
Multi-objective Model Selection

for Support Vector Machines

Christian Igel

Institute for Neurocomputing
Ruhr-University Bochum
44780 Bochum, Germany

christian.igel@neuroinformatik.rub.de

Abstract. In this article, model selection for support vector machines
is viewed as a multi-objective optimization problem, where model com-
plexity and training accuracy define two conflicting objectives. Different
optimization criteria are evaluated: Split modified radius margin bounds,
which allow for comparing existing model selection criteria, and the train-
ing error in conjunction with the number of support vectors for designing
sparse solutions.

1 Introduction

Model selection for supervised learning systems requires finding a suitable trade-
off between at least two objectives, especially between model complexity and
accuracy on a set of noisy training examples (→ bias vs. variance, capacity
vs. empirical risk). Usually, this multi-objective problem is tackled by aggregat-
ing the objectives into a scalar function and applying standard methods to the
resulting single-objective task. However, this approach can only lead to satisfac-
tory solutions if the aggregation (e.g., a linear weighting of empirical error and
regularization term) matches the problem. Thus, choosing an appropriate aggre-
gation itself is an optimization task. A better way is to apply multi-objective
optimization (MOO) to approximate the set of Pareto-optimal trade-offs and to
choose a final solution afterwards, as discussed in the context of neural networks
in [1–4]. A solution is Pareto-optimal if it cannot be improved in any objective
without getting worse in at least one other objective [5–7].

In the following, we consider MOO of the kernel and the regularization pa-
rameter of support vector machines (SVMs). We show how to reveal the trade-off
between different objectives to guide the model selection process, e.g., for the de-
sign of sparse SVMs. One advantage of SVMs is that theoretically well founded
bounds on the expected generalization performance exist, which can serve as
model selection criteria.1 However, in practice heuristic modifications of these
bounds—e.g., corresponding to different weightings of capacity and empirical

1 When used for model selection in the described way, the term “bound” is slightly
misleading.

risk—can lead to better results [8]. The MOO approach enables us to compare
model selection criteria proposed in the literature after optimization.

As we consider only kernels from a parameterized family of functions, our
model selection problem reduces to multidimensional real-valued optimization.
We present a multi-objective evolution strategy (ES) with self-adaptation for
real-valued MOO. The basics of MOO using non-dominated sorting [6, 9] and
the ES are presented in the next section. Then SVMs and the model selection
criteria we consider are briefly described in section 3.2 and the experiments in
section 4.

2 Evolutionary multi-objective optimization

Consider an optimization problem with M objectives f1, . . . , fM : X → �
to

be minimized. The elements of X can be partially ordered using the concept
of Pareto dominance. A solution x ∈ X dominates a solution x′ and we write
x ≺ x′ iff ∃m ∈ {1, . . . , M} : fm(x) < fm(x′) and @m ∈ {1, . . . , M} : fm(x) >
fm(x′). The elements of the (Pareto) set {x | @x′ ∈ X : x′ ≺ x} are called
Pareto-optimal. Without any further information, no Pareto-optimal solution
can be said to be superior to another. The goal of multi-objective optimization
(MOO) is to find in a single trial a diverse set of Pareto-optimal solutions, which
provide insights into the trade-offs between the objectives. When approaching a
MOO problem by linearly aggregating all objectives into a scalar function, each
weighting of the objectives yields only a limited subset of Pareto-optimal solu-
tions. That is, various trials with different aggregations become necessary—but
when the Pareto front (see below) is not convex, even this inefficient procedure
does not help (cf. [6, 7]). Evolutionary multi-objective algorithms have become
the method of choice for MOO [5, 6]. The most popular variant is the non-
dominated sorting genetic algorithm NSGA-II, which shows fast convergence to
the Pareto-optimal set and a good spread of solutions [6, 9]. On the other hand,
evolution strategies (ES) are among the most elaborated and best analyzed evo-
lutionary algorithms for real-valued optimization. Therefore, we propose a new
method that combines ES with concepts from the NSGA-II.

