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In real-time computer vision, there is a need for classifiers that detect pat-
terns fast and reliably. We apply multi-objective optimization (MOO) to the
design of feed-forward neural networks for real-world object recognition tasks,
where computational complexity and accuracy define partially conflicting ob-
jectives. Evolutionary structure optimization and pruning are compared for
the adaptation of the network topology. In addition, the results of MOO are
contrasted to those of a single-objective evolutionary algorithm. As a part of
the evolutionary algorithm, the automatic adaptation of operator probabilities
in MOO is described.

1 Introduction

When speaking of real-world object detection we usually refer to object de-
tection tasks having some application in the commercial domain. These tasks
must be solved well enough to allow their application in products, where er-
ror tolerances are usually very restrictive. In the ideal case, the detection
accuracy should be comparable or superior to that of humans. When consid-
ering existing applications of real-world object detection systems it is clear
that imperfect performance can lead to serious (possibly fatal, e.g., in auto-
motive applications) problems. This imposes a tight constraint on tolerable
errors rates. To make matters even more difficult, detection should not only be
near-perfect but also capable of real-time operation, placing strong constraints
on the complexity of the methods that are used. It is intuitively clear that
these constraints will not always coexist peacefully and that methods must
be developed to design and optimize systems in the presence of conflicting
objectives.
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Real world object detection

Many commercial object detection tasks for which solutions meeting the
abovementioned constraints (low classification error in real-time operation)
have been proposed fall into the domains of advanced driver assistance and
biometric systems. Advanced driver assistance systems typically require the
detection of pedestrians [41, 44], vehicles [49, 32, 21], lane borders [13], or
traffic signs [2] to ensure that the “intelligent vehicles” can construct an ade-
quately complete representation of their surroundings and (possibly) take the
appropriate actions. Within biometric systems, face recognition is of particular
interest. Automatic face recognition can be found in commercial applications
such as content-based image retrieval, video coding, video conferencing, au-
tomatic video surveillance of a crowd, intelligent human-computer interfaces,
and identity authentication. Face detection is the inevitable first step in face
recognition, aiming at localizing and extracting the regions of a video stream
or an image that contain a view of a human face. Overviews of examples,
problems, and approaches in the research domain of face detection can be
found in [24, 51].

Thus, the problems of detecting cars and human faces are important ex-
amples of current research in visual object detection. Usually, computer vi-
sion architectures are broadly motivated by biological visual search strategies
[50, 8]: a fast initial detection stage localizes likely target object locations by
examining easily computable visual features, whereas a more detailed analy-
sis is then performed on all candidate regions or object hypotheses that have
been formed in the initial detection stage. The scope of this contribution is on
the classification of hypotheses, that is, on the decision whether a given object
hypothesis actually corresponds to a relevant object type. Based on previous
work of the authors, the problems of car and face detection are discussed
in-depth.

Neural classifiers

We address the task of optimizing the weights and the structure of feed-
forward neural networks (FFNNs) used for face and car classification in the
Viisage-FaceFINDER� system and the car detection system described in [21],
respectively. In both cases one goal is to increase the speed of the neural
classifier, because faster classification allows for a more thorough scanning
of the image, possibly leading to improved recognition. Another goal is of
course enhancing the accuracy of the FFNN classifiers. It is unreasonable
to expect that these two requirements can be achieved independently and
simultaneously.

Feed-forward neural networks have proven to be powerful tools in pattern
recognition [53]. Especially (but not only) in the domain of face detection the
competitiveness of FFNNs is widely accepted. As stated in a recent survey
“The advantage of using neural networks for face detection is the feasibility
of training a system to capture the complex class conditional density of face
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patterns. However, one drawback is that the network architecture has to be
extensively tuned (number of layers, number of nodes, learning rates, etc.) to
get exceptional performance” [51]. This drawback is addressed by variants of
a hybrid optimization algorithm presented in this article.

Evolutionary multi-objective optimization

Given the general problem of conflicting objectives in visual object detec-
tion, ways must be devised to address and resolve it. Advanced evolutionary
multi-objective optimization (EMO) considers vector-valued objective func-
tions, where each component corresponds to one objective (e.g., speed or ac-
curacy of a neural classifier). Such methods are capable of finding sets of
trade-off solutions, none of which can be said to be superior to another with-
out an explicit weighting of single objectives [11, 9]. From such a set one can
select an appropriate compromise, which might not have been found by a
single-objective approach.

There are recent studies that investigate domains of application and per-
formance of EMO applied to FFNN design [29, 23, 16, 1, 20, 31]. It is evident
from these publications that the EMO of FFNNs is under active research, and
that a number of methods exist that give excellent results in FFNN structure
optimization. The goal of this contribution is to show that visual object de-
tection can profit significantly from FFNNs optimized by EMO.

Outline

In this article we summarize the results of our work in the domain of EMO
for FFNN structure optimization [47, 48, 22]. We present variants of our self-
adaptive, hybrid EMO and demonstrate the performance in contrast to the
performance of a greedy optimization method for FFNN design known as
magnitude-based pruning [38]. We evaluate our methods on an optimization
problem for car classification, which will be termed car task, and on a face
detection problem denoted face task.

First, in section 2 we present the object detection tasks that embed the
considered classification problems. We explain how the training data for clas-
sification are obtained from unprocessed (“raw”) video data. In section 3, the
EMO framework for structure optimization of FFNNs is described. State-of-
the-art methods for comparing multi-objective optimization outcomes and the
experimental setup used to derive results are given in sections 4 and 5. The
results are stated in section 6 and discussed in section 7.

2 Optimization problems

In this section, we describe the optimization problems of improving FFNNs
for face and car detection. Both detection tasks were introduced in previous
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publications [21, 47] and share similar system architectures: a fast initial de-
tection produces object hypotheses (so-called regions of interest, ROIs), which
are examined by an FFNN classifier confirming or rejecting hypotheses. The
initial detection stage in both cases uses heuristics designed for the fast de-
tection of cars and faces, respectively. These heuristics are not learned but
designed and are different for cars and faces. Common to all methods for ini-
tial object detection is the requirement that the “false negative” rate (the rate
of disregarded true objects) be very close to zero, whereas a moderate “false
positive” rate is acceptable: it is the job of the classifier to eliminate remaining
false positives, if possible. This approach aims at capturing all objects of a
class; it is accepted that sometimes an object is detected where there is none.
However, usually (as shall be briefly described later) there exist additional
ways of eliminating false positives beyond the scope of single-frame classifica-
tion whereas there are no known methods of easily doing the reverse, that is,
locating objects which are missed by the initial detection.

