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Maximum Likelihood Model Selection for 1-Norm
Soft Margin SVMs with Multiple Parameters
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Abstract—Adapting the hyperparameters of support vector machines (SVMs) is a challenging model selection problem, especially

when flexible kernels are to be adapted and data are scarce. We present a coherent framework for regularized model selection of 1-

norm soft margin SVMs for binary classification. It is proposed to use gradient-ascent on a likelihood function of the hyperparameters.

The likelihood function is based on logistic regression for robustly estimating the class conditional probabilities and can be computed

efficiently. Overfitting is an important issue in SVM model selection and can be addressed in our framework by incorporating suitable

prior distributions over the hyperparameters. We show empirically that gradient-based optimization of the likelihood function is able to

adapt multiple kernel parameters and leads to better models than four concurrent state-of-the-art methods.

Index Terms—support vector machines, model selection, regularization, maximum likelihood

!

1 INTRODUCTION

SUPPORT vector machines (SVMs, [1], [2]) are success-
ful pattern recognition algorithms well embedded

in statistical learning theory [3]. Still, in practice their
application is not straightforward because they require
the user to specify a kernel function, corresponding to
a metric on the data, and a regularization parameter.
It is well known that the performance of the resulting
machine depends crucially on this choice, which poses
the model selection problem for SVMs.

In simple cases, it is possible to adapt the hyperpa-
rameters manually by trial-and-error or based on coarse
grid search using a cross-validation estimate of the
generalization error. However, this standard proceeding
does not scale to high-dimensional parameter spaces
associated with classes of flexible candidate kernels.
High flexibility in the choice of the kernel function
allows the metric in the feature space to be tailored to
the pattern recognition problem at hand and, therefore,
promises better performance. In practice, limiting the
space of potential kernel functions and non-expert ad-
hoc decisions during model selection can reduce the
success or even the applicability of SVMs.

Therefore, various algorithms for automatic SVM
model selection have been suggested. General tech-
niques include canonical hold-out-set based methods
such as cross-validation [4]. Furthermore, specific meth-
ods for SVMs have been proposed [3], [5]–[12].

In this paper we consider the model selection problem
for the widely used standard 1-norm soft margin SVM
formulation for binary classification (the attribute 1-
norm refers to the penalized norm of slack variables,
corresponding to the hinge loss, not to the norm of the
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weight vector as, e.g., in [13]). We are interested in meth-
ods capable of selecting both the kernel parameters and
the complexity control parameter of the SVM quickly
and robustly. The focus on the standard case of the
most widely used 1-norm SVM (in contrast to the SVM
variant with 2-norm slack penalty term) narrows down
the choice of the model selection method, because some
methods proposed in the literature are only applicable
to 2-norm SVMs.

We argue that the log-likelihood estimate introduced
by Platt [14] is a natural objective function for model
selection. Platt proposed logistic regression for estimat-
ing the class conditional probabilities. This method is
a heuristic, but has become popular because it is sim-
ple, computationally cheap, and gives surprisingly good
results (despite principal limitations, see [15]–[17]). We
propose the resulting log-likelihood function as an op-
timization criterion for model selection and show that
efficient gradient-based methods are applicable to its
maximization.

Overfitting is a severe problem, in particular when
adapting highly flexible kernel functions based on rather
small datasets. Arguably the most elaborate and flexible
ways to address the problem of overfitting in SVM
model selection are Bayesian approaches [18]–[21]. Es-
pecially when the training data is limited, it is desir-
able to incorporate prior knowledge into the selection
process. In a Bayesian framework such knowledge can
naturally be included in the form of prior distributions.
It is straight-forward to embed the log-likelihood objec-
tive function into this probabilistic framework for SVM
model selection.

It has to be stressed that the goal of our work is
to derive a robust model selection strategy for 1-norm
SVMs, which have proven to yield sparse classifiers
that generalize well. They are frequently used across
a broad range of application domains, and our goal is
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to provide robust automatic model selection algorithms
for these application scenarios. Support vector machines
are a frequentist approach to pattern recognition. We
do not want to change our learning machine for the
reasons just mentioned, but nevertheless want to profit
from a Bayesian framework for model selection if ex-
pert knowledge in terms of a hyperparameter prior is
available. We show how to achieve these goals by using
a likelihood function as an objective function for SVM
model selection.

