a certain
vehicle hypothesis is carried out similar to the confidence
integration as performed in the lane-detection module (see
section II-D).

This coupling mechanism can be considered as a list
of object hypotheses integrating or removing evidence de-
pending on space and time. The resulting vehicle detection
module consisting of the two segmentation algorithms and
the hypothesis integration mechanism proved to outper-
form the single algorithms by suppressing false detections.

D. Lane Detection

A number of tasks such as lane departure warning and
lane following rely on the information about the vehicle’s
position relative to the lane boundaries. Due to the im-
portance of lane-detection much research has been done in
this field [10], [19], [20].

Reasonable approaches to lane-detection have to incor-
porate a bottom-up process detecting new lane borders
and a lane tracking process based on the previously de-
tected lane positions. In order to efficiently perform the
bottom-up process, we utilize the line-segments for gen-
erating lane hypotheses. To remove the effects induced
by the perspective projection, the line-segments pointing
to an estimated vanishing point are transformed to world-
coordinates. A list of lane hypotheses is generated by eval-
uating projections of the transformed line-segments onto
the horizontal world coordinate axis. Each lane hypoth-
esis Hi(t) = { Ci(t), c0,i(t), c1,i(t), c2,i(t) }, 1 ≤ i ≤ nH(t)
consists of a confidence level Ci, and the lane parameters
~ci = [c0,i, c1,i, c2,i]

T . The lane parameters are the coeffi-
cients of a polynomial

xL
w,i(yw) = c0,i + c1,i yw + c2,i y2

w (2)

modeling the lane border in world coordinates 2. We chose
the polynomial model, because the estimation of the linear
coefficients c0, c1, c2 can be performed more efficiently than
e.g. estimating a true clothoidal shape.

The coupling between the bottom-up lane detection and
the tracking mechanism is effectively carried out at the hy-
potheses level. Each potential lane position c̃0,j detected

2The origin of the world coordinate system corresponds to the image
pixel (xc, h), where h denotes the lowest image row.
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by the bottom-up process is compared to the list of pre-
viously obtained hypotheses Hi(t − 1), 1 ≤ i ≤ nH(t − 1).
If |c̃0,j(t) − c0,i(t − 1)| > δL for all i (i.e., the c̃0,j cannot
be assigned to any existing hypothesis) a new hypothesis
Hk(t) = {Ck(t) = C0, c0,k(t) = c̃0,j(t), c1,k(t) = c2,k(t) =
0} is generated. The parameter δL defines the maximal
distance between corresponding lateral lane positions, and
C0 is the confidence initially assigned to new hypothe-
ses. A hypothesis i is regarded as evident if Ci(t) exceeds
the threshold δC . For each evident hypothesis an oriented
search for lane border points based on the lane parameters
c0,i(t − 1), c1,i(t − 1), c2,i(t − 1) estimated in the previous
time step is performed. Therefore the functional form of
equation 2 is transformed to image coordinates 3

K0 =
1

2c2kx sin2 φ
(3)

K1 = 2c2(xckx sinφ − ky1 cos φ)K0 sin φ (4)

K2 = (1 − 2c2ky0 sinφ)K0 cos φ − c1K0 sinφ (5)

K3 = K2
0 (cos φ − c1 sin φ)2 − 4c2K2

0(ky0 + c0 sinφ) sin φ(6)

K4 = −4c2ky1K2
0 sin φ (7)

xL(y) = K1 + K2(y − vy) −
√

(K3(y − vy) + K4)(y − vy) .(8)

When a hypothesis becomes evident for the first time, the
parameters c1,i(t − 1), c2,i(t − 1) are not available; instead
the line-segments projecting into the cluster, which corre-
sponds to the hypothesis, define the initial search positions
in the image. The result of the local search is the matrix

Pi(t) =

[

xw,1(t) xw,2(t) xw,3(t) . . . xw,np (t)
yw,1(t) yw,2(t) yw,3(t) . . . yw,np (t)