Input to the FFNN classifiers are ROIs produced by the initial detection
step, their output is a decision whether the presented ROIs contain relevant
objects or not. The decision is based purely on the image data that are con-
tained in the ROIs; therefore, the decision can be a function of pixel values
within an ROI only. The most straightforward approach would be to present
the raw gray values (perhaps normalized between 0.0 and 1.0) of pixels within
an ROI to an FFNN classifier for learning and online classification. How-
ever, for many problems it is profitable to perform certain transformations
of the ROI data before presenting them to a classifier. Some representations
facilitate classification more than others, for example, the raw data could be
transformed to a representation which is more robust to image distortions or
noise.

We will not discuss the initial detection stage in this contribution but em-
phasize the classification of ROIs instead. This binary classification, separat-
ing objects from non-objects, is achieved by estimating the true classification
function from sample data. We are now going to describe the tasks of car and
face classification in more detail, focusing on the process of obtaining training
and online examples (also termed feature sets) from the raw image data, a
process which is frequently termed feature extraction.

For both classification problems, we create four data sets of labeled exam-
ples termed Dlearn, Dval, Dtest, and Dext. Labeling means assigning a class
label to each example indicating whether it belongs to the “relevant object”
class. For details about the data sets please see Tab. 1. The reason for this
partitioning will become apparent when we discuss the experimental setup in
section 5.

2.1 Face detection data

The Viisage-FaceFINDER� video surveillance system [45] automatically iden-
tifies people by their faces in a three-step process. First, regions of the video
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Table 1. Facts about the example data sets.

property usage

data set size(cars) size(faces) positives Pruning Evolution

Dlearn 5000 3000 50% Learning Learning/Selection

Dval 5000 1400 50% Crossvalidation Crossvalidation/Selection

Dtest 5000 2000 50% Pareto dominance based archiving

Dext 5000 2200 50% Estimation of generalization loss

stream that contain a face are detected, then specific face models are calcu-
lated, and finally these models are compared to a database. The final face
modeling and recognition is done using Hierarchical Graph Matching (HGM,
[26]), which is an improvement of the Elastic Graph Matching method [34]. It
is inspired by human vision and highly competitive to other techniques for face
recognition [54]. To meet real-time constraints, the Viisage-FaceFINDER� re-
quires very fast and accurate image classifiers within the detection unit for an
optimal support of HGM.

Inputs to the face detection FFNN are preprocessed 20×20 pixel grayscale
images, which show either frontal, upright faces or nonfaces, see Fig. 1. In the
preprocessing step, different biologically motivated cues are fused to cluster
the given images into regions of high and low significance (i.e., ROIs and
background). The preprocessing comprises further rescaling, lighting correc-
tion, and histogram equalization. The fixed-size ROIs are then classified as
either containing or not containing an upright frontal face by a task specific
FFNN [25].

Fig. 1. Input to the face detection FFNN are preprocessed 20 × 20 pixel grayscale
images showing either frontal, upright face (positive) and nonface (negative) ex-
amples. The preprocessing comprises rescaling, lighting correction, and histogram
equalization.

The assumption of fixed-size ROIs as input to the classifier meets the real-
istic application scenario for the FFNN in the Viisage-FaceFINDER� system,
although in the survey on face detection by Hjelmas and Low such input pat-
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terns are regarded as unrealistic for real world face detection [24]. In Viisage-
FaceFINDER� the FFNN is only a part of a sophisticated face detection
module and its main task is to support the time consuming HGM procedure
with appropriate face images.

We use the face detection problem for two slightly different test scenar-
ios. When we refer to the face task in the following, we mean both of them.
In the first test scenario 1 , see section 5.1—comparison of advanced EMO-
selection vs. selection of multiple objectives via linear aggregation—the goal
is to reduce the number of hidden nodes of the detection FFNN. This is be-
cause in the hardware-friendly implementation of the face detection FFNN
within Viisage-FaceFINDER� the speed of the classification scales approxi-
mately linearly with the number of hidden neurons and not with the number
of connections. With every hidden neuron that is saved the detection costs are
reduced by approximately one percentage point. In the second test scenario
2 , refer to section 5.2—comparison of pruning vs. evolutionary algorithms
in a multi-objective framework—, the first objective is to reduce the amount
of connections in the network. This is due to another FFNN implementation
where the processing speed scales approximately linearly with the number
of connections as well as nodes. In both test scenarios, the second objective
is identical: improving classification accuracy. A small network size and a
high classification accuracy are possibly conflicting objectives (note that “the
smaller the network the better the generalization” does not hold in general
[3, 7]).

2.2 Car detection data

The car classification system we are going to describe here has been devel-
oped at our lab [21] as a component of a comprehensive software framework
for Advanced Driver Assistance [6] containing modules responsible for lane de-
tection, initial car detection, car tracking, traffic sign detection, and derived
tasks. For the purposes of car detection, a combination of initial detection and
tracking was used prior to the development of the car classifier module: ini-
tially detected objects were tracked into adjacent frames, requiring only that
they are found again sufficiently often by the initial detection modules in order
to be accepted as cars. It is evident that this mechanism is less-than-perfect,
because it takes several frames’ time to eliminate incorrect hypotheses. Fur-
thermore, once the initial detection produces an object that is not a car but
can be tracked easily, that object will be accepted as a car (example: large
rectangular traffic signs). Therefore, an approach was needed that could pro-
vide an instantaneous and accurate classification of car hypotheses.