The paper is organized as follows. We first describe 1-
norm SVMs for binary classification to fix our notation.
Then we review state-of-the-art techniques for automatic
model selection in section 3. In section 4 we turn to
the log-likelihood for gradient-based model selection,
possibly augmented by a hyperparameter-prior. An ex-
tensive experimental evaluation is presented in section 5.
In the supplementary material, we provide software for
validating the results and for applying our approach to
new model selection problems. The paper ends with a
discussion and conclusions.

2 SUPPORT VECTOR MACHINES

Support vector machines are state-of-the-art in machine
learning for pattern recognition, in particular for binary
classification. We consider an input space X and the out-
put space Y = {+1,−1}. Learning is driven by sample
data S = {(x1, y1), . . . , (x!, y!)} with (xi, yi) for 1 ≤ i ≤ !
drawn independently from some fixed unknown distri-
bution p over X × Y . The goal of binary classification is
to infer from S a hypothesis h : X → Y minimizing the
risk Rp(h) =

∫

X×Y

L(y, h(x)) dp(x, y) corresponding to the

generalization error. We consider the 0-1-loss given by
L(y, h(x)) = (−h(x)y + 1)/2 such that the risk becomes
the expected classification error.

Support vector machines transfer the input data to a
feature space and perform linear classification in that
space. Given a positive semi-definite kernel function
k : X × X → R, we consider the feature space
Hk = span{k(x, ·) |x ∈ X} and the function class Hb

k =
{f = g + b | g ∈ Hk, b ∈ R}. We classify according to
the sign of a decision function f ∈ Hb

k. The decision
boundary induced by f is a hyperplane in Hk. The
decision function generated by a 1-Norm Soft Margin
SVM corresponds to the solution of

minimize
f∈Hb

k

1

!

!
∑

i=1

Lhinge(yi, f(xi)) +
γ!

2
‖f‖2

k ,

where γ! = (!C)−1 and the (semi-)norm ‖ · ‖k is in-
herited from Hk to Hb

k. The loss function is given by
Lhinge(y, f(x)) = max{0, 1−yf(x)}. The parameter C > 0
controls the trade-off between the optimization goals of
reducing the empirical loss measured by Lhinge and the
complexity of the hypothesis measured by ‖.‖2

k.
The SVM decison function f takes the form f(x) =

∑!
i=1 αik(x, xi) + b with α ∈ R! and b ∈ R. We

solve the SVM optimization problem using the algorithm
proposed in [22], which is implemented in the SHARK

machine learning library [23]. Examples xi with corre-
sponding coefficient αi '= 0 are called support vectors.
We talk about bounded support vectors if the coefficient
is at its bound yi · C.

The regularization parameter C and the parameters θ
of a family kθ of candidate kernel functions are called
hyperparameters. Their proper selection is the model
selection problem for SVMs. To stress the dependency
of the decision function f on the hyperparameters and
the training data we denote the function resulting from
training on S with regularization parameter C and ker-
nel k by fC,k,S ∈ Hb

k.

3 SVM MODEL SELECTION

A number of techniques have been proposed for the
automatic selection of hyperparameters [3], [6], [8]–[12].
These range from general-purpose techniques such as
hold out set-based methods to specialized approaches
that exploit properties of the SVM margin to bound
the leave-one-out error. Most approaches propose an
objective function, typically an error measure or bound,
and an algorithm for its minimization.

Cross-validation (CV) is a standard technique, with
the leave-one-out (LOO) error as a special case. Its sole
parameter, the number of data folds, has undergone
numberous investigations. Values of five or ten turn
out to be a good compromise between low variance
(few folds) and low bias (many folds) [4]. Hold out
set-based error measures such as CV count the number
of misclassified patterns in the validation sets and are
therefore discrete-valued and non-differentiable. Simple
grid search is the standard method for their minimiza-
tion in low-dimensional parameter spaces. Alternatively,
evolutionary direct search can be applied [24], [25].

However, in high-dimensional search spaces one
would like to base search on direction information as
provided by the gradient of the objective function. There-
fore it has been proposed to smoothen the 0-1-loss with
a sigmoid approximation [11].

