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intervention. Many DAS applications are safety oriented,
such as lane departure warning systems. Some are com-
fort oriented, such as automated parking assistants. Still
others are designed to alleviate the driver’s attentional
load—for example, traffic signal detectors or the already
deployed intelligent cruise control systems. These systems
must adapt to varying traffic situations to achieve the goal
of enhanced safety and comfort. Moreover, DAS human-
machine interfaces must support careful communication
with potentially taxed drivers.

Driver models support DAS design in several ways.
First, they let researchers analyze system performance in a
variety of driving situations. They also help optimize para-
meter values for certain performance measures,1 such as
the degree to which a desired speed is maintained. More
sophisticated yet, driver models can form the basis for
classifying driver types, such as aggressive versus defen-
sive. DAS applications can use these classifications to
activate different parameter value sets that adjust warning

thresholds appropriately for different driver types.
Driver models might also help classify traffic scenarios,

such as fluid versus congested traffic. Analyzing the scenario
and the driver’s behavior, DASs could autonomously adapt
parameter settings to best respond to the situation. Eventu-
ally, onboard operation of driver models could enhance
scene analysis and interpretation by predicting the behavior
of not only the car in which they are installed but also other
cars in the vicinity.2 As the driver model more fully accounts
for the traffic scene, DASs increase their power to com-
pare observed with predicted behaviors,3,4 and thereby
detect anomalies.

We have applied attractor dynamics to modeling driving
behaviors. Originally developed to generate behavior in
autonomous robots, attractor dynamics encode behavioral
policies for modeling a driver with meaningful parameters
that support optimization by direct policy search. We used
a powerful evolutionary algorithm to vary the parameters
in order to generate three driver models that capture the
behavioral patterns of different driver types.

Tactical decision complexities
Our work focuses on modeling the tactical level of dri-

ving decisions, such as when to brake and whether to
accelerate and pass another vehicle. Such decisions are
based on local, instantaneously available environmental
information about the road and other cars in the same or
an adjacent lane. 

The tactical level poses considerable modeling diffi-
culty. First, tactical driver modeling involves both contin-
uously valued variables, such as acceleration, and discretely
valued decision variables, such as whether to change lanes
or not. The ensemble of relevant local driving scenarios
quickly acquires considerable combinatorial complexity
with only moderate increases in the planning horizon.
Second, ground truth data—that is, measurements of
actual driver behavior under realistic conditions—is diffi-
cult to obtain, precisely because real driving situations
can’t manipulate local traffic conditions. 

Automobile industry and academic researchers expend

considerable effort to develop driver assistance

systems. DASs are aware of certain driving situations and

support drivers through information, warnings, or even 
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Essentially, tactical driver modeling
must satisfy multiple constraints under the
additional constraint of uncertain, time-
varying information. Constraints include
traffic rules, desired speeds, safe distances
from other cars, and coherent behavior—
for example, avoiding unnecessary lane
changes.

We don’t address the strategic level of
driver modeling, which involves under-
standing how drivers achieve goals, such
as taking a particular exit. We address
only to a limited extent the control level at
which DASs generate a control signal’s
time course, such as level of acceleration.
However, the optimization methods we
discuss are potentially applicable at both
the strategic and the control levels.

Methods
Our approach to driver modeling repre-

sents control behaviors directly by their
associated continuous control variables,
such as driving speed. It represents discrete
behavioral decisions through neuronal acti-
vation variables, which are somewhat like
probabilities. The attractor dynamics act as
a low-pass filter, enabling linkage to noisy
and time-varying inputs, while also stabi-
lizing decisions. We optimize the model
parameters based on simulations.

This approach views driver modeling as
a reinforcement-learning problem, solved
through evolutionary direct policy search.
We evolve models of different driver classes
by varying the learning goals, such as
desired speed or desired time-to-contact—
that is, the time interval for taking an action
before a potential collision would occur.

Figure 1 illustrates our driver-modeling
system’s general structure. The large green
arrow symbolizes a system training cycle.
Yellow directed segments illustrate the
information flow during evolutionary opti-
mization. Red segments indicate decision
and control information. The blue arrow
symbolizes the driver model’s interaction
with the simulated environment in the
absence of adaptation.