The transformed data computed from a car ROI are based on image
gradients (and derived quantities) only: raw pixel values are not considered
at all. Gradient information is very useful since it is usually quite robust
w.r.t. changes in lighting conditions. From the two gradient images (gradients
taken in x- and y-direction) denoted Gx(x, y), Gy(x, y), an energy image is
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Fig. 2. Upper half: Positive and negative training examples for the car task. Since
we are using a scale-invariant feature extraction method, examples are not rescaled
and can vary significantly in size. Lower half: schematic depiction of a feature vector
generated from a single training example, see section 2.2 for an explanation of the
quantities used here. An ROI is subdivided into N ×N receptive fields (RF) and an
identical procedure is applied to each one. Calculated orientations in each RF are
quantized to k values. For each of the k possible orientation values i ∈ [1, .., k], and
RF pixels (x, y), the quantity νi = 1

ERF

∑
(x,y) χ(x, y) is computed, where χ(x, y) =

E(x, y) if A(x, y) = i, and 0 otherwise. ERF is obtained by summing up E(x, y)
over the whole RF. Thus, k numbers are produced per receptive field that describe
the contribution a single orientation makes to the total summed-up edge energy in
a receptive field. We choose k = 4 and N = 7. A feature vector thus contains N2k
values.

derived by the formula E(x, y) =
√

G2
x(x, y) + G2

y(x, y). Wherever E(x, y)
exceeds a certain threshold, we compute the value of the angle image to
A(x, y) = arctan Gy(x,y)

Gx(x,y) and zero otherwise. Due to practical considerations,
the value A(x, y) ∈ [0, π] is often quantized to k orientation directions. The
details of the extraction process are described in Fig. 2 (upper half).

Several comments are in order: The feature extraction process is designed
in the described way in order to incorporate scale, translation, and lighting in-
variance already in the feature set, at least to a certain extent. It is a simplified
implementation of orientation-selective processing, which has been shown to
be abundant in biological vision systems [15]. Many successful computational
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models for detection and classification rely heavily on orientation-selective fea-
ture extraction (examples are wavelet representation like Gabor- or steerable
filters [36, 19]), underlining the effectiveness of this approach. In addition, a
favorable processing speed is ensured by using only gradient information since
image gradients can be computed very efficiently.

In the following we refer to the problem of optimizing an FFNN car classi-
fier on the basis of a collection of feature vectors as the car task. The car task
is only considered in the second test scenario 2 , see section 5.2—comparison
of pruning vs. evolutionary algorithms in a multi-objective framework. Hence,
in the car task the objectives for optimization are the classification error and
the number of connections as described in section 2.1.

3 Optimization methods

We present our evolutionary optimization algorithm with variants of multi-
objective selection and magnitude-based pruning, respectively. Optimization
is performed iteratively starting from an initial population P(t=0) of FFNNs.
An iteration t includes reproduction, structure variation, and embedded learn-
ing with some kind of cross-validation (CV). These three steps generate the
offspring population O(t). In the evolutionary algorithms, these offspring are
evaluated and the individuals for the new parent population P(t+1) are se-
lected from O(t) and P(t). For every evaluation an individual of the decision
space X (the genotype space—the space of the encoded FFNNs) is mapped to
an n-dimensional vector of objective space by a quality function Φ : X → Rn.

3.1 General properties of all optimization methods

In the subsequent paragraphs, each of the previously mentioned steps will
be outlined, focusing on key properties common to all discussed optimization
methods.

Initialization

The comparison of our results using the face task will be performed on the
basis of the expert-designed 400-52-1 FFNN architecture, the face reference
topology, proposed by Rowley et al. [40]. This FFNN has been tailored to the
face detection task and has become a standard reference for FFNN based face
detection [51]. No hidden neuron is fully connected to the input but to certain
receptive fields, see below. The total number of connections amounts to 2905.
This is in contrast to more than 21,000 in a fully connected FFNN with an
equal number of hidden neurons.

In the car task, each FFNN is initially fully connected, has 196 input neu-
rons, between 20 and 25 neurons in its hidden layer, one output neuron and all
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Fig. 3. Visualization of the delete-node operator within the test scenario 1 . The
line widths indicate the magnitude of the corresponding weight values. The picture
also visualizes the FFNN input dimension and the receptive field connectivity.

forward-shortcuts and bias connections in place. We refer to this architecture
as the car reference topology.

As input, the FFNN classifiers receive a feature set, representing key visual
properties of the ROI which it is computed from. In the face tasks the 400
numbers in the feature set correspond to the pixels of the preprocessed image
patterns, see Fig. 1 and Fig. 3, whereas in the car task the 196 numbers in
the feature set encode higher-order visual properties as a result of advanced
feature extraction methods, see Fig. 2 (lower half).

We create the parent individuals in P(t=0) as copies of the reference topolo-
gies, which are initialized with different, small random weight values.

Reproduction and variation

Each parent creates one child per generation. First, the parent is copied. The
offspring is then modified by elementary variation operators. This variation
process is significantly different for pruning and the evolutionary methods.

All variation operators are implemented such that their application always
leads to valid FFNN graphs. An FFNN graph is considered to be valid if each
hidden node lies on a path from an input unit to an output unit and there
are no cycles. Further, the layer restriction, here set to a single hidden layer,
has to be met.

Embedded learning

Let MSEa(D) and CEa(D) be the mean squared error and the classification
error in percent on a data set D of the FFNN represented by individual a. The
weights of every newly generated offspring a are adapted by gradient-based
optimization (“learning”,“training”) of MSEa(Dtrain). An improved version
of the Rprop [27, 39] algorithm is used for at most 100 epochs of training. Fi-
nally, the weight configuration with the smallest MSEa(Dtrain)+MSEa(Dval)
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Fig. 4. Left, a schematic overview of the pruning method PR. Right, the hybrid
evolutionary algorithm in conjunction with three different selection variants LA, DM
and TM, see text.

encountered during training is regarded as the outcome of the training process
(i.e., some kind of CV comes in) and stored in the genome of the individual a
in case of the face tasks (Lamarckian inheritance). In the car task, Lamarckian
inheritance is not applied: the weights before learning are always re-initialized
the same way as in the initialization of P(t=0).