]T

(9)

containing the detected lane points transformed to world
coordinates. On the basis of Pi(t) the parameters c0,i(t −
1), c1,i(t−1), c2,i(t−1) are updated by a weighted recursive
least square (RLS) algorithm [21]. In order to make the
RLS-algorithm robust against horizontal shift of the world
coordinate system (e.g., in case of lane change) the a-priori
error

ei(t, t − 1) =
1

np

np
∑

ν=1

ei,ν(t, t − 1) (10)

ei,ν(t, t − 1) = xw,ν(t) − ~yT
w,ν(t)~ci(t − 1) (11)

~yw,ν(t) = [ 1 yw,ν(t) y2
w,ν(t) ]T (12)

is added to the parameter c0,i prior to the application of the
RLS-algorithm. After the estimation of the lane parame-
ters the confidence levels Ci are updated by the following
dynamics:

d Ci(t)

dt
= −

1

τ
Ci(t) + fD,i(t) + fT,i(t) (13)

fD,i(t) =

{

0 if |c̃0,j(t) − c0,i(t − 1)| > δL ∀ j
γD else.

(14)

fT,i(t) = γT e
−γ2

(

1
np

∑np
ν=1

e2
i,ν(t,t−1)−e2

i (t,t−1)

)

(15)

By equation 13 evidence is integrated on the basis of the
results of the bottom-up detection (fD) and the results
of the lane tracking process (fT ). The function fT is a
measure for the correspondence of the detected lane points

3vy denotes the vertical image coordinate of the horizon.

Pi(t) with the lane estimate at t − 1, and depends on the
variance of the a-priori error. If fD and fT evaluate to
zero, i.e. the hypothesis does not receive any support, the
confidence Ci(t) decreases exponentially in time. The main
advantage of additive confidence calculation as given by
equation 13 is, that further contributions, e.g., obtained
by texture analysis, can be easily integrated.

Lane-Points

Lanes

Confidences
Hypothesis

(not evident)

Fig. 4. Lane points detected in the camera image, transformed to
world coordinates, and subsequent parametric lane estimation.
Image areas corresponding to detected vehicles are not taken into
account when searching for lane points. In contrast to the lane
points the camera image is transformed only for visualization
purposes. On the right hand side the observed scene is depicted
in a symbolic bird’s eye view.

Some driver assistance tasks such as lane departure
warning and lane following are based on the vehicles posi-
tion relative to the lane borders. We propose the vehicles
lateral offset from the lane center normalized by the current
lane width as an appropriate measure:

ϑV (t) =
c0,R(t) + c0,L(t)

2(c0,R(t) − c0,L(t))
(16)

The indices L and R correspond to the vehicles inner left
and right lane borders. The dynamics of ϑV (t) can be
learned in order to operate a lane change warning system
in consideration of the current driver’s behaviour.

Results

The image processing system has been successfully tested
on a variety of traffic scenes, including different weather
and lightning conditions. Due to the lack of any benchmark
databases to which different systems could be compared, it
is not possible to directly compare different systems. In fig-
ure 5 the camera image, the detected lanes and vehicles, as
well as the lateral offset ϑV (t) are depicted. The example
sequence demonstrates that the shadows do not cause any
problems; furthermore it can be seen that ϑV (t) and there-
fore the lane borders are determined robustly. The total
mean computation time per frame (496x256 pixel, Pentium
III, 1Ghz) computed on this sequence is 42ms, whereas the
preprocessing stage takes 32ms. Due to the high level pre-
processing features, the whole domain specific processing,
i.e., the vehicle segmentation, the tracking and intermedi-
ate hypotheses evaluation, as well as the lane detection, are
computed within 10ms.
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Fig. 5. Results of the image processing system tested on a sequence
of 1440 images (24 seconds, 60Hz). The plot shows the normal-
ized lateral vehicle offset ϑV (t) with respect to the middle of the
current lane. The images are taken at t = 2.4s, t = 11.5s and
t = 19.5s.