Several other differentiable objective functions have
been proposed for model selection of 2-norm SVMs (see,
e.g., [8] and http://olivier.chapelle.cc/ams/),
in which the hinge loss in the SVM optimization problem
is replaced with the squared hinge loss. In this special
case the regularization parameter can be treated like a
kernel parameter [8]. The most important examples are
the radius-margin bound [3], [9] and the span-bound [6],
[8], which are both derived as upper bounds of the LOO
error. We see some problems with these error measures.
At least for small datasets, the frequent argument that
the LOO error is nearly unbiased is not convincing due
to its high variance. Second, actively minimizing error
bounds violates their statistical prerequisites (i.e., the ob-
jective function values cannot be interpreted as bounds
anymore). Third, the radius-margin quotient can not
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directly be used as a criterion for standard 1-norm soft-
margin SVMs, because the radius does not depend on C.
Adding an appropriate term depending on C does not
give satisfactory results [26], [27]. While there is a variant
of the span-bound for 1-norm SVMs, it provides only
a loose upper bound by treating all bounded support
vectors as errors.

4 REGULARIZED SVM MODEL SELECTION

For the integration of SVM learning into a Bayesian
framework it is common practice to start with a prob-
abilistic interpretation of a term of the generic form
F + λR, where F depends on the empirical loss, R is a
regularization term, and λ is a tradeoff parameter. These
terms can occur either at the first level of inference [20],
for example with F = 1

!

∑!
i=1 Lhinge(yi, f(xi)), R =

1
2‖f‖

2
k and λ = γ!, or at the second level of inference [21],

namely model selection, for example with F being a
model selection criterion, R the negative logarithm of
a hyperparameter prior, and λ a normalization constant.
In both cases, the Bayesian framework is rooted in the
interpretation of F + λR as the negative logarithm of a
posterior probability

F + λR + const = − log(likelihood · prior)

= − log(posterior) .

Then minimizing F + λR corresponds to a maximum a
posteriori (MAP) estimate of the parameters. These ap-
proaches combine the frequentist-motivated SVM with
a Bayesian interpretation in order to take advantage of
priors, for example for the selection of hyperparameters.

It is possible to choose priors on parameters in order
to integrate these parameters out. This truly Bayesian
proceeding effectively replaces parameters by priors,
and the hope is that the selection of a prior is more
intuitive and more robust than the direct selection of a
parameter value. The drawback of this method is that the
integration is usually computationally intractable and
one must resort to approximations. It is tempting to
choose (e.g., conjugate) priors such that the integration
can be computed efficiently. However, we argue that in
general the selection of arbitrary priors just to simplify
computations is not reasonable.

Although the existing strategies often give good re-
sults, we want to remark that it is in most cases unnatu-
ral to interpret exp(−F ) (suitably normalized, if possible)
as a likelihood function of the SVM model parameters.
Such approaches re-motivate quantities as being prob-
abilities that have no probabilistic interpretation. We
find it more natural to directly introduce a likelihood
function, such as the one proposed by Platt [14], without
re-interpreting some term of interest in an unnatural
way.

4.1 Platt’s Likelihood Estimate

Given a trained SVM, the class conditional probabilities
can be estimated using logistic regression. Let us first

consider a validation dataset S̃ =
{

(x̃1, ỹ1), . . . , (x̃!̃, ỹ!̃)
}

independent of the training dataset S (later we will
use a cross-validation procedure). Platt [14] has shown
that the conditional probability P (ỹ = +1 | f̃C,k,S(x̃))
of positive label given the SVM prediction can be well
estimated with a simple sigmoidal function σ : R → [0, 1]
squashing the decision function. The parameters of this
function are determined directly by maximizing the log-
likelihood

L(S̃,σ, fC,k,S) =
∑

(x̃,ỹ)∈S̃
ỹ=+1

log σ
(

fC,k,S(x̃)
)

+
∑

(x̃,ỹ)∈S̃
ỹ=−1

log
(

1 − σ
(

fC,k,S(x̃)
)

)

,

see also [28].

The sigmoid takes the form σ(r,s)(t) = 1/(1 + exp(s ·
t + r)). In the original work of Platt [14] a uniform
prior is used to regularize the selection of the sigmoid
parameters r and s. For efficiency we drop the regular-
ization. As proposed in [14] we use gradient-based opti-
mization of a cross-validation based objective function to
determine the sigmoid parameters and to compute the
resulting log-likelihood. Now we define a probabilistic
output SVM as a standard 1-norm SVM combined with
a sigmoid σ(r,s).