2.1 Non-dominated sorting

We give a concise description of the non-dominated sorting approach used in
NSGA-II. For more details and efficient algorithms realizing this sorting we refer
to [9]. First of all, the elements in a finite set A ⊆ X of candidate solutions
are ranked according to their level of non-dominance. Let the non-dominated
solutions in A be denoted by ndom(A) = {a ∈ A | @a′ ∈ A : a′ ≺ a}. The Pareto
front of A is then given by {(f1(a), . . . , fM (a)) | a ∈ ndom(A)}. The elements in
ndom(A) have rank 1. The other ranks are defined recursively by considering the
set without the solutions with lower ranks. Formally, let domn(A) = domn−1(A)\
ndomn(A) and ndomn(A) = ndom(domn−1(A)) for n ∈ {1, . . . } with dom0 = A.
For a ∈ A we define the level of non-dominance r(a, A) to be i iff a ∈ ndomi(A).

As a second sorting criterion, non-dominated solutions A′ are ranked accord-
ing to how much they contribute to the spread (or diversity) of objective function
values in A′. This can be measured by the crowding-distance. For M objectives,
the crowding-distance of a ∈ A′ is given by c(a, A′) =

∑M
m=1 cm(a, A′)/(fmax

m −
fmin

m), where fmax
m and fmin

m are (estimates of) the minimum and maximum value
of the mth objective and

cm(a, A′) =

∞ , if fm(a) = min{fm(a′) | a′ ∈ A′} or fm(a) = max{fm(a′) | a′ ∈ A′}
min{fm(a′′) − fm(a′) |

a′, a′′ ∈ A′ : fm(a′) < fm(a) < fm(a′′)} , otherwise.

Based on the level of non-dominance and the crowding distance we define the
relation

a ≺A a′ ⇔ r(a, A) < r(a′, A) or
[
(r(a, A) = r(a′, A)) ∧ (c(a, ndomr(a′,A)(A)) > c(a′, ndomr(a′,A)(A)))

]
,

for a, a′ ∈ A. That is, a is better than a′ when compared using ≺A if either a
has a better (lower) level of non-dominance or a and a′ are on the same level
but a is in a “lesser crowded region of the objective space” and therefore induces
more diversity.

2.2 Multi-objective evolution strategy with mutative self-adaptation

Evolution strategies (ES, cf. [10, 11]) are one of the main branches of evolu-
tionary algorithms (EAs), i.e., a class of iterative, direct, randomized optimiza-
tion methods mimicking principles of neo-Darwinian evolution theory. In EAs, a
(multi-) set of µ individuals representing candidate solutions, the so called par-
ent population, is maintained. In each iteration (generation) t, λ new individuals
(the offspring) are generated based on the parent population. A selection proce-
dure preferring individuals representing better solutions to the problem at hand
determines the parent population of the next iteration.

In our ES, each individual a
(t)
i ∈ � 2n is divided into two parts, a

(t)
i =

(x
(t)
i , σ

(t)
i), the object variables x

(t)
i ∈ � n = X representing the correspond-

ing candidate solution and the strategy parameters σ
(t)
i ∈ � n. For simplicity,

we do not distinguish between fm(a
(t)
i) and fm(x

(t)
i). The strategy parame-

ters are needed for self-adaptation, a key concept in EAs [12, 13] that allows
for an online adaptation of the search strategy leading to improved search per-
formance in terms of both accuracy and efficiency (similar to adaptive step-
sizes / learning rates in gradient-based steepest-descent algorithms). The initial
parent population consists of µ randomly created individuals. In each iteration

t, new individuals a
(t+1)
i , i = 1, . . . , λ are generated. For each offspring a

(t+1)
i ,

two individuals, say a
(t)
u = (x

(t)
u , σ

(t)
u) and a

(t)
v = (x

(t)
v , σ

(t)
v), are chosen from the

current parent population uniformly at random. The new strategy parameters

σ
(t+1)
i = (σ

(t+1)
i,1 , . . . , σ

(t+1)
i,n) of offspring i are given by

σ
(t+1)
i,k =

1

2

[

σ
(t)
u,k + σ

(t)
v,k

]

︸ ︷︷ ︸

intermediate recombination

· exp
(

τ ′ · ζ
(t)
i + τ · ζ

(t)
i,k

)

︸ ︷︷ ︸

log-normal mutation

.