Dominance based Archiving

For the pruning method and all evolutionary variants, another performance
evaluation of the parental individuals a ∈ P(t) is used to update the external
archive A(t) at iteration t. This performance evaluation is based on a second
mapping of the individuals a to n-dimensional objective vectors z ∈ Rn.
The external archive represents the outcome of a trial after its completion at
t = tmax. In the following let nhid(a) and ncon(a) denote the number of hidden
neurons and weights of the individual a ∈ P(t), respectively.

3.2 Magnitude-based network pruning

Pruning is a well-known reductionist method for obtaining smaller FFNNs
from larger ones by iteratively eliminating certain weights. Magnitude-based
pruning is a simple heuristic, but has often been reported to give satisfactory
results (see [38] for a review of pruning methods). In addition, it is very easy to
implement and use. Preliminary experiments using more sophisticated prun-
ing methods [38] did not yield superior results and were therefore abandoned
in favor of the most simple method: magnitude-based pruning which we will
refer to as method PR. The basic loop for optimization using PR is depicted
in Fig. 4 (left). Initialization of the first population P(t=0) is performed as de-
scribed in section 3.1, and reproduction simply copies the current population.
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Variation (here: weight elimination) is applied identically in the face and the
car tasks: a percentage p of connections with the smallest absolute weight is
eliminated at each iteration. Learning is performed as described in section 3.1.

3.3 The evolutionary multi-objective algorithm

Evolutionary algorithms have become established methods for the design of
FFNNs, especially for adapting their topology [35, 52, 29]. They are thought to
be less prone to getting stuck in local optima compared to greedy algorithms
like pruning or constructive methods [38, 43].

The basic optimization loop of our hybrid evolutionary algorithm is shown
in Fig. 4 (right). This scheme might be regarded as canonical evolutionary
FFNN optimization using direct encoding and nested learning. However, there
are some special features described in this section.

Initialization is performed as described in section 3.1. We will sketch how
offspring are created and mutated. After that, we outline the peculiarities
of the nested gradient-based learning procedure within the evolutionary loop.
Then we highlight the three different approaches to selection which are consid-
ered in this work. The section ends with the description of the online strategy
adaptation method for adjusting operator application probabilities.

Reproduction and variation

As mentioned in section 3.1, each parent creates one child per generation;
reproduction copies the parent population. The offspring population is then
mutated by elementary variation operators. These are chosen randomly for
each offspring from a set Ω of operators and are applied sequentially. The
process of choosing and applying an operator is repeated 1 + x times, where
x is an individual realization of a Poisson distributed random number with
mean 1.

We need to distinguish the operators for the two test scenarios 1 and 2 ,
due to the requirement of reducing the number of nodes instead of connec-
tions. In the first test scenario 1 there are 5 basic operators: add-connection ,
delete-connection , add-node , delete-node , and jog-weights:

add-connection A connection is added to the FFNN graph.

delete-connection This operator is inspired by magnitude-based pruning. The
operator is rank-based as discussed by Braun [5]. The connections of the
FFNN are sorted by the absolute value of the corresponding weights. The
connection with rank number r given by

r := �W · (ηmax −
√

(η2
max − 4 · (ηmax − 1) · u))/(2 · (ηmax − 1))� (1)

is deleted, so that connections with smaller weight have a higher probabil-
ity of being removed. Here �x� denotes the largest integer smaller than x,
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W the number of weights, and u ∼ U [0, 1] is a random variable uniformly
distributed on [0, 1]. The parameter 1 < ηmax ≤ 2 controls the influence
of the rank and is set to its maximum value [46].

add-node A hidden node with bias parameter is added to the FFNN and con-
nected to the output. For each input, a connection to the new node is
added with probability pin = 1/16.

delete-node In this rank-based node deletion operator, the hidden nodes are
ordered according to their maximum output weight. The maximum output
weight of a node i is given by maxj |wji|, where wji is the weight of the
connection from node i to node j. The nodes are selected based on eq. (1),
such that nodes with smaller maximum output weight values have a higher
probability of deletion. If node k is deleted, all connections to or from k
are removed, cf. Fig. 3.

jog-weights This operator adds Gaussian noise to the weights in order to push
the weight configuration out of local minima and thereby to allow the
gradient-based learning to explore new regions of weight space. Each
weight value is varied with constant probability pjog = 0.3 by adding nor-
mally distributed noise with expectation value 0 and standard deviation
σjog = 0.01.

In addition to the 5 basic operators, there are 3 task-specific mutations within
scenario 1 inspired by the concept of “receptive fields”, that is, dimensions
of the input space that correspond to rectangular regions of the input im-
age, cf. Fig. 3. The RF-operators add-RF-connection , delete-RF-connection , and
add-RF-node behave as their basic counterparts, but act on groups of connec-
tions. They consider the topology of the image plane by taking into account
that “isolated” processing of pixels is rarely useful for object detection. The
RF-operators are defined as follows:

add-connection-RF A valid, not yet existing connection, say from neuron i
to j, is selected uniformly at random. If the source i is not an input, the
connection is directly added. Otherwise, a rectangular region of the 20×20
image plane containing between 2 and M = 100 pixels including the one
corresponding to input i is randomly chosen. Then neuron j is connected
to all the inputs corresponding to the chosen image region.

delete-connection-RF An existing connection that can be removed, say from
node i to j, is selected at random. If the source i is not an input, the
connection is directly deleted. Otherwise, a decision is made whether a
horizontal or vertical receptive field is deleted. Assume that a horizontal
field is removed. Then delete-connection-RF x(i, j) is applied recursively to
remove the inputs from a connected pixel row:
delete-connection-RF x(i, j) Let (ix, iy) be the image coordinates of the

pixel corresponding to the input i. The connection from i to j is
deleted. If hidden node j is also connected to the input node k corre-
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sponding to pixel (ix+1, iy), delete-connection-RF x(k, j) is applied. If j
is connected to node l corresponding to (ix − 1, iy), then the operator
delete-connection-RF x(l, j) is called.

Deletion of a vertical receptive field (i.e., a connected pixel column) is
done analogously.

add-node-RF A hidden node with bias connection is added and connected to
the output and a receptive field as in the add-connection-RF operator.