The hyperparameters of a probabilistic output SVM
are the kernel parameters, the complexity control pa-
rameter C, and the sigmoid parameters (r, s). For se-
lecting these parameters based on a training dataset S,
we propose to maximize the N -fold cross-validation
log-likelihood L̄ =

∑N
n=1 L(Sn,σ(r,s), fC,k,S\Sn

), where
S = S1∪̇ . . . ∪̇SN is a partition of the dataset S into N
disjoint subsets Sn of roughly equal size. Here, fC,k,S\Sn

is the SVM decision function obtained on the training
data S \Sn. Then L(Sn,σ(r,s), fC,k,S\Sn

) denotes the log-
likelihood of the model σ(r,s)◦fC,k,S\Sn

: X → [0, 1] given
the hold-out set Sn.

The log-likelihood is differentiable w.r.t. the SVM hy-
perparameters whenever the SVM hypotheses fC,k,S\Sn

are. This is the case everywhere except for a low-
dimensional zero set in which one of the sets of sup-
port vectors or bounded support vectors changes. In
these points the dependency is still continuous, such
that gradient-based optimization makes sense. A highly
efficient way to compute the derivatives of fC,k,S\Sn

(x)
w.r.t. C and k – often even faster than machine training
itself – is provided by Keerthi et al. in [11]. Similar ideas
have been presented in [8] for 2-norm SVMs.

If expert knowledge is available in form of a
prior π(C, θ) over the hyperparameters then we add
log(π(C, θ)) to the log-likelihood in order to obtain a
maximum-a-posteriori (MAP) parameter estimate. The
resulting posterior can be maximized based on gradients
if the prior is differentiable, which is a weak assumption
in practice.
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4.2 Relation to Previous Work

Our likelihood computation is based on the work by
Platt [14]. The only hint in the literature towards using
the log-likelihood for kernel selection is found in [29],
where the derivative of the probability P (y = +1 |x)
is computed in the context of SVM model selection.
However, to the best of our knowledge, there has never
been a thorough investigation of this arguably natural
objective function, and in particular we are not aware of
any experimental study. It has also never been noticed
that this objective function can be combined with a prior
distribution in order to encode priori knowledge into the
model selection process.

Bartlett and Tewari [17] have shown that no consistent
estimator of the form Pr(y = +1 | f(x)) can be con-
structed based on the 1-norm SVM decision function f .
However, these asymptotic arguments are not relevant
for the case of small datasets. We never observed the
asymptotic effects discussed in [17] in practice.

loss functions

− log
(

1/(1 + exp(−x))
)

hinge loss max{0, 1 − x}

-4 -3 -2 -1 0 1 2 3 40

1

2

3

4

5

x

Fig. 1. Loss functions involved in the computation of the
log-likelihood model selection criterion. The logarithm of
the sigmoid resembles the hinge loss underlying SVM
training.

Considering the technical aspects, the optimization
of the likelihood in our approach fits into the general
model selection framework presented in [11], where a
sigmoid is used for smoothing the 0-1-loss. However,
conceptually our approach is considerably different. The
sigmoidal model is not used as a smooth approximation
of some non-differentiable loss function, but in contrast
takes the important role of a probabilistic model. The re-
sulting model selection objective function L̄ is motivated
by a probabilistic interpretation, and it is not an arbitrary
approximation of the classification error. The asymptotic
behavior of the corresponding loss resembles the hinge
loss, which fits well into the 1-norm SVM framework,
see Figure 1. The conceptual difference is best explained
in the terms of soft and hard classification according to
Wahba [30]: Coming from the hard classification frame-
work considered in [11], we switch to a soft classification
formulation in order to apply Bayesian methods. On the
theoretical side this probabilistic interpretation is the key

for the proper integration of a hyperparameter prior into
the model selection process, and on the practical side our
experiments show that maximization of the likelihood
gives superior results.

Our method is inspired by and related to the approach
proposed by Cawley and Talbot [21] for least squares
SVMs and kernel logistic regression [31]. The conceptual
similarity is the direct application of a hyperparameter
prior to a model selection criterion, without involving
the SVM training procedure. In [21], Cawley and Talbot
use a simple squared loss (which naturally fits into
the framework of least squares SVMs) to construct a
model selection criterion, which is then interpreted as
a negative log-likelihood. By contrast, we start with a
meaningful likelihood term and propose it as a model
selection criterion, to which Bayesian regularization can
be applied naturally.