E. Detection of Non Rigid Objects

In recent years, not much attention has been given to im-
age processing approaches aimed at increasing the safety
of more passive and exposed traffic participants such as
pedestrians and motorcyclists, respectively, in urban en-
vironments. A major goal is to perform a judgement on
object behaviour to forestall collision of a moving observer
equipped with such a driver assistant system. The work
presented here addresses the localization of pedestrians.

Pedestrian recognition

The initial detection and the tracking of pedestrians in
urban environments faces several problems such as clut-
tered backgrounds, roads in bad condition and large object
movements. The objects themselves are non-rigid and can
change their appearance on a very short time scale. Also
highly varying pose, self-occlusion and the occurrence of
pedestrians in groups call for new object representations.

Classification

Tracking

Integration 

Contours

Local Entropy

IPM

Symmetry

Fig. 6. Concept for recognition of pedestrians. Illustrated is the
local dynamic integration of features for the initial detection, the
tracking of the main torso based on different features and the
limb movement analysis as a cue for the final classification.

Besides other recently introduced approaches to pedes-
trian recognition [22], [23], [24] in [25] the initial de-
tection process is based on a fusion of texture analysis,
model-based contour grouping (see figure 6), the geometric
features of pedestrians, and inverse-perspective mapping
(IPM) [26] (binocular vision). Additionally, in [25] mo-
tion patterns of limb movements have been analyzed to
verify object hypotheses (see figure 6). The tracking of

the quasi-rigid part of the body is performed by different
algorithms that have been successfully employed for the
tracking of sedans, trucks, motorbicycles, and pedestrians.
The Hausdorff-distance [18], [6] has been applied both to
the tracking of objects and template matching of limbs of
moving bodies. The final recognition is based on a tempo-
ral correlation analysis of the walking process. Recently,
in [27], a symmetry operator, which groups morphological
preprocessing results, has been applied to initial hypothe-
sis generation at locations of vertical image structure. Fur-
thermore, stereo calculations aim at determining a more
accurate distance measure. A final head and shoulder tem-
plate match also aims at recognizing pedestrians viewed
from a frontal or back view. In [28] a more general and
flexible approach is introduced, which takes a closer look
at body part identification in cooperation with human de-
tection. In that application, initial detection of contour
outline sets are based on a stereo segmentation. Further-
more the idea of recursively matching a translation, rota-
tion and scale invariant human model onto image data in a
Bayesian reasoning framework seems to be very appealing.
This model is rich in that it takes into account aspects of
body part self-occlusion, and also different viewing angles.

Symmetry Detection

In our approach, image features are chosen very care-
fully under the aspects of generality and simplicity. They
should be invariant under a wide range of conditions so
that the same detection and tracking framework will func-
tion well in a broad variety of situations. Also in an effort
to make object detection and tracking as efficient as possi-
ble the features should be easy to extract. In addition, our
new symmetry operator brings together the ideas of repre-
senting the image data compactly by means of skeletoniza-
tion with continuous edge information and also in the same
run to encode also gray scale color and form information.
Therefore, a local symmetry detector has been developed,
which compactly encodes and groups locally symmetric im-
age structure. This attention like processing step of the
system allows a very rapid scene analysis for further pro-
cessing steps of higher resolution. This aspect has recently
also been proposed within the MIT pedestrian detection
system [24] in [29].

For the initial detection we constrain the symmetry oper-
ator just to compute symmetry information between edges
of opposite polarity. One interesting property is that while
scanning over the whole image in an exhaustive way that
both the mean of the gray-scale distribution and the dis-
tance between the strongest edges of opposite polarity is
instantaneoulsy encoded. A framework similar to ours is
the one developed for robust image correspondences using
a radial cumulative similarity transform [30].