Here, the ζ
(t)
i,k ∼ N (0, 1) are realizations of a normally distributed random vari-

able with zero mean and unit variance that is sampled anew for each component

k for each individual i, whereas the ζ
(t)
i ∼ N (0, 1) are sampled once per indi-

vidual and are identical for each component. The mutation strengths are set to
τ = 1/

√

2
√

n and τ ′ = 1/
√

2n [12, 11]. Thereafter the objective parameters are
altered using the new strategy parameters:

x
(t+1)
i,k = x

(t)

c
(t)
i,k

,k
︸ ︷︷ ︸

discrete recombination

+ σ
(t+1)
i,k z

(t)
i,k

︸ ︷︷ ︸

Gaussian mutation

,

where z
(t)
i,k ∼ N (0, 1). The c

(t)
i,k are realizations of a random variable taking the

values u and v with equal probability. After generating the offspring, (µ, λ)-
selection is used, i.e., the µ best individuals of the offspring form the new parent
population.

So far, we have described a canonical ES with mutative self-adaptation,
for more details please see [11] and references therein. Now we turn this ES
into a multi-objective algorithm by using the non-dominated sorting operator
≺

{a
(t+1)
1 ,...,a

(t+1)
λ

}
for the ranking in the (µ, λ)-selection in iteration t. In addi-

tion, we keep an external archive A(t+1) = ndom(A(t) ∪ {a
(t+1)
1 , . . . , a

(t+1)
λ }) of

all non-dominated solutions discovered so far starting from the initial popula-
tion. This extends the ideas in [14] and yields the first self-adaptive ES using
non-dominated sorting, which we call NSES.

The NSES uses a non-elitist selection scheme (i.e., the best solutions found
so far are not kept in the parent population), because self-adaption does not
work well together with elitism. This is in contrast to NSGA-II [9] and the
self-adaptive SPANN [2]. Of course, the NSES is elitist when looking at the
concurrent archive A(t).

3 Models selection for SVMs

Support vector machines (SVMs, e.g., [15–17]) are learning machines based on
two key elements: a general purpose linear learning algorithm and a problem
specific kernel that computes the inner product of input data points in a feature
space.

3.1 Support vector machines

We consider L1-norm soft margin SVMs for the discrimination of two classes.
Let (xi, yi), 1 ≤ i ≤ `, be the training examples, where yi ∈ {−1, 1} is the

label associated with input pattern xi ∈ X . The main idea of SVMs is to map
the input vectors to a feature space F and to classify the transformed data
by a linear function. The transformation φ : X → F is implicitly done by
a kernel K : X × X → �

, which computes an inner product in the feature
space, i.e., K(xi, xj) = 〈φ(xi), φ(xj)〉. The linear function for classification in
the feature space is chosen according to a generalization error bound considering
a margin and the margin slack vector, i.e., the amounts by which individual
training patterns fail to meet that margin (cf. [15–17]). This leads to the SVM
decision function

f(x) = sign

(
∑̀

i=1

yiα
∗
i K(xi, x) + b

)

,

where the coefficients α∗
i are the solution of the following quadratic optimization

problem:

maximize W (α) =
∑̀

i=1

αi − 1

2

∑̀

i,j=1

yiyjαi, αjK(xi, xj)

subject to
∑̀

i=1

αiyi = 0

0 ≤ αi ≤ C, i = 1, . . . , ` .

The optimal value for b can then be computed based on the solution α∗. The
vectors xi with α∗

i > 0 are called support vectors. The number of support
vectors is denoted by # SV. The regularization parameter C controls the trade-
off between maximizing the margin

γ =

∑̀

i,j=1

yiyjα
∗
i α

∗
jK(xi, xj)

−1/2

and minimizing the L1-norm of the final margin slack vector ξ∗ of the training
data, where

ξ∗
i = max

0, 1 − yi

∑̀

j=1

yjα
∗
jK(xj , xj) + b

 .