5 EXPERIMENTS

The goal of our experiments is to assess the performance
of the log-likelihood as an objective functions for SVM
model selection. We experimentally compare it to four
concurrent objective functions introduced in section 3 on
a large collection of datasets. We use flexible Gaussian
automatic relevance detection (ARD) kernels of the form

k(x, x′) = exp
(

−
∑d

i=1 γi(xi − x′
i)

2
)

. All datasets in this

study are relatively small, such that model selection for
SVMs with Gaussian ARD kernel with a total of (d + 1)
parameters is challenging, where d is the dimension of
the input space.

We consider two discrete-valued objective functions,
namely 5-fold cross-validation and the leave-one-out
error. Usually, simple grid search is conducted on non-
differentiable objective functions. Because grid search is
infeasible in high-dimensional search spaces, we employ
the highly efficient elitist version [32] of the covariance
matrix adaptation evolution strategy (CMA-ES) [33] for
hyperparameter search. We refer to the corresponding
model selection strategies as cross-validation and
leave-one-out.

The span-bound (for efficiency, we use the approxi-
mate version of the span-bound [8]), the smoothed cross-
validation error [11], and the negative log-likelihood
form a second group of objective functions. They are
differentiable w.r.t. the kernel and the regularization
parameter.1 We use the iRprop+ algorithm [34] for their
optimization. We refer to the corresponding model se-
lection strategies as span bound, smoothed CV, and
likelihood, respectively.

All experiments were carried out on the
(d+1)-dimensional search space spanned by
(log(C), log(γ1), . . . , log(γd)). We start the optimization
from the point (0,− log(2d), . . . ,− log(2d)) with an initial

1. Strictly speaking, these functions are differentiable outside a zero
set where the SVM hypothesis is not differentiable. Note that the span-
bound is not continuous in the exceptional zero set, such that its
gradient can be misleading (see Figure 2 in [8]).
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0.20.20.2

0.30.3

0.30.30.3

Fig. 2. Parameters γi of the ARD kernel (on log scale)
found by (A) cross-validation, (B) leave-one-out,
(C) span-bound, (D) smoothed CV, and
(E) likelihood, averaged over 100 data partitions.
Only the first five components are equally task relevant.

step size of 1/10. This initial point corresponds to the
educated guess of a radial kernel with width

σ =
√

1/(2γ) =

√

√

√

√1

/(

2 ·
d

∑

i=1

γi

)

=
√

d ,

which is a reasonable configuration if all coordinates are
normalized to unit variance. The optimization loop is
stopped as soon as there is no progress made for 20
iterations for the discrete objective functions, or if the
gradient step size falls below 10−3, or in the worst case if
the total number of iterations exceeds 200. These criteria
ensure that the model selection problem is solved with
reasonable accuracy, because the generalization perfor-
mance depends only on the first few (one or two) digits
of the hyperparameters.

Let us start with an artificial toy problem to demon-
strate the effects of the different model selection strate-
gies. Samples (x, y) ∈ R10 × {±1} are drawn as follows:
First we fix a label y with equal probability, then we
set xi = y/2 + zi for i ∈ {1, . . . , 5} and xi = zi for
i ∈ {6, . . . , 10}, where the zi ∼ N (0, 1) are standard nor-
mally distributed and independent. Thus, all coordinates
are noisy, and only the first five coordinates carry task
relevant information. We drew 10000 examples which
were split into 100 random partitions of 500 training and
9500 test examples. The resulting performance of all five
methods is reported in Table 1, and the corresponding
kernel parameters are depicted in Figure 2.

Our artificial toy dataset is clearly tailored to-
wards the ARD kernel, but by no means towards the
likelihood method. Nevertheless, the likelihood

strategy high significantly outperforms its competitors.
Figure 2 reveals that this method does the best job in
adapting the kernel parameters, maybe on par with
cross-validation, which selects slightly larger val-

ues on average. Interestingly, the gradient of the span

bound is not predicting the global trend well, such that
this method is unable to capture the relative importance
of the different components in this task.

We applied the same experimental procedure to 27
benchmark datasets. 13 of these datasets have been in-
troduced in [35] as a benchmark collection. They are pre-
partitioned into 100 different training and test datasets
(only 20 for image and splice). We obtained 14 more
datasets from the UCI machine learning repository [36]
and processed them as similarly as possible. All nominal
features have been encoded symmetrically,2 and all fea-
tures have been normalized to zero mean and unit vari-
ance. In case of multi-class classification, minority classes
have been merged to form binary classification problems.
For each partitioning of a data set, an independent model
selection was performed. The pre-processed datasets,
including all partitioning information, are included in
the supplementary material. The results of the five model
selection methods are summarized in Tables 1 and 2.