In the second test scenario 2 we use different operators for the insertion and
deletion of connections than in scenario 1 . Furthermore, there is no operator
for the deletion of hidden nodes; deletion of nodes happens only when nodes no
longer have any ingoing or outgoing connections. We apply the basic operators
add-connection-P , delete-connection-P and add-node for the car task. For the
face task, we additionally use the operator jog-weights and three task-specific
mutations: add-RF-connection-P , delete-RF-connection-P , and add-RF-node . The
new mutation operators are defined as follows:

add-connection-P The operator add-connection is sequentially applied to the
FFNN until the number of newly added connections amounts to 1% of
the previously existent connections before add-connection-P was applied.

delete-connection-P The operator delete-connection is sequentially applied to
the FFNN until the number of deleted connections amounts to 5% of the
previously existent connections before delete-connection-P was applied.

add-connection-RF-P The operator add-connection-RF is sequentially applied
to the FFNN until the number of newly added connections amounts to at
least 1% of the previously existent connections before add-connection-RF-P

was applied.

delete-connection-RF-P The operator delete-connection-RF is sequentially ap-
plied to the FFNN until the number of deleted connections amounts to
at least 5% of the previously existent connections before the operator
delete-connection-RF-P was applied.

Generally, weight values of new connections (produced by the operators for
addition of nodes and connections) are drawn uniformly as in the first initial-
ization of the population.

Embedded learning

A peculiarity of the evolutionary methods is the fact that training can stop
earlier due to the generalization loss criterion GLα as described by Prechelt
[37]. The generalization loss is computed on Dval for α = 5. This is done in
order to reduce the computational cost of the optimization.
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Evaluations and selection in presence of multiple objectives

We are looking for sparse FFNNs with high classification accuracy. That is,
we try to optimize two different objectives. There are several ways of dealing
with multiple goals, and we will describe three of them in the following.

LA—Linearly aggregated objectives are subject to selection.

In the first case of the test scenario 1 the algorithm in Fig. 4 (right) uses a
scalar fitness a �→ Φ(a) ∈ R for any individual a given by the weighted linear
aggregation

Φ(a) := γCE · CE(t)
a (Dtrain ∪ Dval) +MSE(t)

a (Dtrain ∪ Dval)
+γhid · n

(t)
hid(a) +γcon · n(t)

con(a)
(2)

that is to be minimized. The weighting factors are chosen such that typically
γCE · CE(t)

a (Dtrain ∪ Dval) 	 γhid · n(t)
hid(a) ≈ γcon · n(t)

con(a) 	 MSE(t)
a (Dtrain ∪

Dval) holds. Note that in test scenario 1 we tolerate an increase in the number
of connections as long the number of neurons decreases.

Based on the fitness Φ, EP-style tournament selection [17] with 5 oppo-
nents is applied to determine the parents P(t+1) for the next generation from
P(t) ∪ O(t). We refer to the described selection method as linearly-aggregated
selection LA and identify the complete algorithm with this selection scheme
throughout this article.

DM—Vector-valued objectives are subject to deterministic selection.

In the second case of the test scenario 1 , the evolutionary algorithm in
Fig. 4 (right) performs advanced EMO selection. It uses a selection method
based on the Fast Non-Dominated Sorting Genetic Algorithm (NSGA-II ) [12].

We first map the elements of the decision space to n-dimensional real-
valued vectors z = (z1, . . . , zn) of the objective space by the objective func-
tion Φ : X → Rn. In our case we map the individual a that has already finished
training to the vector Φ(a) = za = (nhid(a), CEa(Dtrain ∪ Dval)). Both objec-
tive components are subject to minimization. The elements of the objective
space are partially ordered by the dominance relation ≺ (z dominates z′) that
is defined by

z ≺ z′ ∈ Rn ⇔ ∀ 1 ≤ i ≤ n : zi ≤ z′
i ∧ ∃ 1 ≤ j ≤ n : zj < z′

j

stating that vector z performs better than z′ iff z is as least as good as z′ in
all objectives and better with respect to at least one objective. Considering a
set M of n-dimensional vectors, the subset ndom(M) ⊆ M consisting only of
those vectors that are not dominated by any other vector of M is called the
Pareto front of M . As in the NSGA-II (environmental) selection scheme, we
first assign a rank value R(t)(a) to each individual a ∈ P(t) ∪O(t) based on its
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cuboid

z1

z2

aj−1

aj

aj+1

Fig. 5. Illustration how the crowding distance C(aj) [11] is computed. The black
dots are the elements of Mi+1 and the white dots of belong to the Pareto front
ndom(Mi).

degree of non-domination in objective space. We define the chain of subsets
Mi, i ∈ N, by M1 ⊇ M2 := M1\ ndom(M1) ⊇ M3 := M2\ ndom(M2) ⊇ . . . ,
where A\B denotes the portion of set A that is not part of set B. Then the
rank operator R(t)(a) assigns to each individual a ∈ P(t) ∪ O(t) the index i of
the corresponding Pareto front ndom(Mi) that includes the objective vector
of a.

Furthermore the NSGA-II ranking takes the diversity of the population
(in objective space) into account. The diversity is measured by the crowding
distance C(a), the size of the largest cuboid (more precisely, the sum of its edge
lengths) in objective space enclosing the vector Φ(a) = za, a ∈ ndom(Mi),
but no other objective vector from ndom(Mi), see Fig. 5. Then all individuals
a ∈ P(t) ∪ O(t) are sorted in ascending order according to the partial ordering
relation ≤n defined by

ai ≤n aj ⇔
(
R(t)(ai) < R(t)(aj)

)
or(

R(t)(ai) = R(t)(aj) ∧ C(ai) ≥ C(aj)
)

(3)

and the first |P| individuals form the new parent population P(t+1). We refer
to the described selection method as NSGA-II deterministic selection DM
throughout this article.

TM—Vector-valued objectives are subject to tournament selection.

