
Multi-objective optimization of support vector

machines

Thorsten Suttorp1 and Christian Igel2

1
thorsten.suttorp@neuroinformatik.rub.de

2 christian.igel@neuroinformatik.rub.de

Institut für Neuroinformatik
Ruhr-Universität Bochum
44780 Bochum, Germany

In:

Yaochu Jin (Ed.), Multi-objective Machine Learning

Studies in Computational Intelligence, Vol. 16, pp. 199-220, Springer-Verlag,
2006

Summary. Designing supervised learning systems is in general a multi-objective
optimization problem. It requires finding appropriate trade-offs between several ob-
jectives, for example between model complexity and accuracy or sensitivity and
specificity. We consider the adaptation of kernel and regularization parameters of
support vector machines (SVMs) by means of multi-objective evolutionary optimiza-
tion. Support vector machines are reviewed from the multi-objective perspective, and
different encodings and model selection criteria are described. The optimization of
split modified radius-margin model selection criteria is demonstrated on benchmark
problems. The MOO approach to SVM design is evaluated on a real-world pattern
recognition task, namely the real-time detection of pedestrians in infrared images
for driver assistance systems. Here the three objectives are the minimization of the
false positive rate, the false negative rate, and the number of support vectors to
reduce the computational complexity.

1 Introduction

The design of supervised learning systems for classification requires finding a
suitable trade-off between several objectives, especially between model com-
plexity and accuracy on a set of noisy training examples (→ bias vs. variance,
capacity vs. empirical risk). In many applications, it is further advisable to
consider sensitivity and specificity (i.e., true positive and true negative rate)
separately. For example in medical diagnosis, a high false alarm rate may
be tolerated if the sensitivity is high. The computational complexity of a so-
lution can be an additional design objective, in particular under real-time
constraints.

This multi-objective design problem is usually tackled by aggregating the
objectives into a scalar function and applying standard methods to the re-
sulting single-objective task. However, such an approach can only lead to



2 Thorsten Suttorp and Christian Igel

satisfactory solutions if the aggregation (e.g., a linear weighting of empirical
error and regularization term) matches the problem. A better way is to apply
“true” multi-objective optimization (MOO) to approximate the set of Pareto-
optimal trade-offs and to choose a final solution afterwards from this set. A
solution is Pareto-optimal if it cannot be improved in any objective without
getting worse in at least one other objective [1, 2, 3].

We consider MOO of support vector machines (SVMs), which mark the
state-of-the-art in machine learning for binary classification in the case of
moderate problem dimensionality in terms of the number of training patterns
[4, 5, 6]. First, we briefly introduce SVMs from the perspective of MOO. In
section 3 we discuss MOO model selection for SVMs. We review model selec-
tion criteria, optimization methods with an emphasis on evolutionary MOO,
and kernel encodings. Section 4 summarizes results on MOO of SVMs consid-
ering model selection criteria based on radius-margin bounds [7]. In section 5
we present a real-world application of the proposed methods: Pedestrian de-
tection for driver assistance systems is a difficult classification task, which
can be approached using SVMs [8, 9, 10]. Here fast classifiers with a small
false alarm rate are needed. We therefore propose MOO to minimize the false
positive rate, the false negative rate, and the complexity of the classifier.

2 Support vector machines

Support vector machines are learning machines based on two key elements: a
general purpose learning algorithm and a problem specific kernel that com-
putes the inner product of input data points in a feature space. In this section,
we concisely summarize SVMs and illustrate some of the underlying concepts.
For an introduction to SVMs we refer to the standard literature [11, 4, 6].

2.1 General SVM learning

We start with a general formulation of binary classification. Let

S = ((x1, y1), . . . , (x`, y`)),

be the set of training examples, where yi ∈ {−1, 1} is the label associated with
input pattern xi ∈ X . The task is to estimate a function f from a given class
of functions that correctly classifies unseen examples (x, y) by the calculation
of sign(f(x)). The only assumption that is made is that the training data as
well as the unseen examples are generated independently by the same, but
unknown probability distribution D.