Local symmetric image structure is grouped along traces
from the local symmetry operator output to parametric el-
lipses. The ellipses then encode the mean distance between
the contributing edges and the mean of the gray scale dis-
tribution of the original underlying image. Also the mean
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orientation of each symmetry segment is encoded by the
starting and end point of the ellipses. To deal with ambigu-
ities, symmetry segment traces are built at different levels
of feature resolution and threshold selection. For the ini-
tial detection weak assumptions, determining the strength
of the connectivity criteria of elements to be grouped, have
been chosen.

Hypothesis generation

For further processing, initial foot points of objects are
detected by vertically scanning up the image from local
maxima of down-projected vertical symmetry values (see
figure 7). Also, the bottom of symmetry ellipse clusters
with symmetry area close to the expected object size yield
further foot points. Of course, within a suggested region of
interest we also deal with over and under-segmentation of
image structure. Therefore, to apply high domain model
knowledge, we follow up similar approaches as those men-
tioned in [28] to recursively correct contour segmentation
errors through a hierarchical localization procedure us-
ing compactly encoded higher domain model knowledge.
The difference of our methodology to previous ones is that
the shift to a reference coordinate system, suggested by a
strong symmetry axis, and the instantaneous image struc-
ture segmentation is a step towards replacing recent pre-
segmentation stages totally relying on the performance of
stereo segmentation. It should be pointed out that our
framework is already capable to detect relevant body part
structure in the far field and does not depend on strong
dynamics in scene depth, which is a common requirement
for standard stereo algorithms to work well.

Fig. 7. Complex scene of an interaction of a moving observer with
a pedestrian in urban environments. This local turning action
of a pedestrian should demonstrate, that spontaneous actions
lower the prediction horizon of an observer. Since 2D stereo al-
gorithms are not well suited for object segmentation, especially
in the very far field, we estimate sparse stereo information along
the symmetry axis of object hypothesis. Results are illustrated
by the dotted disparity values at automatically generated object
hypothesis locations. For the refinement of the height of initial
bounding boxes we obtain rough estimates for the object height
at locations where disparity values significantly depart from the
disparity mean, robustly estimated in the initial bounding box.

The main goal of a dynamic hypotheses tracking frame-
work is to associate independently detected objects co-
herently over time and instantaneously classify situations,
e.g. such as illustrated in figure 7 of a pedestrian’s spon-
taneous change of walking direction, being detected and
tracked from a moving observer. Also, based on an invari-
ant object-representation w.r.t. ego-motion induced by the
moving observer, classification can now be guided by real
world trajectory identification of the objects of interest,
similar to those methods, recently published in [31]. Being
able to map all information of the object domain into a
low dimensional temporal framework will allow us to pre-
dict risky situations and forestall obstacle collision within
a very short time scale.

F. Context-Based Object Detection

In this section, a general, domain-independent, stochas-
tic model-based approach for an automated scene analysis
is presented. The approach consists of an initial segmen-
tation, in which the image is divided into a set of disjoint
regions based on their respective color values and a subse-
quent joint classification where the generated image regions
are assigned to object classes. Here we concentrate on the
presentation of the classification process. For details about
the segmentation and classification see [32], [33]. Within
the classification not only isolated image regions are con-
sidered, but a whole ensemble of image regions. To improve
reliability the classification process is performed as a fusion
of sensor information and symbolic information. Context
knowledge, defined as knowledge about the spatial rela-
tionships between the different object classes, is used as an
example for symbolic information. We provide a general
framework to carry out the fusion in a systematic, unified
way including a methodology of expressing symbolic infor-
mation analytically with the help of Markov random field
theory [34].