3.2 Model selection criteria for L1-SVMs

Choosing the right kernel for a SVM is important for its performance. When a
parameterized family of kernel functions is considered, kernel adaptation reduces
to finding an appropriate parameter vector. These parameters together with the
regularization parameter are called hyperparameters of the SVM. In practice,

the hyperparameters are usually determined by grid search. Because of the com-
putational complexity, grid search is only suitable for the adjustment of very
few parameters. Further, the choice of the discretization of the search space may
be crucial. Perhaps the most elaborate techniques for choosing hyperparameters
are gradient-based approaches [18, 8, 19, 20]. When applicable, these methods are
highly efficient. However, they have some drawbacks and limitations: The kernel
function has to be differentiable. The score function for assessing the performance
of the hyperparameters (or at least an accurate approximation of this function)
also has to be differentiable with respect to all hyperparameters, which excludes
reasonable measures such as the number of support vectors. In some approaches,
the computation of the gradient is only exact in the hard-margin case (i.e., for
separable data / L2-SVMs) when the model is consistent with the training data.
Further, as the objective functions are indeed multi-modal, the performance of
gradient-based heuristics depends on the initialization—the algorithms are prone
to getting stuck in local optima. In [21, 22], single-objective evolution strategies
were proposed for adapting SVM hyperparameters, which partly overcome these
problems; in [23] a single-objective genetic algorithm was used for SVM feature
selection (see also [24–26]) and adaptation of the (discretized) regularization
parameter. Like gradient-based techniques, these methods are not suitable for
MOO. Therefore we apply the NSES to directly address the multi-objective na-
ture of model selection.

We optimize Gaussian kernels kA(x, z) = exp
(
−(x − z)T A(x − z)

)
, x, z ∈

� m. We look at two parameterizations of the symmetric, positive definite matrix
A. In the standard scenario, we adapt kγI , where I is the unit matrix and γ > 0
is the only adjustable parameter. In addition, we optimize m independent scaling
factors weighting the input components and consider kD, where D is a diagonal
matrix with arbitrary positive entries.

We want to design classifiers that generalize well. The selection criteria we
consider are therefore (partly) based on bounds on the number of errors in the
leave-one-out procedure, which gives an estimate of the expected generalization
performance. However, most bounds were derived for the hard-margin case (i.e.,
for separable data /L2-SVMs) and L1-SVMs cannot be reduced to this scenario.
Thus, we combine heuristics and results for the hard-margin case to selection
criteria for L1-SVMs.

3.3 Modified radius margin bounds

Let R denote the radius of the smallest ball in feature space containing all `
training examples given by

R =

√
√
√
√
∑̀

i=1

β∗
i K(xi, xi) −

∑̀

i,j=1

β∗
i β∗

j K(xi, xj) ,

where β∗ is the solution vector of the quadratic optimization problem

maximize
β

∑̀

i=1

βiK(xi, xi) −
∑̀

i,j=1

βiβjK(xi, xj)

subject to
∑̀

i=1

βi = 1

βi ≥ 0 , i = 1, . . . , ` ,

see [27]. Following a suggestion by Olivier Chapelle, the modified radius margin
bound

TDM = (2R)2
∑̀

i=1

α∗
i +

∑̀

i=1

ξ∗
i ,

was considered for model selection of L1-SVMs in [28]. In practice, this expression
did not lead to satisfactory results [8, 28]. Therefore, in [8] it was suggested to
use

TRM = R2
∑̀

i=1

α∗
i +

∑̀

i=1

ξ∗
i ,

based on heuristic considerations and it was shown empirically that TRM leads
to better models than TDM.2 Both criteria are not differentiable [28]. They can
be viewed as two different aggregations of the following two objectives

f1 = R2
∑̀

i=1

α∗
i and f2 =

∑̀

i=1

ξ∗
i (1)

penalizing model complexity and training errors, respectively. For example, a
highly complex SVM classifier that very accurately fits the training data has
high f1 and small f2.