The main idea of SVMs is to map the input vectors to a feature space H,
where the transformed data is classified by a linear function f . The transfor-
mation Φ : X → H is implicitly done by a kernel k : X × X → R, which
computes an inner product in the feature space and thereby defines the repro-
ducing kernel Hilbert space (RKHS) H. The kernel matrix K = (Kij)

`
i,j=1 has
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the entries Kij = 〈Φ(xi), Φ(xj)〉 . The kernel has to be positive semi-definite,
that is, vT Kv ≥ 0 for all v ∈ R` and all S.

The best function f for classification is the one that minimizes the gen-
eralization error, that is, the probability of misclassifying unseen examples
PD(sign(f(x)) 6= y). Because the example’s underlying distribution D is un-
known, a direct minimization is not possible. Thus, upper bounds on the gen-
eralization error from statistical learning theory are studied that hold with a
probability of 1 − δ, δ ∈ (0, 1).

We follow the way of [5] for the derivation of SVM learning and give
an upper bound that directly incorporates the concepts of margin and slack
variables. The margin of an example (xi, yi) with respect to a function f :
X → R is defined by yif(xi). If a function f and a desired margin γ are
given, the example’s slack variable ξi(γ, f) = max(0, γ − yif(xi)) measures
how much the example fails to meet the margin (Figure 1 and 2). It holds
[5]:

Theorem 1. Let γ > 0 and f ∈ {fw : X → R, fw(x) = w ·Φ(x), ‖w‖ < 1}
a linear function in a kernel-defined RKHS with norm at most 1. Let

S = {(x1, y1), . . . , (x`, y`)}

be drawn independently according to a probability distribution D and fix δ ∈
(0, 1). Then with probability at least 1 − δ over samples of size ` we have

PD(y 6= sign(f(x))) ≤
1

`γ

∑̀

i=1

ξi +
4

`γ

√

tr(K) + 3

√

ln(2/δ)

2`
,

where K is the kernel matrix for the training set S.
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Fig. 1. Two linear decision boundaries separating circles from squares in some
feature space. In the right plot, the separating hyperplane maximizes the margin γ,
in the left not. The radius of the smallest ball in feature space containing all training
examples is denoted by R.
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Fig. 2. The concept of slack variables.

The upper bound of Theorem 1 gives a way of controlling the generalization
error PD(y 6= sign(f(x))). It states that the described learning problem has a
multi-objective character with two objectives, namely the margin γ and the
sum of the slack variables

∑`
i=1 ξi.

This motivates the following definition of SVM learning3:

PSVM =















max γ

min
∑`

i=1 ξi

subject to yi((w · Φ(xi)) + b) ≥ γ − ξi ,
ξi ≥ 0, i = 1, . . . , ` and ‖w‖2 = 1 .

In this formulation γ represents the geometric margin due to the fixation of
‖w‖2 = 1. For the solution of PSVM all training patterns (xi, yi) with ξi = 0
have a distance of at least γ to the hyperplane.

The more traditional formulation of SVM learning that will be used
throughout this chapter is slightly different. It is a scaled version of PSVM,
but finally provides the same classifier:

P ′
SVM =















min (w · w)

min
∑`

i=1 ξi

subject to yi((w · Φ(xi)) + b) ≥ 1 − ξi ,
ξi ≥ 0, i = 1, . . . , ` .

(1)

There are more possible formulations of SVM learning. For example, when
considering the kernel as part of the SVM learning process, as it is done in
[12], it becomes necessary to incorporate the term tr(K) of Theorem 1 into
the optimization problem.

3 We do not take into account that the bound of Theorem 1 has to be adapted in
the case b 6= 0.
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2.2 Classic C-SVM learning

Until now we have only considered multi-objective formulations of SVM learn-
ing. In order to obtain the classic single-objective C-SVM formulation the
weighted sum method is applied to (1). The factor C determines the trade-off

between the margin γ and the sum of the slack variables
∑`

i=1 ξi:

PC-SVM =







min 1
2 (w ·w) + C

∑`
i=1 ξi

subject to yi((w · Φ(xi)) + b) ≥ 1 − ξi ,
ξi ≥ 0, i = 1, . . . , ` .

PSfrag replacements
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Fig. 3. Classification by a soft margin SVM. The learning algorithm is fully specified
by the kernel function k and the regularization parameter C. Given training data,
it generates the coefficients of a decision function.