The selection method for the second test scenario 2 is almost completely in
accordance with the NSGA-II deterministic selection. But it is chosen to be
an EP-style tournament selection with 5 opponents to determine the par-
ents P(t+1) for the next generation from P(t) ∪ O(t), cf. selection method LA.
The tournament selection is based upon the objective vector Φ(a) = za =
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(ncon(a), CEa(Dtrain ∪ Dval)) and the partial relation ≤n of eq. (3). We re-
fer to the described selection method as NSGA-II tournament selection TM
throughout this article.

Search strategy adaptation: Adjusting operator probabilities

A key concept in evolutionary computation is strategy adaptation, that is, the
automatic adjustment of the search strategy during the optimization process
[14, 28, 42, 30]. Not all operators might be necessary at all stages of evolution.
In our case, questions such as when fine-tuning becomes more important than
operating on receptive fields cannot be answered in advance. Hence, the appli-
cation probabilities of the variation operators are adapted using the method
presented in [28, 30, 47], which is inspired by Davis’ work [10]. The underlying
assumption is that recent beneficial modifications are likely to be beneficial
in the following generations.

The basic operators that are actually employed in a given optimization
scenario are divided into groups, those adding connections, deleting connec-
tions, adding nodes, deleting nodes, and solely modifying weights. Let Ω be
the set of variation operators, G the number of operator groups used in a task
and p

(t)
o the probability that o ∈ Ω is chosen at generation t.

The initial probabilities for operators of a single group are identical and
add up to 0.2 in case of the test scenario 1 where G = 5. In case of the
face task within test scenario 2 , where no node deletion operators are used
(G = 4), the probabilities add up to 0.25. In the car task within test scenario
2 the initial probabilities for add-connection-P and add-node are set to 0.3, and
the initial probability for delete-connection-P it is set to 0.4. This produces a
slight bias towards deleting connections.

Let O
(t)
o contain all offspring produced at generation t by an application

of the operator o. The case that an offspring is produced by applying more
than one operator is treated as if the offspring was generated several times,
once by each operator involved. The operator probabilities are updated every
τ generations. Here we set τ = 4. This period is called an adaptation cycle.
The average performance achieved by the operator o over an adaptation cycle
is measured by

q(t,τ)
o :=

τ−1∑
i=0

∑
a∈O

(t−i)
o

max (0, B(t)(a))
/ τ−1∑

i=0

∣∣O(t−i)
o

∣∣ ,

where B(t)(a) represents a quality measure proportional to some kind of fitness
improvement. This is for the scalar value based selection scheme, case LA,

B(t)(a) := Φ(a) − Φ(parent(a))

and for the vector-valued selection schemes DM and TM,
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B(t)(a) := R(t)(parent(a)) − R(t)(a) ,

where parent(a) denotes the parent of an offspring a. The operator probabil-
ities p

(t+1)
o are adjusted every τ generations according to

p̃(t+1)
o :=

{
ζ · q(t,τ)

o /q
(t,τ)
all + (1 − ζ) · p̃(t)

o if q
(t,τ)
all > 0

ζ/|Ω| + (1 − ζ) · p̃(t)
o otherwise

and

p(t+1)
o := pmin + (1 − |Ω| · pmin)p̃(t+1)

o

/∑
o′∈Ω

p̃
(t+1)
o′ .

The factor q
(t,τ)
all :=

∑
o′∈Ω q

(t,τ)
o′ is used for normalization and p̃

(t+1)
o stores

the weighted average of the quality of the operator o, where the influence
of previous adaptation cycles decreases exponentially. The rate of this decay
is controlled by ζ ∈ (0, 1], which is set to ζ = 0.3 in our experiments. The
operator fitness p

(t+1)
o is computed from the weighted average p̃

(t+1)
o , such

that all operator probabilities sum to one and are not lower than the bound
pmin < 1/|Ω|. Initially, p̃

(0)
o = p

(0)
o for all o ∈ Ω.

The adaptation algorithm itself has free parameters, pmin, τ , and ζ. How-
ever, in general the number of free parameters is reduced in comparison to the
number of parameters that are adapted and the choice of the new parameters
is considerably more robust. Both τ and ξ control the speed of the adaptation;
a small ξ can compensate for a small τ (τ = 1 may be a reasonable choice in
many applications). The adaptation adds a new quality to the algorithm as
the operator probabilities can vary over time. It has been empirically shown
that the operator probabilities are adapted according to different phases of the
optimization process and that the performance of the structure optimization
benefits from this adaptation [28, 47, 30].

4 Evaluating multi-objective optimization

The performance assessment of stochastic multi-objective algorithms is in gen-
eral more difficult than evaluating single-objective algorithms. The reason is
that in empirical investigations, sets of sets (i.e., the non-dominated solu-
tions evolved in multiple trials of different algorithms) have to be compared.
Many ways of measuring the performance of multi-objective optimization al-
gorithms have been proposed, here we use two unary quality indicators, the
hypervolume indicator and the additive ε-indicator. We concisely define the
performance measures used, for a detailed description of the methods we refer
to the literature [33, 56, 18].

Given two sets of objective vectors A, B ⊆ Rn there is a common sense
definition of one set being better than the other. Set A is better than B and
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we write A � B if for every element z ∈ B there exists an element z′ ∈ A
that is not worse than z in each objective, ∀j ∈ {1, . . . , n} : z′

j ≤ zj , and
ndom(A) �= ndom(B). Otherwise we have A � B. However, in general neither
A � B nor B � A holds for sets A and B. Therefore, quality indicators are
introduced.

An unary quality indicator assigns a real valued performance index to a set
of solutions. A single indicator captures only certain aspects (preferences of a
decision maker) of the evolved solutions, therefore a set of different indicators
is used for the comparison of multi-objective optimization algorithms. Here,
the hypervolume indicator [55] and the ε-indicator [56] are chosen. We use the
performance assessment tools that are part of the PISA [4] software package
with standard parameters.

Before the performance indicators are computed, the data are normal-
ized. Assume we want to compare k algorithms on a particular optimization
problem. For each algorithm, we have conducted T trials. For comparison, we
consider the solutions in the populations after a predefined number g of eval-
uations. First of all, we consider the non-dominated individuals of the union
of all kT populations after g evaluations. Their objective vectors are normal-
ized such that for every objective the smallest and largest objective function
value are mapped to 1 and 2, respectively, by an affine transformation. These
objective vectors make up the reference set Aref. The mapping to [1, 2]n is
fixed and applied to all objective vectors under consideration.