3.4 Number of SVs and training error

There are good reasons to prefer SVMs with few support vectors: In the hard-
margin case, the number of SVs is an upper bound on the expected number
of errors made by the leave-one-out procedure (e.g., see [18, 17]). Further, the
space and time complexity of the SVM classifier scales with the number of SVs.
A natural measure for the performance of a classifier on a training set is the

2 Also for L2-SVMs it was shown empirically that theoretically better founded weight-
ings of such objectives (e.g., corresponding to tighter bounds) need not correspond
to better model selection criteria [8].

percentage of misclassified patterns of the training data CE(Dtrain). Hence, we
consider

f ′
1 = # SV + θ

(

R2
∑̀

i=1

α∗
i

)

and f ′
2 = ` · CE(Dtrain) + θ

(
∑̀

i=1

ξ∗
i

)

, (2)

where θ(x) = x/(1 + x). For example, it is easy to achieve zero classification
error when all training points become support vectors, but this solution is not
likely to generalize well.

The optional θ(. . .) terms are used for smoothing the objective functions. In
recent experiments, it turns out that they can be omitted without deterioration
of performance.

4 Experiments

For the evaluation of our hyperparameter optimization method we used the
common medical benchmark datasets breast-cancer, diabetes, heart, and thyroid

with input dimensions m equal to 9, 8, 13, and 5, and ` equal to 200, 468,
170, and 140. The data originally from the UCI Benchmark Repository [29] are
preprocessed and partitioned as in [30], where we consider the first of the splits
into training and test set Dtrain and Dtest. We applied the NSES to adapt C and
the parameters of kγI or kD; the quality of a candidate solution was determined
after SV learning. We set µ = 15 and λ = 75. The strategy parameters σ were
initialized to 1 when adapting kγI and because of the increased number (m+1) of
objective parameters to 0.1 when adapting kD. The objective parameters of the
initial individuals were chosen uniformly at random from [0.1, 100] and [0.01, 10]
for C and the kernel parameters, respectively. The NSES parameters were not
tuned, i.e, the efficiency of the ES could surely be improved. Figures 1, 2, and 3
depict the solutions in the final archives.3

4.1 Modified radius margin bounds

Figure 1 shows the results of optimizing kγI using the objectives (1); for each
f1 value of a solution in the final archive the corresponding f2, TRM, TDM, and
100 · CE(Dtest) are given. For diabetes, heart, and thyroid, the solutions lie on
typical convex Pareto fronts; in the breast-cancer example the convex front looks
piecewise linear. Assuming convergence to the Pareto-optimal set, the results of
a single MOO trial are sufficient to determine the outcome of single-objective
optimization of any (positive) linear weighting of the objectives. Thus, we can
directly determine and compare the solutions that minimizing TRM and TDM

would suggest. Our experiments substantiate the findings in [8] that the heuristic
bound TRM is better suited for model selection than TDM: When looking at

3 Because it is difficult to present sets of sets, we discuss outcomes from typical (ran-
domly chosen) trials. Additional results showing the robustness of our approach can
be downloaded from http://www.neuroinformatik.rub.de/PEOPLE/igel/moo .

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60

PSfrag replacements

breast-cancer

diabetes

thyroid

heart
f1 = R2

∑`

i=1
α∗

i

f2 =
∑`

i=1
ξ∗

i

f2 =
∑`

i=1
ξ∗

i

100 · CE(Dtest)

TRM

= f1 + f2

TDM = 4 · f1 + f2

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

PSfrag replacements

breast-cancer

diabetes
thyroid

heart
f1 = R2

∑`

i=1
α∗

i

f2 =
∑`

i=1
ξ∗

i

f2 =
∑`

i=1
ξ∗

i

100 · CE(Dtest)
TRM

= f1 + f2

TDM = 4 · f1 + f2

f2

100 · CE(Dtest)