This optimization problem PC-SVM defines the soft margin L1-SVM schemat-
ically shown in Figure 3. It can be solved by Lagrangian methods. The result-
ing classification function becomes

sign(f(x)) with f(x) =
∑̀

i=1

yiα
∗
i k(xi,x) + b .

The coefficients α∗
i are the solution of the following quadratic optimization

problem

maximize W (α) =
∑̀

i=1

αi −
1

2

∑̀

i,j=1

yiyjαi, αjk(xi,xj)

subject to
∑̀

i=1

αiyi = 0 ,

0 ≤ αi ≤ C, i = 1, . . . , ` . (2)
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The optimal value for b can then be computed based on the solution α∗. The
vectors xi with α∗

i > 0 are called support vectors. The number of support
vectors is denoted by # SV. The regularization parameter C controls the
trade-off between maximizing the margin

γ∗ =





∑̀

i,j=1

yiyjα
∗
i α

∗
jk(xi,xj)





−1/2

and minimizing the L1-norm of the final margin slack vector ξ∗ of the training
data, where

ξ∗i = max



0, 1− yi





∑̀

j=1

yjα
∗
j k(xj ,xj) + b







 .

In the following we give an extension of the classic C-SVM. It is especially
important for practical applications, where the case of highly unbalanced data
appears very frequently. To realize a different weighting for wrongly classified
positive and negative training examples different cost-factors C+ and C− are
introduced [13] that change the optimization problem PC-SVM to

PC̃-SVM =







min 1
2 (w · w) + C+

∑

i∈I+ ξi + C−

∑

i∈I− ξi

subject to yi((w · Φ(xi)) + b) ≥ 1 − ξi ,
ξi ≥ 0, i = 1, . . . , ` ,

where I+ = {i ∈ {1, . . . , `} | yi = 1} and I− = {i ∈ {1, . . . , `} | yi = −1}. The
quadratic optimization problem remains unchanged, except for constraint (2)
that has be adapted to

0 ≤ αi ≤ C− , i ∈ I− ,

0 ≤ αj ≤ C+ , j ∈ I+ .

3 Model selection for SVMs

So far we have considered the inherent multi-objective nature of SVM train-
ing. For the remainder of this chapter, we focus on a different multi-objective
design problem in the context of C-SVMs. We consider model selection of
SVMs, subsuming hyperparameter adaptation and feature selection with re-
spect to different model selection criteria, which are discussed in this section.

Choosing the right kernel for an SVM is crucial for its training accuracy
and generalization capabilities as well as the complexity of the resulting clas-
sifier. When a parameterized family of kernel functions is considered, kernel
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adaptation reduces to finding an appropriate parameter vector. These param-
eters together with the regularization parameter C are called hyperparameters
of the SVM.

In the following, we first discuss optimization methods used for SVM model
selection with an emphasis on evolutionary multi-objective optimization. Then
different model selection criteria are briefly reviewed. Section 3.3 deals with
appropriate encodings for Gaussian kernels and for feature selection.

3.1 Optimization methods for model selection

In practice, the standard method to determine the hyperparameters is grid-
search. In simple grid-search the hyperparameters are varied with a fixed
step-size through a wide range of values and the performance of every com-
bination is measured. Because of its computational complexity, grid-search is
only suitable for the adjustment of very few parameters. Further, the choice
of the discretization of the search space may be crucial.

Perhaps the most elaborate techniques for choosing hyperparameters are
gradient-based approaches [14, 15, 16, 17, 18]. When applicable, these meth-
ods are highly efficient. However, they have some drawbacks and limitations.
The most important one is that the score function for assessing the perfor-
mance of the hyperparameters (or at least an accurate approximation of this
function) has to be differentiable with respect to all hyperparameters, which
excludes reasonable measures such as the number of support vectors. In some
approaches, the computation of the gradient is only exact in the hard-margin
case (i.e., for separable data /L2-SVMs) when the model is consistent with
the training data. Further, as the objective functions are indeed multi-modal,
the performance of gradient-based heuristics may strongly depend on the
initialization—the algorithms are prone to getting stuck in sub-optimal lo-
cal optima. Evolutionary methods partly overcome these problems.