The hypervolume measure or S-metric was introduced in [55] in the domain
of EMO. With respect to the reference point znadir, it can be defined as the
Lebesgue measure Λ of the union of hypercubes in objective space [9]:

Sznadir(A
′) = Λ

( ⋃
z∈ndom(A′)

{z′ ∈ Rn | z ≺ z′ ≺ znadir}
)

.

The hypervolume indicator with respect to reference set Aref is defined as

IS,Aref(A) = Sznadir(Aref) − Sznadir(A) .

The reference point znadir is an objective vector that is worse in each objective
than all individuals (here znadir = (2.1, . . . , 2.1)). A smaller value of IS is
preferable. The additive unary ε-indicator is defined as

Iε,Aref(A) = inf {ε ∈ R | ∀z ∈ Aref ∃z′ ∈ A∀i ∈ {1, . . . , n} : zi ≥ z′
i − ε} .

Basically, the ε-indicator determines the smallest offset that has to be sub-
tracted from the fitness values of the elements in A such that the resulting
Pareto front covers the Pareto front of Aref in objective space. A smaller value
of Iε,Aref is preferable.

In [33] and [56], various properties of quality indicators are studied. Of
particular interest is the relation to the “being better” definition given above.
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An unary quality indicator is �-compatible if a better indicator value for A
than for B implies B � A. An indicator is �-complete, if A � B implies a
better indicator value for A than for B. Both the ε-indicator as well as the
hypervolume indicator are �-compatible and �-complete.

5 Experimental setup

In all experiments, the FFNNs have at most one hidden layer and the activa-
tion functions are of logistic sigmoidal type. In all cases we simulate T = 10
trials. For each trial we set |P(t=0)| = 25.

In the car task, each FFNN in P(t=0) is fully connected, has between
20 and 25 neurons in its hidden layer and all forward-shortcuts and bias
connections in place. At each iteration t, P(t) is initialized with small random
weight values between -0.05 and 0.05. We refer to this architecture as the car
reference topology, see section 3.1. In the face tasks, P(t=0) consists of copies
of the 400-52-1 architecture of [40], the face reference topology, each of which
is randomly initialized like the car reference topology at t = 0.

Although cross-validation is applied when training the FFNNs, the evolu-
tionary (LA, DM, TM) or the pruning optimization (PR) may lead to overfit-
ting, in our case they may overfit to the patterns of Dtrain ∪ Dval. Hence, we
additionally introduce the data set Dtest to finally choose models that gener-
alize well and store those in the external archive A(t) if their objective vector
z computed from Dtest is not dominated by any member of A(t). Members
that are dominated by z are removed from the archive. That is, we use Dtest

for some kind of cross-validation of the evolutionary or pruning process. The
archive A(t) at t = tmax is taken to be the final outcome of an optimization
trial.

The data set Dext, which does not enter into the optimization at any point,
is used to finally assess the performance of the members of the archive A(tmax).

We train 2000 instances of the face reference topology and the car reference
topology for 100 training steps using the improved Rprop learning procedure
on Dtrain. From all instances and all training steps we select the networks aref

(for the face and the car tasks, respectively) with the smallest classification
error on Dval∪Dtest. When selecting the reference topologies aref, we decide in
a similar way as in picking a solution from the evolved or pruned architectures,
but taking also Dval into account. This is reasonable, since Dval has not been
applied during FFNN training.

In the following figures 6 and 7, results are normalized by the perfor-
mance of the face reference topology and car reference topology aref, re-
spectively.4 For example, the normalized classification error of an FFNN
a is given by CE′

a(D) = CEa(D)/CEaref(D) and the normalized number

4 The reference topologies are not arbitrary, but tuned extensively by hand. They
produce results that are highly competitive to other approaches in the literature.
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of connections and number of nodes by n′
con(a) = ncon(a)/ncon(aref) and

n′
hid(a) = nhid(a)/nhid(aref), respectively.

5.1 Test scenario 1

This scenario is concerned with the face task only. It has already been shown
that the size of the face detection network of the Viisage-FaceFINDER� sys-
tem can be successfully reduced without loss of accuracy by the scalar fitness
value approach LA [48]. Here, we investigate whether we can improve these
results by using the vector valued selection DM, see [47]. This is done by com-
paring the performance of our hybrid algorithm using either selection variant
LA or DM. We strongly expect a result in favor of method DM since a single-
objective method (LA) is evaluated by multi-objective performance measures
which are made necessary by the nature of the problem. At the time this
analysis was conducted, our goal was to challenge the popular single-objective
approach to FFNN structure optimization.

We assume that the runtime of our algorithm is strongly dominated by
the number of fitness evaluations (due to the efforts spent for learning) and
that the number of allowed fitness evaluation is fixed. Then there is roughly no
difference in runtime between the single-objective (LA) and the multi-objective
(DM) approach.

All T trials of both variants LA and DM of the evolutionary algorithm
described above are run for tmax = 200 generations (i.e., 5025 fitness evalu-
ations per trial) using only the face task. For both methods LA and DM we
use the objective vector za = (nhid, CE(Dtest)) of every individual a ∈ P(t) to
iteratively update the external archive.

5.2 Test scenario 2

In this scenario we aim to show that the significantly higher effort of im-
plementing and applying advanced EMO by method TM can be worthwhile
compared to the simpler pruning method PR [22]. Both the car and the face
task are considered for this investigation: methods are compared within tasks,
and the results of the within-task comparisons are contrasted. All trials T of
method PR are performed for tmax = 90 iterations at p = 10%.5 All TM tri-
als are performed for tmax = 200 generations. For both methods PR and TM
we compute the objective vector za = (ncon, CE(Dtest)) of every individual
a ∈ P(t) to update the external archive.
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Fig. 6. Evolved solutions by selection variants LA and DM in test scenario 1 . The
left plot shows the two objectives, the normalized classification error CE′(Dtest) and
the normalized number of hidden neurons n′

hid, for all FFNNs of all Pareto fronts
of all trials. The circles represent the outcomes of selection method LA, and the
crosses the results of the variant DM. The non-dominated FFNNs from the union
of all trial outcomes from both methods (the “meta Pareto front”) are highlighted.
The right table shows the results of performance indicators explained in the text.
The distributions over all trials of indicator results for methods LA and DM differ
in a statistically significant way when compared by the Wilcoxon rank sum test
(p < 0.005).