TRM

TDM

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300 350 400 450

PSfrag replacements

breast-cancer

diabetes

thyroid

heart

f1 = R2
∑`

i=1
α∗

i

f2 =
∑`

i=1
ξ∗

i

f2 =
∑`

i=1
ξ∗

i

100 · CE(Dtest)
TRM

= f1 + f2

TDM = 4 · f1 + f2

f2

100 · CE(Dtest)

TRM

TDM

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140 160 180

PSfrag replacements

breast-cancer

diabetes
thyroid

heart

f1 = R2
∑`

i=1
α∗

i

f2 =
∑`

i=1
ξ∗

i

f2 =
∑`

i=1
ξ∗

i

100 · CE(Dtest)
TRM

= f1 + f2

TDM = 4 · f1 + f2

f2

100 · CE(Dtest)

TRM
TDM

Fig. 1. Pareto fronts (i.e., f2 vs. f1) of A
(100)—the outcome of the optimization after

100 · λ evaluations—for kγ � and the four benchmark problems. Additionally, for every
solution in A

(100) the values of TRM, TDM, and 100 · CE(Dtest) are plotted against the
corresponding f1 value. Projecting the minimum of TRM (for TDM proceed analogously)
along the y-axis on the Pareto front gives the (f1, f2) pair suggested by the model
selection criterion TRM—this would also be the outcome of single-objective optimization
using TRM. Projecting an (f1, f2) pair along the y-axis on 100 · CE(Dtest) yields the
corresponding error on an external test set (which is assumed to be not available for
model selection).

CE(Dtest) and the minima of TRM and TDM, we can conclude that TDM puts too
much emphasis on the “radius margin part” yielding worse classification results
on the external test set (except for breast-cancer where there is no difference on
Dtest). The heart and thyroid results suggest that even more weight should be
given to the slack-variables (i.e., the performance on the training set) than in
TRM.

In the MOO approach, degenerated solutions resulting from a not appropri-
ate weighting of objectives (which we indeed observed—without the chance to

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50

PSfrag replacements

f1 = R2
∑`

i=1
α∗

i

f2 =
∑`

i=1
ξ∗

i

thyroid

kγ � : 100 · CE(Dtest)

k � : 100 · CE(Dtest)

k � : f2

kγ � : f2

Fig. 2. Pareto fronts after optimizing kγ � and k � for objectives (1) and thyroid data
after 100 iterations. For both kernel parameterizations, f2 and 100 · CE(Dtest) are
plotted against f1.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 70 80 90 100 110 120 130 140 150 160

PSfrag replacements

breast-cancer

diabetes
thyroid

heart
f1 = R2

∑`

i=1
α∗

i

f2 =
∑`

i=1
ξ∗

i

f2 =
∑`

i=1
ξ∗

i

100 · CE(Dtest)
TRM

= f1 + f2

TDM = 4 · f1 + f2

f2

100 · CE(Dtest)

TRM

TDM

f1 = R2
∑`

i=1
α∗

i

f2 =
∑`

i=1
ξ∗

i

thyroid

kγ : 100 · CE(Dtest)
k : 100 · CE(Dtest)

k : f2

kγ : f2

breast-cancer

f ′

1 = # SV + θ(. . .)

kγ � : f ′

2

kγ � : 100 · CE(Dtest)

k � : f ′

2

k � : 100 · CE(Dtest)

100 · f2 = 100 · (CE(Dtrain) + θ(. . .))

Fig. 3. Pareto fronts after optimizing kγ � and k � for objectives (2) and breast-cancer

data after 200 generations. For both kernel parameterizations, f ′

2 and 100 · CE(Dtest)
are plotted against f ′

1.

change the trade-off afterwards—in single-objective optimization of SVMs) be-
come obvious and can be excluded. For example, one would probably not pick the
solution suggested by TDM in the diabetes benchmark. A typical MOO heuristic
is to choose a solution from the archive that corresponds to an “interesting”

part of the Pareto front. In case of a typical convex front, this would be the area
of highest “curvature” (the “knee”, see figure 1). In our benchmark problems,
this leads to results on a par with TRM and much better than TDM (except for
breast-cancer, where the test errors of all optimized trade-offs were the same).
Therefore, this heuristic combined with TRM (derived from the MOO results) is
an alternative for model selection based on modified radius margin bounds.