Evolutionary algorithms

Evolutionary algorithms (EAs) are a class of iterative, direct, randomized
global optimization techniques based on principles of neo-Darwinian evolution
theory. In canonical EAs, a set of individuals forming the parent population
is maintained, where each individual has a genotype that encodes a candidate
solution for the optimization problem at hand. The fitness of an individual
is equal to the objective function value at the point in the search space it
represents. In each iteration of the algorithm, new individuals, the offspring,
are generated by partially stochastic variations of parent individuals. After
the fitness of each offspring has been computed, a selection mechanism that
prefers individuals with better fitness chooses the new parent population from
the current parents and the offspring. This loop of variation and selection is
repeated until a termination criterion is met.
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In [19, 20], single-objective evolution strategies were proposed for adapting
SVM hyperparameters. A single-objective genetic algorithm for SVM feature
selection (see below) was used in [21, 22, 23, 24], where in [22] additionally
the (discretized) regularization parameter was adapted.

Multi-objective optimization

Training accuracy, generalization capability, and complexity of the SVM (mea-
sured by the number of support vectors) are multiple, probably conflicting
objectives. Therefore, it can be beneficial to treat model selection as a multi-
objective optimization (MOO) problem.

Consider an optimization problem with M objectives f1, . . . , fM : X → R
to be minimized. The elements of X can be partially ordered using the concept
of Pareto dominance. A solution x ∈ X dominates a solution x′ and we
write x ≺ x′ if and only if ∃m ∈ {1, . . . , M} : fm(x) < fm(x′) and @m ∈
{1, . . . , M} : fm(x) > fm(x′). The elements of the (Pareto) set {x | @x′ ∈
X : x′ ≺ x} are called Pareto-optimal. Without any further information,
no Pareto-optimal solution can be said to be superior to another element of
the Pareto set. The goal of MOO is to find in a single trial a diverse set of
Pareto-optimal solutions, which provide insights into the trade-offs between
the objectives. When approaching a MOO problem by linearly aggregating all
objectives into a scalar function, each weighting of the objectives yields only a
limited subset of Pareto-optimal solutions. That is, various trials with different
aggregations become necessary—but when the Pareto front (the image of the
Pareto set in the m-dimensional objective space) is not convex, even this
inefficient procedure does not help (cf. [2, 3]).

Evolutionary multi-objective algorithms have become the method of choice
for MOO [1, 2]. Applications of evolutionary MOO to model selection for
neural networks can be found in [25, 26, 27, 28], for SVMs in [7, 29, 30].

3.2 Model selection criteria

In the following, we list performance indices that have been considered for
SVM model selection. They can be used alone or in linear combination for
single-objective optimization. In MOO a subset of these criteria can be used
as different objectives.

Accuracy on sample data

The most straightforward way to evaluate a model is to consider its classifica-
tion performance on sample data. One can always compute the empirical risk
given by the error on the training data. To estimate the generalization perfor-
mance of an SVM, one monitors its accuracy on data not used for training.
In the simplest case, the available data is split into a training and validation
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set, the first one is used for building the SVM and the second for assessing
the performance of the classifier.

In L-fold cross-validation (CV) the available data is partitioned into L
disjoint sets D1, . . . , DL of (approximately) equal size. For given hyperpa-
rameters, the SVM is trained L times. In the ith iteration, all data but the
patterns in Di are used to train the SVM and afterwards the performance on
the ith validation data set Di is determined. At last, the errors observed on
the L validation data sets are averaged yielding the L-fold CV error. In addi-
tion, the average empirical risk observed in the L iterations can be computed,
a quantity we call L-fold CV training error. The `-fold CV (training) error
is called the leave-one-out (training) error. The L-fold CV error is an unbi-
ased estimate of the expected generalization error of the SVM trained with
b`− `/Lc i.i.d. patterns. Although the bias is low, the variance may not be, in
particular for large L. Therefore, and for reasons of computational complexity,
moderate choices of L (e.g., 5 or 10) are usually preferred [31].