6 Results

The normalized results of test scenario 1 are shown in Fig. 6. Indicator re-
sults confirm what is evident from visual inspection of the two Pareto fronts:
method DM performs considerably better than method LA.

The normalized results of test scenario 2 are shown in Fig. 7. One per-
ceives the surprisingly similar performance of the two methods when applied
to cars. While the evolutionary method performs better, the differences are
small and the errors of the generated FFNNs are similar in similar regimes
of ncon. In contrast, the differences between the two methods are quite pro-
nounced when applied to the face task: here, EMO is clearly superior. In
both tasks, the distributions of the ε- and hypervolume indicators differ in
a statistically significant way. All results persist when considering the vec-
tors (nhid, CE(Dext)) and (ncon, CE(Dext)) instead of (nhid, CE(Dtest)) and
(ncon, CE(Dtest)), respectively. This shows that no significant overfitting has
occurred.
5 No regular FFNNs were ever produced afterwards. Reducing the pruning per-

centage p to the point where valid FFNNs could be produced for 200 generations
did not change results.
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Fig. 7. Evolved solutions by selection variants TM and PR in the second scenario
2 . Left: results from the car task. Right: results from the face task. Shown on top
are the unions of all trial outcomes; members of the meta Pareto fronts are shown
in the magnifications. The only pruned FFNN in the meta Pareto front of the car
task is indicated by an arrow. The performance indicators (tables at the bottom)
are explained in section 4. The distributions over all trials of indicator results for
methods PR and TM differ in a statistically significant way when compared by the
Wilcoxon rank sum test (p < 0.005).

7 Discussion

When considering scenario 1 , it is evident that method DM performs better,
but this is not surprising since we evaluated a single-objective method in a
multi-objective setting. Because a prior decision about the relative weighting
of objectives was taken before optimization when using method LA, it can
be expected to give adequate results in the corresponding region of objective
space, whereas solutions in other regions are less likely to be selected. In
contrast, methods like DM and TM can select solutions from all regions of
objective space: when using multi-objective performance indicators, which
measure performance over all of objective space, this leads to the significant
differences in performance that are observed. Single-objective methods like
LA are useful whenever the desired trade-off between objectives is known a
priori. However, this will not usually be the case, and therefore multi-objective
optimization is clearly the strategy of choice.

Considering test scenario 2 , we interpret the result of the car task as an
indication that the problem class is intrinsically easier (w.r.t. the magnitude
of the classification error of the best conceivable FFNN) than the face task
since both the ε- and the hypervolume indicator results of both methods lie
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more closely together. This suggests similar performance.6 We assert that the
simpler optimization method can yield competitive performance on simpler
tasks. For the more difficult face task, a sophisticated (here: evolutionary)
optimization strategy is clearly favorable.

For the support of our interpretation about the difficulty of both tasks
in scenario 2 , we observe that the (absolute) error CE(Dtest) of the best
trained car reference topology is 3.5 times smaller than CE(Dtest) of the cor-
responding face reference topology (see section 5). As the results plainly show,
optimization is unable to improve classification accuracy greatly compared to
the reference topologies, which constitute approximate optima in this respect.
Therefore this difference in classification performance should be considered
meaningful. Furthermore, optimization in the car task produced FFNNs with-
out a hidden layer, which nevertheless had an (absolute) classification accu-
racy of about 80%. We take this as a hint that the problem is almost linearly
separable and therefore can be considered “easy”.

Finally, we want to compare the performance of the methods PR and LA.
Both are essentially single-objective methods, since they compute a scalar fit-
ness value from a weighted average of objectives. In the case of LA, this is
trivially fulfilled by construction, see eq. (2), whereas pruning takes the coeffi-
cient of one objective (classification error) to be zero and focuses on the other
one (number of connections) only. However, pruning does not perform selec-
tion at all since it simply copies the current population into the next. Thus,
the success of structure adaptation is not taken into account. Therefore, there
is no bias towards certain trade-off solutions in selection. In contrast, method
LA uses a scalar fitness value to select the individuals of the next parental
population. Hence, only individuals optimized for a single fixed trade-off be-
tween objectives are archived. The comparison between these single-objective
methods is possible by contrasting them to their advanced multi-objective
counterparts TM and DM and comparing the results. It turns out that the per-
formance differences between methods LA and DM are much more pronounced
considering any of the given performance indicators than the corresponding
differences between methods PR and TM. This supports our previous expla-
nations and shows that pruning, although an amazingly primitive method by
itself, can significantly profit from multi-objective performance evaluation. To
conclude, when using optimization methods in a multi-objective setup, great
care must be taken not to introduce a bias restricting search to certain regions
of objective space.
6 The absolute values of the performance indicators depend on reference sets. When

comparing two performance indicator values for one task, one should therefore
look at their difference, which is independent of the reference set, and not at their
quotient.
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27. C. Igel and M. Hüsken. Empirical evaluation of the improved Rprop learning
algorithm. Neurocomputing, 50(C):105–123, 2003.

28. C. Igel and M. Kreutz. Operator adaptation in evolutionary computation and
its application to structure optimization of neural networks. Neurocomputing,
55(1–2):347–361, 2003.

29. C. Igel and B. Sendhoff. Synergies between evolutionary and neural computa-
tion. In M. Verleysen, editor, 13th European Symposium on Artificial Neural
Networks (ESANN 2005), pages 241–252. d-side Publications, 2005.

30. C. Igel, S. Wiegand, and F. Friedrichs. Evolutionary optimization of neural
systems: The use of self-adptation. In M. G. de Bruin, D. H. Mache, and
J. Szabados, editors, Trends and Applications in Constructive Approximation,
number 151 in International Series of Numerical Mathematics, pages 103–123.
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