Note that the results achieved on the different par-
titions are not strictly independent, because the same
data are used to form training and test sets for the
different partitions. We use the paired Wilcoxon rank
sum test to compare the results achieved by different
methods as if the performances on the different partitions
were statistically independent. Thus, the significance levels
reported most probably need adjustment, but the test re-
sults can nevertheless be used to judge the differences in
performance. To stay on the safe side we used relatively
strict significance levels of 0.01 and 0.001.

The results show that on 15 of the problems
the likelihood strategy performs best. It is out-
performed by cross-validation, leave-one-out,
and/or smoothed-CV in 5 cases. For 8 datasets there is
no clear winner.

The performance of the span bound is poor due
to its very local gradient information that does not
reflect the global trend. In control experiments we di-
rectly minimized the span-bound with CMA-ES. Because
the span upper bounds the LOO error, it is not sur-
prising that the resulting performance is usually close
to leave-one-out, but slightly worse. In total, the
smoothed-CV strategy performed surprisingly poorly
compared to likelihood (significanty worse on 15
bechmarks, better on 2).

6 DISCUSSION

In our experience, many model selection criteria pro-
posed in the literature are not very robust. They work
on selected test problems, but often fail on others. We
therefore decided a priori to evaluate our algorithms on
the complete benchmark suite considered in [35], and

2. We represent two possible nominal feature values with a single
binary variable. In case of more than two nominal values per feature
we resort to one binary variable per value. Data points with missing
values have been removed.
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artificial toy problem balance-scale
cross-validation 0.147 0.150 0.154 – << >> 0.031 0.041 0.049 – << >>

leave-one-out 0.145 0.149 0.154 – << < >> 0.029 0.038 0.044 – <<

span-bound 0.146 0.157 0.173 >> >> – >> >> 0.107 0.177 0.266 >> >> – >> >>

smoothed-CV 0.147 0.152 0.157 > << – >> 0.031 0.040 0.052 << – >>

likelihood 0.140 0.143 0.147 << << << << – 0.024 0.034 0.044 << << << –
banana cylinder bands

cross-validation 0.104 0.107 0.111 – << << >> 0.253 0.280 0.317 – << >>

leave-one-out 0.105 0.108 0.112 – << << >> 0.256 0.280 0.329 – << > >>

span-bound 0.115 0.157 0.390 >> >> – >> >> 0.314 0.366 0.405 >> >> – >> >>

smoothed-CV 0.109 0.115 0.125 >> >> << – >> 0.241 0.268 0.305 < << –
likelihood 0.101 0.106 0.109 << << << << – 0.220 0.256 0.293 << << << –

breast cancer car evaluation
cross-validation 0.234 0.273 0.299 – << 0.071 0.087 0.099 – << >>

leave-one-out 0.234 0.260 0.299 – << < 0.074 0.086 0.095 – << >>

span-bound 0.273 0.312 0.351 >> >> – >> >> 0.235 0.258 0.289 >> >> – >> >>

smoothed-CV 0.244 0.273 0.299 << – 0.056 0.073 0.104 << – >>

likelihood 0.247 0.273 0.312 > << – 0.041 0.049 0.056 << << << << –
connect-4 diabetis

cross-validation 0.185 0.188 0.196 – << << >> 0.230 0.240 0.257 – <<

leave-one-out 0.184 0.187 0.195 – << << >> 0.230 0.242 0.257 – << >

span-bound 0.272 0.272 0.272 >> >> – >> >> 0.247 0.265 0.287 >> >> – >> >>

smoothed-CV 0.199 0.215 0.269 >> >> << – >> 0.229 0.243 0.250 << –
likelihood 0.169 0.171 0.178 << << << << – 0.226 0.237 0.253 < << –

diagnosis flare solar
cross-validation 0.000 0.000 0.000 – << 0.323 0.333 0.343 – << < <<

leave-one-out 0.000 0.000 0.000 – << 0.324 0.335 0.348 – << <<

span-bound 0.000 0.067 0.200 >> >> – >> >> 0.324 0.345 0.438 >> >> –
smoothed-CV 0.000 0.000 0.000 << – 0.325 0.335 0.355 > – <<