It can be reasonable to split the classification performance into false neg-
ative and false positive rate and consider sensitivity and specificity as two
separate objectives of different importance. This topic is discussed in detail
in Section 5.

Number of input features

Often the input space X can be decomposed into X = X1×· · ·×Xm. The goal
of feature selection is then to determine a subset of indices (feature dimen-
sions) {i1, . . . , im′} ⊂ {1, . . . , m} that yields classifiers with good performance
when trained on the reduced input space X ′ = Xi1 × · · · × Xi

m
′
. By detect-

ing a set of highly discriminative features and ignoring non-discriminative,
redundant, or even deteriorating feature dimensions, the SVM may give bet-
ter classification performance than when trained on the complete space X . By
considering only a subset of feature dimensions, the computational complexity
of the resulting classifier decreases. Therefore reducing the number of feature
dimensions is a common objective.

Feature selection for SVMs is often done using single-objective [21, 22,
23, 24] or multi-objective [29, 30] evolutionary computing. For example, in
[30] evolutionary MOO of SVMs was used to design classifiers for protein fold
prediction. The three objective functions to be minimized were the number
of features, the CV error, and the CV training error. The features were se-
lected out of 125 protein properties such as the frequencies of the amino acids,
polarity, and van der Waals volume. In another bioinformatics scenario [29]
dealing with the classification of gene expression data using different types
of SVMs, the subset of genes, the leave-one-out error, and the leave-one-out
training error were minimized using evolutionary MOO.
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Modified radius-margin bounds

Bounds on the generalization error derived using statistical learning theory
(see Section 2.1) can be (ab)used as criteria for model selection.4 In the fol-
lowing, we consider radius-margin bounds for L1-SVMs as used for example
in [7] and Section 4.

Let R denote the radius of the smallest ball in feature space containing all
` training examples given by

R =

√

√

√

√

∑̀

i=1

β∗
i K(xi,xi) −

∑̀

i,j=1

β∗
i β∗

j K(xi,xj) ,

where β∗ is the solution vector of the quadratic optimization problem

maximize
β

∑̀

i=1

βiK(xi,xi) −
∑̀

i,j=1

βiβjK(xi,xj)

subject to
∑̀

i=1

βi = 1

βi ≥ 0 , i = 1, . . . , ` ,

see [32]. The modified radius-margin bound

TDM = (2R)2
∑̀

i=1

α∗
i +

∑̀

i=1

ξ∗i ,

was considered for model selection of L1-SVMs in [33]. In practice, this ex-
pression did not lead to satisfactory results [15, 33]. Therefore, in [15] it was
suggested to use

TRM = R2
∑̀

i=1

α∗
i +

∑̀

i=1

ξ∗i ,

based on heuristic considerations and it was shown empirically that TRM leads
to better models than TDM.5 Both criteria can be viewed as two different
aggregations of the following two objectives

f1 = R2
∑̀

i=1

α∗
i and f2 =

∑̀

i=1

ξ∗i (3)

4 When used for model selection in the described way, the assumptions of the
underlying theorems from statistical learning theory are violated and the term
“bound” is misleading.

5 Also for L2-SVMs it was shown empirically that theoretically better founded
weightings of such objectives (e.g., corresponding to tighter bounds) need not
correspond to better model selection criteria [15].
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penalizing model complexity and training errors, respectively. For example, a
highly complex SVM classifier that very accurately fits the training data has
high f1 and small f2.

Number of support vectors

There are good reasons to prefer SVMs with few support vectors (SVs). In
the hard-margin case, the number of SVs (#SV) is an upper bound on the
expected number of errors made by the leave-one-out procedure (e.g., see
[14, 6]). Further, the space and time complexity of the SVM classifier scales
with the number of SVs.

For example, in [7] the number of SVs was optimized in combination with
the empirical risk, see also Section 4.

3.3 Encoding in evolutionary model selection

For feature selection a binary encoding is appropriate. Here, the genotypes
are n-dimensional bit vectors (b1, . . . , bn)T = {0, 1}n, indicating that the ith
feature dimension is used or not depending on bi = 1 or bi = 0, respectively
[29, 30].

When a parameterized family of kernel functions is considered, the kernel
parameters can be encoded more or less directly. In the following, we focus
on the encoding of Gaussian kernels.