Joint classification

The goal of the classification process is to assign one
of a predefined number of object classes to every image
region. In addition to sensor information in the form of
extracted regional features like color, size or texture, sym-
bolic information is used to generate the assignment. In
our approach the classification is formulated as an opti-
mization problem using a maximum a posteriori estima-
tion rule. The classification criteria are combined using the
Bayesian theorem, where feature measurements and sym-
bolic information are coded as conditional probability and
a-priori probability, respectively [33], [35]. Several strate-
gies exist for deriving a probabilistic expression coding the
assignment dependent on the feature measurements. To
restrict the model complexity we choose a simple Gaussian
observation model with zero mean and a covariance matrix
of diagonal form. To get an analytical expression for sym-
bolic information coded as a-priori probability we used a
Markov random field model-based approach. With its as-
sociated Gibbs distribution a systematic methodology for
representing symbolic information using properly designed
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clique functions is provided. For more details see [32].
Having derived analytical expressions for modeling ob-

ject features as well as symbolic information the optimiza-
tion functional is completely defined. Among all possible
values of the assignment, the one which maximizes the a
posteriori probability is sought. The optimization task is
solved by applying an evolutionary algorithm. This has
proven to be a very efficient search strategy thanks to
a problem related formulation of the mutation operators
guiding the evolutionary process.

Results

The presented approach has been tested on different
video sequences showing typical scenarios of road traffic on
motor-ways. The initial segmentation has been performed
on the basis of object color. We used a clustering approach
for image segmentation which was adapted by modifying
the underlying probability distribution to improve segmen-
tation results [32], [33]. In the classification process we used
region color in the feature based part of the optimization
functional.

To demonstrate the benefit of our approach we compare
the classification results based only on feature measure-
ments with the results obtained when using context in ad-
dition. We discuss the results on the basis of the following
example image.

Fig. 8. Results of different processing steps within the classification
process. In the first row the original true color image and the
segmentation result can be seen. In the second row the classi-
fication results without and under consideration of context are
shown. The colors in the last image denote the assignment of the
image regions to different object classes: red marks the object
class “vehicle”, dark gray the object class “shadow”, light gray
the object class “street”, white, green and blue the object classes
“lane marking”, “vegetation” and “sky”, respectively.

The image in figure 8 show the original true color image,
the segmentation result and the classification results with-
out and with context. Here, we are especially interested
in the classification results. The image shows that the uti-
lization of context significantly improves the classification
result. Incorrect assignments due to similar feature con-
figurations of different object classes can be considerably

diminished. All vehicles and most of the street, sky and
vegetation regions are accurately identified.

III. Representation

The object information obtained by the image process-
ing stage must be fused with data stemming from other
sensors to reach a common description of the sensed en-
vironment. To be able to efficiently implement different
behaviour warning or generation tasks, this common rep-
resentation is essential. In the following, we will present an
approach to sensor data fusion that is based on an array of
Kalman-Filters.

For tracking purposes, Kalman Filters have long been
employed, and their theory is well-established [36]. They
are well-suited for the tracking of single objects where the
number of state vector components is fixed. The main
problem in using them in traffic scene analysis is establish-
ing the correspondence between the signals of the various
sensors and the objects they might be referring to.

In order to achieve robust sensor integration based on
a physical model of movement without the need to previ-
ously establish sensor/object relationships, an approach of
sensor fusion by using an array of Kalman Filters has been
developed. Every cell of the spatially organized Kalman
Filter array consists of separate Kalman Filters for the x-
and y-parameters of movement, as well as an additional
scalar excitation value:

Parameters for x, ẋ, ẍ
︸ ︷︷ ︸

~̂x,Px

Parameters for y, ẏ
︸ ︷︷ ︸

~̂y,Py

α
︸︷︷︸

global excitation

(17)

In our case, the tracked state variables of the Kalman Fil-
ters are x, ẋ, ẍ, y and ẏ, where x is the relative position
of potential obstacles in longitudinal direction, and y in
lateral direction. The separation of the state vectors into
independent ones for x- and y-direction is convenient for
efficiency reasons. An additional element of each cell is a
weight α which serves as a reliability measure.

The actual sensor data are coupled into this array at a
location based on their spatial measurement. The various
Kalman Filters experience the usual observational and tem-
poral updates. The entire process is depicted in figure 9.
Instead of explicit state vectors ~x and their covariances Px

we employ a square root information form [36, p. 260] using

CYx
and ~Sx instead.