Adapting the scaling of the kernel (i.e., optimizing kD) sometimes led to
better objective values compared to kγI , see figure 2 for an example, but not to
better generalization performance.

4.2 Number of SVs and training error

Now we describe the results achieved when optimizing the objectives (2). We
write solutions as triples [# SV, CE(Dtrain), CE(Dtest)]. In the thyroid example
with two hyperparameters, the archive (the Pareto set) after 100 generations
contained a single solution [14, 0, 0.027]. When additionally adjusting the scal-
ing, the archive contained the single solution [11, 0, 0.027]. In case of the heart

data, the archives did not change qualitatively after 200 generations. For kγI

we got a Pareto set containing solutions from [49, 0.17, 0.2] to [57, 0, 0.17]. With
scaling, the NSES converged to an archive containing only consistent solutions
with 49 SVs. However, the classification error on the test set was either 0.23 or
0.24. In the diabetes task, the archives did not change qualitatively after 100
generations, where we got solutions from [208, 0, 0.297] to [212, 0, 0.287] for kγI

and an archive where all solutions corresponded to [178, 0, 0.297] when adjusting
kD. Results for the breast-cancer data are shown in figure 3. In all four scenarios,
we achieved lower objective values when adapting the scaling. These results did
not necessarily correspond to lower CE(Dtest).

5 Conclusion

Model selection is a multi-objective optimization (MOO) problem. We presented
an evolution strategy combining non-dominated sorting [9] and self-adaptation
[12, 14] for efficient MOO. It was successfully applied to optimize multiple hy-
perparameters of SVMs with Gaussian kernels based on conflicting, not differen-
tiable criteria. In most experiments, better objective values were achieved when
adapting individual scaling factors for the input components. However, these so-
lutions did not necessarily correspond to lower errors on external test sets. The
final Pareto fronts visualize the trade-off between model complexity and learning
accuracy for guiding the model selection process. When looking at split modified
radius margin bounds, standard MOO heuristics based on the curvature of the
Pareto front led to comparable models as using the modified bound proposed
in [8]. The latter puts more emphasis on minimizing the slack vector compared
to the bound considered in [28], a strategy that is strongly supported by our
results. In practice, the experiments involving minimization of the number of
support vectors are of particular interest, because here the complexity objective

is directly related to the speed of the classifier. Knowing the speed vs. accuracy
trade-off is helpful when designing SVMs that have to obey real-time constraints.

References

1. Abbass, H.A.: An evolutionary artificial neural networks approach for breast cancer
diagnosis. Artificial Intelligence in Medicine 25 (2002) 265–281

2. Abbass, H.A.: Speeding up backpropagation using multiobjective evolutionary
algorithms. Neural Computation 15 (2003) 2705–2726

3. Jin, Y., Okabe, T., Sendhoff, B.: Neural network regularization and ensembling
using multi-objective evolutionary algorithms. In: Congress on Evolutionary Com-
putation (CEC’04), IEEE Press (2004) 1–8

4. Wiegand, S., Igel, C., Handmann, U.: Evolutionary multi-objective optimization
of neural networks for face detection. International Journal of Computational
Intelligence and Applications 4 (2004) 237–253 Special issue on Neurocomputing
and Hybrid Methods for Evolving Intelligence.

5. Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algo-
rithms for Solving Multi-Objective Problems. Kluwer Academic Publishers (2002)

6. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley
(2001)

7. Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of Multiobjective Optimization.
Volume 176 of Mathematics in Science and Engineering. Academic Press (1985)

8. Chung, K.M., Kao, W.C., Sun, C.L., Lin, C.J.: Radius margin bounds for support
vector machines with RBF kernel. Neural Computation 15 (2003) 2643–2681

9. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6

(2002) 182–197
10. Beyer, H.G.: The Theory of Evolution Strategies. Springer-Verlag (2001)
11. Beyer, H.G., Schwefel, H.P.: Evolution strategies: A comprehensive introduction.