likelihood 0.000 0.000 0.000 << – 0.337 0.354 0.370 >> >> >> –
german heart

cross-validation 0.232 0.247 0.260 – << 0.150 0.180 0.210 – <<

leave-one-out 0.236 0.248 0.263 – << 0.160 0.180 0.200 – << <

span-bound 0.312 0.340 0.360 >> >> – >> >> 0.210 0.245 0.280 >> >> – >> >>

smoothed-CV 0.230 0.250 0.264 << – 0.160 0.200 0.210 > << –
likelihood 0.230 0.245 0.264 << – 0.160 0.190 0.210 << –

image ionosphere
cross-validation 0.025 0.028 0.029 – << < > 0.059 0.065 0.075 – << << <<

leave-one-out 0.026 0.030 0.036 – << >> 0.060 0.065 0.075 – << << <<

span-bound 0.101 0.150 0.247 >> >> – >> >> 0.239 0.350 0.366 >> >> – >> >>

smoothed-CV 0.031 0.035 0.046 > << – >> 0.065 0.083 0.101 >> >> << –
likelihood 0.020 0.023 0.025 < << << << – 0.070 0.085 0.096 >> >> << –

king rook vs. king king rook vs. king pawn
cross-validation 0.164 0.168 0.174 – << >> 0.049 0.060 0.066 – << > >>

leave-one-out 0.162 0.170 0.176 – << >> 0.050 0.058 0.065 – << > >>

span-bound 0.177 0.182 0.192 >> >> – >> >> 0.240 0.287 0.361 >> >> – >> >>

smoothed-CV 0.167 0.174 0.178 << – >> 0.040 0.051 0.062 < < << – >>

likelihood 0.143 0.145 0.154 << << << << – 0.024 0.032 0.038 << << << << –
magic gamma telescope mammographic mass

cross-validation 0.155 0.160 0.166 – << >> 0.174 0.183 0.204 – << >>

leave-one-out 0.155 0.159 0.165 – << >> 0.173 0.181 0.201 – << <

span-bound 0.355 0.355 0.356 >> >> – >> >> 0.178 0.198 0.230 >> >> – >> >>

smoothed-CV 0.154 0.163 0.170 << – >> 0.179 0.186 0.203 > << – >>

likelihood 0.148 0.151 0.154 << << << << – 0.170 0.179 0.192 << << << –
ringnorm sonar (mines vs. rocks)

cross-validation 0.020 0.022 0.026 – << << << 0.176 0.213 0.241 – << << >>

leave-one-out 0.020 0.022 0.024 – << << << 0.185 0.213 0.241 – << << >>

span-bound 0.060 0.097 0.197 >> >> – >> >> 0.313 0.407 0.472 >> >> – >> >>

smoothed-CV 0.032 0.036 0.040 >> >> << – >> 0.213 0.245 0.278 >> >> << – >>

likelihood 0.027 0.029 0.033 >> >> << << – 0.167 0.194 0.213 << << << << –

TABLE 1
Absolute and relative performance of the different model selection strategies on the first 20 datasets. The 25%, 50%,

and 75% quantiles of the test errors over the fixed partitions are reported. The symbols <, and << are used to
indicate that the method in this row performs significantly better than the method in this column with significance
levels 0.01 and 0.001 (paired Wilcoxon rank sum text), respectively, while the symbols >, and >> indicate that the

method in the corresponding row performs significantly worse.
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spambase splice
cross-validation 0.094 0.098 0.107 – << << >> 0.099 0.106 0.121 – << >> >>

leave-one-out 0.093 0.098 0.104 – << << >> 0.099 0.106 0.115 – << >> >>

span-bound 0.132 0.141 0.156 >> >> – >> >> 0.248 0.306 0.338 >> >> – >> >>

smoothed-CV 0.102 0.111 0.118 >> >> << – >> 0.055 0.058 0.068 << << << –
likelihood 0.087 0.090 0.097 << << << << – 0.054 0.055 0.063 << << << –

thyroid tic-tac-toe
cross-validation 0.040 0.053 0.067 – << 0.013 0.014 0.022 – << << >> >>

leave-one-out 0.037 0.053 0.067 – << 0.016 0.027 0.039 >> – << >> >>

span-bound 0.040 0.053 0.080 – >> 0.332 0.342 0.353 >> >> – >> >>

smoothed-CV 0.027 0.040 0.067 << – << 0.010 0.014 0.018 << << << – >>

likelihood 0.040 0.060 0.080 >> >> >> – 0.007 0.011 0.014 << << << << –
titanic blood transfusion