The novel part in the depicted data flow of the Kalman
Filter array is the spatial coupling of the individual Kalman
Filters. The information of each Kalman Filter con-
tributes in the same manner as actual measurements to
its neighbors’ state vectors. The actual process employed
is geoverned by a discrete variant of diffusion. The weights
used for the diffusion are calculated according to the ra-
tio of probabilities the Kalman Filter’s parameters (mean
and covariance of a normal distribution) indicate for an
object at the current and adjacent cell positions, and the
Kalman Filter’s state vector is used as observational input
according to those weights. Due to the diffusion process,
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Fig. 9. Data flow in the Kalman Filter array.

the activation of the Kalman array tends to gravitate to
the spatial position indicated by it, and will do so even in
the case of missing input if the Kalman Filter parameters
correspond to an object in movement. The information for
a coherent object will spread out according to the distri-
bution indicated by the Kalman Filter parameters, with
weights α that are proportional to the corresponding nor-
mal distribution. For stationary inputs corresponding to
a single object, the output will be equivalent to that of a
single Kalman Filter.

(a) Camera image,

back view. Rotate
180◦ to match
orientation of

graphics to the right.
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Fig. 10. Traffic scene with camera image, excitation of the Kalman
Filter array and histogram of indicated positional parameters of
the filters. In b), dark cells indicate high reliability and excita-
tion of the corresponding filter.

Results

As a demonstration of the performance, we show the
distribution of excitation values α in a traffic application
(cf. fig. 10(b)) as well as an α-weighted histogram (cf.
fig. 10(c)) of the indicated object positions. It is obvious
that in spite of the somewhat loose information distribution
and the comparatively coarse raster used for the Kalman
Filter array, the actual interpreted data quite sharply in-
dicate the separate objects.

The proposed structure is thus capable of exploiting both

spatial and temporal redundancies for sensor fusion. It
can track the movement of objects continuously, since the
raster of the Kalman Filter array does not constrict the
spatial resolution, but merely the possibility for discrimi-
nating among adjacent different objects.

IV. Behaviour Generation

The information about the environment as observed by
various sensors and fused in the Kalman-Filter array must
be evaluated in order to fullfil the demanded system task.
As pointed out, there are a number of different tasks a
driver assistance system can be devoted to. We believe,
that if a system is capable of autonomous driving, the de-
velopment of a variety of driver assistance tasks will be
much simplified. This is due to the possibility of compar-
ing actual driving manoeuvres with potential actions as
would be initiated by the system.

In the following, we present an approach to autonomous
driving that has been developed and tested within a sim-
ulated environment. The trajectory of the vehicle can be
learned by evolutionary optimization of the Neural Field
parameters controlling the trajectory generation.

A. Behaviour Generation by Neural Fields

The aim of a system for behaviour generation in traffic
situations is to produce a secure, continuous, and comfort-
able trajectory of the guided vehicle. This behaviour is
characterized by the intended behaviour and the state of
the environment. The trajectory is generated by the dy-
namics of the control variables steering angle and velocity.
The intended behaviour is influenced by the development of
the current traffic situation, by physical constraints, traffic
rules and intentions of the driver. Those different kinds of
information have to be evaluated to result in an appropri-
ate behaviour of the vehicle.

Publications dealing with the task of behaviour gener-
ation mostly concentrate on the control of either steering
angle [37], [8] or velocity [38], [39]. Fully automated driv-
ing changing both controlled variables was proposed by [40]
in a project of truck platooning where Kalman Filtering is
used for steering. In [41] an expert system for generating
driving behaviour is proposed. A first application of Neu-
ral Fields for behaviour generation was published in [42]
for intelligent cruise control. There, the steering angle and
the velocity are determined by the evaluation of Neural
Field excitations. That system is specialized on following
a leading vehicle.