The modeled behaviors are cruise con-
trol within a lane (control behavior) and a
lane change (discrete behavioral decision).
The decision to change lanes is based on
two activation variables, motivation and
permission (pink box). Motivation to pass
another vehicle achieves high activation
levels, for instance, when cruising speed is
too low. Permission activation levels will

increase with increases in the contiguous
free space in the left lane. Cruise control is
achieved by generating planned accelera-
tion values.

The system combines the three types of
behavioral variables—motivation, permis-
sion, and acceleration—and makes a deci-
sion based on which acceleration and lane-
change commands are transmitted to the
vehicle model.

Simulator
To enable learning and optimization, the

system must generate and evaluate a wide
variety of driving behaviors. This is possi-
ble only in simulation, of course. At Ruhr
Universität Bochum’s Institut für Neuroin-
formatik, we’ve developed a highway traf-
fic simulator.5 The simulator is a modular
platform that provides four basic functions:

• a road structure model;
• a traffic model, including a simplified

behavioral model for all vehicles except
the vehicle whose behavior is being opti-
mized, which we call the ego vehicle;

• models of all vehicles’ sensors; and
• a model of the ego vehicle’s driving

behavior, which the learning algorithm
optimizes.

For optimization, we fix a lane-based road
model and a traffic scenario that includes a
given number of cars and a speed distribu-
tion. Each simulator run generates a driving
episode by initiating all behavioral models
with a new random sampling of the traffic

model. The sensor model continuously
obtains readings for the distance and rela-
tive velocity of vehicles in the ego vehicle’s
vicinity. The simulator assigns these to one
of six cells around each vehicle.

For the ith cell, i � {1, …, 6}, the risk
function

(1)

combines a car’s velocity, vel, relative veloc-
ity, �vel, and distance, dist, from the vehicle
to a car in the cell into a single scalar, each
weighted with a dedicated parameter �v, �x,
��v , and �vel, which is varied during opti-
mization. The simplified behavioral model
is purely reactive to the risk value thresholds
recorded for all cells around that vehicle.

Driver model
The ego vehicle’s driver model consists

of three levels, shown in Figure 1, each
instantiated by an attractor dynamics of a
relevant variable F.6 The following dynami-
cal system defines all three levels:

(2)

where in each case, F(t) is the acceleration or
activation level of the decision-making state
encoded in the motivation or permission
level. The first term generates stability, as
illustrated in Figure 2. The negative slope,
determined by the model parameter s, makes
attractors of the fixed points, or zeros of 
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Figure 1. Driver-modeling system structure. The ego vehicle’s driver model consists of
three levels—motivation, permission, and accelerator control—each instantiated by an
attractor dynamics.



the rate of change. The attractors are time-
constant solutions to which neighboring
values are attracted. For neuronal variables,
negative values represent “no” decisions and
positive values represent “yes” decisions.
The sign function, scaled by the model para-
meter Yoff, generates three cases depending
on the total system input. A single attractor
exists at low and high input levels, while the
system is bistable at intermediate levels,
which helps to stabilize decisions against
fluctuating sensory input.

Other parameters are the time constant,

�, and the relative weights, wi, of different
inputs such as the opening size on the left
lane or the deviation from desired speed
(four inputs each for motivation and per-
mission, one input for acceleration). The
model parameter bias sets the default val-
ues of the state variables in the absence of
inputs.

Acceleration dynamics receive input from
the risk function, �, which is designed to
attain the desired speed while respecting a
minimal time-to-contact. Input from the
motivation and permission layers for a lane

change generates additional acceleration just
before a passing maneuver. A sigmoidal func-
tion transforms the acceleration state variable
into actual acceleration values handed to the
vehicle model. The sigmoidal function limits
the acceleration range to admissible values
and smoothes acceleration.

Permission continuously represents the
extent to which conditions for initiating a
passing maneuver are fulfilled. Input to the
permission dynamics encodes the existence
of a space-time gap on the lane to the left
of the ego vehicle that makes lane change
possible. Analogously, motivation continu-
ously represents the extent to which condi-
tions exist that make a passing maneuver
desirable. Input to the motivation dynamics
encodes the distance to the car in the cell in
front of the ego vehicle, the time-to-contact,
as well as the deviation from the desired
speed. 

Both variables must be positive to initiate
a passing maneuver. Because zero separates
the two possible attractors in the bistable
regime, the two variables do not change
sign at a high frequency. When the behav-
ioral model detects a sign change to posi-
tive, the simulator generates a trajectory
that transitions the vehicle to the left lane.