cross-validation 0.224 0.226 0.230 – 0.226 0.235 0.243 – << >

leave-one-out 0.224 0.228 0.231 – 0.225 0.233 0.242 – <<

span-bound 0.224 0.227 0.230 – 0.230 0.240 0.273 >> >> – >> >>

smoothed-CV 0.223 0.227 0.230 – 0.225 0.233 0.240 << –
likelihood 0.223 0.227 0.230 – 0.223 0.233 0.240 < << –

twonorm waveform
cross-validation 0.027 0.031 0.037 – << << << 0.103 0.109 0.117 – << <<

leave-one-out 0.026 0.027 0.036 – << << << 0.103 0.109 0.115 – << <<

span-bound 0.116 0.189 0.248 >> >> – >> >> 0.157 0.178 0.200 >> >> – >> >>

smoothed-CV 0.034 0.036 0.041 >> >> << – 0.109 0.113 0.119 >> >> << – >>

likelihood 0.034 0.037 0.040 >> >> << – 0.106 0.109 0.114 << << –

TABLE 2
Absolute and relative performance of the different model selection strategies on the remaining 8 datasets. For details

refer to the caption of Table 1.

later added lots of datasets from the UCI repository
to broaden the experimental basis. On these problems,
gradient-based maximization of the approximated like-
lihood function has proven to be an efficient and highly
robust method for adapting multiple kernel parameters,
clearly outperforming other available methods.

Adding a prior and turning the maximum likelihood
into a maximum a posteriori approach can further im-
prove the performance of the model selection process
and particularly its robustness. Of course, any perfor-
mance gain depends on the quality of the prior, which
amounts to the quality of available expert knowledge.
Therefore, it is difficult to assess its potential experimen-
tally on a large benchmark suite.

The good results achieved by the likelihood strat-
egy are not self-evident, because the maximization of
the log-likelihood objective function does not directly
minimize the 0-1-loss used for testing. This is in contrast
to the cross-validation error, its smoothed variant, the
leave-one-out error, and the span bound (which upper
bounds the LOO error). In the following, we discuss
some hypotheses that may explain our empirical results.

The discrete-valued nature of CV errors leads
to objective functions with many plateaus. Thus,
cross-validation and leave-one-out do not pro-
vide sufficient direction information for search in high-
dimensional parameter spaces. These objective functions
are even difficult to optimize for the CMA-ES, which in

principle can cope well with plateaus. However, opti-
mizing cross-validation and leave-one-out with
the CMA-ES can give good results whenever the starting
point of the optimization is already sufficiently close to
the optimum (e.g., whenever a radial kernel would be
suitable for the problem at hand, which is often the case).
Thus, both the differentiable structure and the ability to
provide a trend by taking gradual real values are clear
advantages of the log-likelihood over hold out set-based
error measures in high-dimensional search spaces.

It was already found in [8] that gradient-based opti-
mization of the span-bound is endangered to be mis-
leading. This is because the gradient represents highly
local information that does not extend beyond the many
hyper-surfaces that split the search space into compo-
nents where the span bound is continuous and differ-
entiable. Fixes that require setting additional nursing
parameters have been tried, but these solutions are not
fully convincing.

The comparison of likelihood to the techni-
cally very similar smoothed-CV strategy is espe-
cially interesting. The significantly better success of the
likelihood strategy is hard to understand, because
smoothed CV is much closer to optimizing the 0-1-loss.
Figure 1 provides a possible explanation of this phe-
nomenon: Maximizing the log-likelihood corresponds to
a loss function closely related to SVM training.
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7 SUMMARY AND CONCLUSIONS

We propose a simple and coherent framework for sup-
port vector machine model selection. It is designed for
1-norm soft margin SVMs. Its core is maximization of a
differentiable estimate of the likelihood function of the
model parameters. The computations are based on an
established approximation of class conditional probabil-
ities. The likelihood can be combined with meaningful
priors for robust maximum a posteriori inference of
hyperparameters. In contrast to methods that approxi-
mate the classification error with a sigmoidal function
just in order to obtain a smooth objective function,
our approach has a natural probabilistic interpretation.
The experimental results clearly indicate the benefits
of the new model selection procedure for multiple hy-
perparameters and small datasets, where robust model
selection techniques are of utmost importance, and the
tools provided in the supplementary material allow our
approach to be applied to new datasets.
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