The behaviour generating system proposed here intro-
duces a different approach to vehicle control. The concept
is characterized by a separation of a planning and an ac-
tion level, where the planning level induces a motivation
for a movement into the action-level. The system aims at
controlling a vehicle autonomously or partly autonomously.
Information concerning the actual situation and its devel-
opment, the actual task, traffic rules and technical con-
straints are used to generate a smooth, task-relevant trajec-
tory. All levels are realized by nonlinear dynamics: Neural
Fields [43] and decision dynamics [44], [45].
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On the planning level all information concerning
medium-termed actions are integrated into nonlinear dy-
namics to decide for a goal-position. The goal-position is
used to determine the motivation which forces the move-
ment of the vehicle into the corresponding direction. To
achieve this effect the motivation is coupled into the action-
level. The action-level determines the controlled variables.
It is designed for obstacle avoidance in face of the motiva-
tion. Therefore, the shift of movement towards the goal-
position is interrupted if it is demanded by the current
situation. The action-level is realized by Neural Field dy-
namics to generate a smooth trajectory and to evaluate
the situation determined by other traffic participants and
the street course. The motivation is introduced into the
Neural Fields by influencing an asymmetric interaction of
field-sites [46], which results in a movement that can be
stopped by an input signal.

As the behaviour of a vehicle has to be determined in
dependence of the relative lane positions and longitudinal
distances, the behaviour generation system operates on the
basis of lateral (y-) and longitudinal (x-) coordinates.

A.1 Results

The behaviour generating system successfully navigates
the vehicle through different traffic situations of varying
complexity in a simulated environment. One result is pre-
sented for a complex situation affording different kinds of
reactions. The situation is described in figure 11. The re-
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Fig. 11. Bird’s eye view of a simulated traffic situation as a test
of behaviour generation. The reference vehicle (black, 25m/s) is
trying to adopt the desired speed (first 28m/s after 10s 33m/s)
which is larger than the speed of the four cars (25m/s) in front.
From the back on the left lane a faster vehicle (35m/s) is ap-
proaching. Relative velocities are indicated by black arrows.

sulting position and velocity values are shown in figure 12.
At first the reference vehicle changes to the middle lane
to evade the slower vehicle in the right lane. The vehicle
cannot change to the outer left lane until the faster vehi-
cle comming from behind has passed. Therefore, the car
must decrease its velocity to avoid the slower vehicle in the
middle lane (fig. 12 at t = 12s). After the vehicle on the
left lane has passed, it changes lanes to the left, overtakes
the car in the middle lane and reaches the desired veloc-
ity. Then it returns to the right lane as soon as possible
as demanded by the traffic rules. The complex behavioural
sequence is successfully finished.

The system is tested in a simulation environment. Even
in complex traffic situations the system is able to produce
smooth trajectories obeying the traffic rules and avoiding
dangerous situations. The sub-symbolic implicit formula-
tion as continuous coupled dynamics seamlessly integrates
rules, motivations and sensor inputs. The dynamic vari-
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Fig. 12. Resulting time course of the motivation and control dy-
namics. The dashed lines show the actual motivated value of the
desired velocity value and lane position.

ables and the dynamics’ time scales have been selected in
accordance with the behaviour to generate and the inertia
of the vehicles. The usage of real sensor data is not yet
possible as the view of the scene changes with the steering
of the vehicle. This behaviour cannot be predicted in detail
by a former real driver collecting sensor data.

B. Optimization of Neural Fields for Trajectory Genera-

tion

When dealing with dynamic neural field models the ques-
tion of how to adjust the model parameters arises. This
problem can be solved using gradient-based learning, evo-
lutionary optimization, or hybrid approaches, cf. [47]. For
complex tasks, we favor evolutionary algorithms (EAs).
Here we employ a state-of-the-art evolution strategy, the
CMA-ES [48], [49], [26] for optimizing the car trajectory
during a lane change [50].

In the previous sections, we have shown the functional-
ity of driver assistance for automatic cruise control based
on neural field dynamics. For additional actions initiated
by the driver, e.g., an active lane change, this method-
ology can be adapted. The main advantage of the neural
field approach—the additional input characteristic—is pre-
served in this formalism. Not only the desired lane but also
obstacles hindering the lane change can be taken into ac-
count.