Evolutionary adaptation
Our representation of behavioral policy

through dynamical systems supports gradual
optimization by direct policy search. To do
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Figure 2. Behavioral dynamics. Equation 2 is plotted for three levels of total input: red,
yellow, and green for low, intermediate, and high levels, respectively. For neuronal 
variables, negative values represent “no” decisions; positive values represent “yes” 
decisions.
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Figure 3. Behavioral dynamics solutions. (a) An activation variable’s time course during simulated driving of the evolved driver
model is plotted in blue, together with the value of the associated attractor (red). (b) The associated rate of change is plotted
against the activation variable.



this, we employ an evolutionary algorithm,7

where the fitness reflects the driver model’s
performance. The parameters subject to opti-
mization include weights, time constants,
amplitudes and biases from Equation 2 of the
three dynamics employed, and the slopes and
offsets of the sigmoids used as input filters.

We optimized the parameters by using
the powerful Covariance Matrix Adaptation
Evolutionary Strategy.8 The CMA-ES auto-
matically adapts the mutation distribution’s
covariance matrix and thereby considers
correlations and scaling of the objective
parameters. We trained the acceleration
dynamics for autonomous cruise control—
that is, for maintaining a desired speed while
respecting the minimal time to contact. We
trained the permission and motivation
dynamics to reproduce measured, real dri-
ver behaviors and to generate correct dri-
ving behavior. We constructed logical con-
ditions to describe the fitness for these three
levels. Such conditions detected violations
of the desiderata—for instance, permission
to pass when the space-time gap on the left
lane was insufficient or motivation to pass
when the speed was close to desired.

Results
The evolved driving behavior fulfills the

constraints while achieving a good approx-
imation of the desired speed and avoiding
high risk values.

Analysis of the dynamical systems that
emerge from the optimization reveals that
they do, in fact, closely track the attractor
states, as Figure 3 shows. Instabilities induce
behavioral changes, such as switching from
deceleration to acceleration, which always
pass through bistable regimes by construc-

tion, thus stabilizing the decision. In Figure
3a, an activation variable’s time course during
the evolved driver model’s simulated driving
is plotted in blue, together with the value of
the associated attractor (red).The variable
tracks the attractor when the attractor location
jumps from negative to positive values near
170 time units. In Figure 3b, the associated
rate of change is plotted against the variable.
This illustrates the approach to the attractor at
negative values and then the fast relaxation to
the shifted attractor at positive values. The
blue points are samples obtained from the
simulator, connected by the red line.

Figure 4 compares the driver model to the
behavior of real human drivers. David Smith

and his colleagues asked participants to drive
on a test track and then in a driving simulator
using one of three strategies: cautious, nor-
mal, or aggressive.9 They observed the
points at which drivers changed lanes in the
context of passing maneuvers and plotted the
distance to the front car against the relative
velocity. All three conditions showed events
scattered along a straight line that corresponds
to a particular time-to-contact. With increas-
ing risk taking, the line’s slope decreased,
corresponding to a decreasing time-to-con-
tact at lane change. By imposing different
desired speeds and different thresholds in the
various contributions to the fitness functions,
we were able to model the three kinds of
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Figure 4. Comparison of driver model to human drivers. (a) The values of relative speed and distance at which test drivers, in a real
highway scenario, decided to initiate a passing maneuver; (b) the same measures, obtained in a simulated environment, as a result
of training our agent’s decision system.
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drivers. In other words, we obtained driving
styles by defining different targets for the
evolutionary optimization of the driver model.

Our driving simulator is a powerful tool
for modeling driving behavior, both in set-
ting and testing different driving strategies
and in varying optimization targets. The
behavioral model makes it possible to rep-
resent different driver types. DAS develop-
ers can apply such experimental settings to
driver models to optimize their systems.

In our lab, we’ve developed a sophisti-
cated computer vision system as the percep-
tual module of vision-based DASs.10 This
module uses a large number of parameters
including thresholds and filters. To tune the
parameters for optimal performance, we are
using driver models in our simulator and
integrating the visual-sensor module through
a visual-sensor model. We’ve employed evo-
lutionary computation to adapt the vision
system parameters, optimizing fitness func-
tions based on the ground truth available

within the simulator. We envision support for
driver classifications based on on-board data
obtained from the vision system or other
sensors and on recorded driver actions.
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