Natural Computing 1 (2002) 3–52
12. Bäck, T.: An overview of parameter control methods by self-adaptation in evolu-

tionary algorithms. Fundamenta Informaticae 35 (1998) 51–66
13. Igel, C., Toussaint, M.: Neutrality and self-adaptation. Natural Computing 2

(2003) 117–132
14. Laumanns, M., Rudolph, G., Schwefel, H.P.: Mutation control and convergence in

evolutionary multi-objective optimization. In Matousek, R., Osmera, P., eds.: Pro-
ceedings of the 7th International Mendel Conference on Soft Computing (MENDEL
2001), Brno, Czech Republic: University of Technology (2001) 24–29

15. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines
and other kernel-based learning methods. Cambridge University Press (2000)

16. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press (2002)

17. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer-Verlag (1995)
18. Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S.: Choosing multiple param-

eters for support vector machines. Machine Learning 46 (2002) 131–159
19. Gold, C., Sollich, P.: Model selection for support vector machine classification.

Neurocomputing 55 (2003) 221–249
20. Keerthi, S.S.: Efficient tuning of SVM hyperparameters using radius/margin bound

and iterative algorithms. IEEE Transactions on Neural Networks 13 (2002) 1225–
1229

21. Friedrichs, F., Igel, C.: Evolutionary tuning of multiple SVM parameters. In Ver-
leysen, M., ed.: 12th European Symposium on Artificial Neural Networks (ESANN
2004), Evere, Belgium: d-side publications (2004) 519–524

22. Runarsson, T.P., Sigurdsson, S.: Asynchronous parallel evolutionary model selec-
tion for support vector machines. Neural Information Processing – Letters and
Reviews 3 (2004) 59–68

23. Fröhlich, H., Chapelle, O., Schölkopf, B.: Feature selection for support vector
machines by means of genetic algorithms. In: 15th IEEE International Conference
on Tools with AI (ICTAI 2003), IEEE Computer Society (2003) 142–148

24. Eads, D.R., Hill, D., Davis, S., Perkins, S.J., Ma, J., Porter, R.B., Theiler, J.P.:
Genetic algorithms and support vector machines for time series classification. In
Bosacchi, B., Fogel, D.B., Bezdek, J.C., eds.: Applications and Science of Neu-
ral Networks, Fuzzy Systems, and Evolutionary Computation V. Volume 4787 of
Proceedings of the SPIE. (2002) 74–85

25. Jong, K., Marchiori, E., van der Vaart, A.: Analysis of proteomic pattern data for
cancer detection. In Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drech-
sler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith,
G.D., Squillero, G., eds.: Applications of Evolutionary Computing. Number 3005
in LNCS, Springer-Verlag (2004) 41–51

26. Miller, M.T., Jerebko, A.K., Malley, J.D., Summers, R.M.: Feature selection for
computer-aided polyp detection using genetic algorithms. In Clough, A.V., Amini,
A.A., eds.: Medical Imaging 2003: Physiology and Function: Methods, Systems,
and Applications. Volume 5031 of Proceedings of the SPIE. (2003) 102–110

27. Schölkopf, B., Burges, C.J.C., Vapnik, V.: Extracting support data for a given
task. In Fayyad, U.M., Uthurusamy, R., eds.: Proceedings of the First International
Conference on Knowledge Discovery & Data Mining, AAAI Press (1995) 252–257

28. Duan, K., Keerthi, S.S., Poo, A.: Evaluation of simple performance measures for
tuning SVM hyperparameters. Neurocomputing 51 (2003) 41–59

29. Blake, C., Merz, C.: UCI repository of machine learning databases (1998)
30. Rätsch, G., Onoda, T., Müller, K.R.: Soft margins for adaboost. Machine Learning

42 (2001) 287–32