Considering a lane change the leader- and the lane-
stimulus are replaced by one stimulus representing the cen-
ter of the desired lane. In case of no disturbing objects a
“correct” lane change has to be performed. In our con-
text the term “correct” means that changes in the steer-
ing angle result in a smooth trajectory which comforts the
driver. The trajectory is determined by the parameters
of the field dynamics. We optimized the parameters of the
system so that the car trajectory comes close to a given tra-
jectory that we regard as optimal. This trajectory could
be extracted from real lane change manoeuvres. The fit-
ness function measures the differences between desired and
actual trajectory. As the neural field model is translation-
invariant, only a single test scenario is needed (for a given
speed). The fitness function is not differentiable, so only
direct optimization methods are applicable. After the evo-
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lutionary adaption, the differences between desired and ac-
tual trajectory nearly vanished.

V. Conclusions and Outlook

Although the state of soft-computing applications has
improved recently, the development of driver assistance sys-
tems remains a challenging task. The difficulty arises from
the demand, that such systems must reliably interpret the
physical measurements delivered by various sensors and
generate the intended behaviour on that basis. In order
to cope with the resulting complexity such systems must
be organized by a modular, hierarchical architecture. We
presented such a modular architecture defining four lev-
els of data processing, by which an increasing amount of
symbolic information is gained sequentially.

Image data is our main source of information about the
environment. We propose to calculate a meaningful high
level feature basis, that once calculated is accessed by the
different specific processing modules. The calculated fea-
tures not only increase the robustness of the higher level
modules with respect to varying lightning conditions, but
also the computational efficiency of the whole image pro-
cessing stage. Operating on these features we propose ap-
proaches to lane, vehicle and pedestrian detection. An ad-
ditional image segmentation and region classification ap-
proach is presented, allowing us to integrate context knowl-
edge into the classification process.

If sensors like RADAR or LIDAR provide additional
information about the environment, their measurements
should be fused with the results of the image processing
stage. This can be achieved by the presented spatially cou-
pled array of Kalman-Filters. This approach provides a
common world coordinate system based scene representa-
tion that can be accessed by the modules realizing the in-
tended driver assistance task. In our view, a universal scene
representation, not relying on the actual system task, will
simplify the development of a number of different Intelli-
gent Vehicles applications.

We also presented our work on autonoumos driving. In
our approach a coupling between planning (motivation)
and action level is proposed. The coupling as well as well
as the representation of task relevant information is car-
ried out by means of Neural Fields and decision dynamics.
By doing so, the system is capable of interrupting initiated
manoeuvres if indicated by the sensor data.

In the future we plan to further improve parts of the pre-
sented system components. In the lane detection module
texture analysis may help to distinguish outer lane borders
from straight structures causing lane hypotheses. Also,
when no road markings are available, texture based ap-
proaches may provide a mean for detecting lane border
points. We plan to enhance our vehicle detection strat-
egy by online adapting the parameters and the correspond-
ing weights of the segmentation algorithms. This shall be
achieved by feeding back the results of the object tracker
and comparison with the output of the segmentation algo-
rithms. Also, further work will concentrate on pedestrian
recognition. Here, the focus is put on the dynamical inte-

gration of various image features.

In order to be able to implement and test different be-
haviour generation strategies, we are currently develop-
ing a highway traffic simulation environment. Within this
artificial environment a number of cars (agents) will au-
tonomously act in consideration of surrounding vehicles,
the intended velocity, traffic rules, and physical constraints.
We also plan to integrate an OpenGL based sensor data
simulation that will provide camera images from arbitrary
perspectives. This framework will provide a link between
the sensor data processing and the behaviour generation
stage. The Neural Field based behaviour generation sys-
tem is currently converted to C++, in order to be tested
within the simulation environment.
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