The most frequently used kernels are Gaussian functions. General Gaus-
sian kernels have the form

kA(x, z) = exp
(

−(x − z)T A(x − z)
)

for x, z ∈ Rn and A ∈ M , where M := {B ∈ Rn×n | ∀x 6= 0 : xT Bx >
0 ∧ B = BT } is the set of positive definite symmetric n × n matrices.

When adapting Gaussian kernels, the questions of how to ensure that the
optimization algorithm only generates positive definite matrices arises. This
can be realized by an appropriate parameterization of A. Often the search is
restricted to kγI, where I is the unit matrix and γ > 0 is the only adjustable
parameter. However, allowing more flexibility has proven to be beneficial (e.g.,
see [14, 19, 16]). It is straightforward to allow for independent scaling factors
weighting the input components and consider kD, where D is a diagonal ma-
trix with arbitrary positive entries. This parameterization is used in most of
the experiments described in Sections 4 and 5. However, only by dropping
the restriction to diagonal matrices one can achieve invariance against linear
transformations of the input space. To allow for arbitrary covariance matrices
for the Gaussian kernel, that is, for scaling and rotation of the search space,
we use a parameterization of M mapping Rn(n+1)/2 to M such that all mod-
ifications of the parameters by some optimization algorithm always result in
feasible kernels. In [19], a parameterization of M is used which was inspired
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by the encoding of covariance matrices for mutative self-adaptation in evolu-
tion strategies. We make use of the fact that for any symmetric and positive
definite n × n matrix A there exists an orthogonal n × n matrix T and a
diagonal n × n matrix D with positive entries such that A = TT DT and

T =

n−1
∏

i=1

n
∏

j=i+1

R(αi,j) ,

as proven in [34]. The n × n matrices R(αi,j) are elementary rotation matri-
ces. These are equal to the unit matrix except for [R(αi,j)]ii = [R(αi,j)]jj =

cosαij and [R(αi,j)]ji = − [R(αi,j)]ij = sin αij . However, this is not a canon-
ical representation. It is not invariant under reordering the axes of the coordi-
nate system, that is, applying the rotations in a different order (as discussed
in the context of evolution strategies in [35]). The natural injective parame-
terization is to use the exponential map

exp : m → M , A 7→

∞
∑

i=0

Ai

i!
,

where m := {A ∈ Rn×n |A = AT } is the vector space of symmetric n × n
matrices, see [16]. However, also the simpler, but non-injective function m →
M mapping A 7→ AAT should work.

4 Experiments on benchmark data

In this section, we summarize results from evolutionary MOO obtained in [7].
In that study, L1-SVMs with Gaussian kernels were considered and the two
objectives given in (3) were optimized.

The evaluation was based on four common medical benchmark datasets
breast-cancer, diabetes, heart, and thyroid with input dimensions n equal to
9, 8, 13, and 5, and ` equal to 200, 468, 170, and 140. The data originally
from the UCI Benchmark Repository [36] were preprocessed and partitioned
as in [37]. The first of the splits into training and external test set Dtrain and
Dextern was considered.

Figure 4 shows the results of optimizing kγI (see Section 3.3) using the
objectives (3). For each f1 value of a solution the corresponding f2, TRM,
TDM, and the percentage of wrongly classified patterns in the test data set
100 · CE(Dextern) are given. For diabetes, heart, and thyroid, the solutions lie
on typical convex Pareto fronts; in the breast-cancer example the convex front
looks piecewise linear.

Assuming convergence to the Pareto-optimal set, the results of a single
MOO trial are sufficient to determine the outcome of single-objective opti-
mization of any (positive) linear weighting of the objectives. Thus, we can
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Fig. 4. Pareto fronts (i.e., (f1, f2) of non-dominated solutions) after 1500 fitness
evaluations, see [7] for details. For every solution the values of TRM, TDM, and
100 ·CE(Dextern) are plotted against the corresponding f1 value, where CE(Dextern)
is the proportion of wrongly classified patterns in the test data set. Projecting the
minimum of TRM (for TDM proceed analogously) along the y-axis on the Pareto
front gives the (f1, f2) pair suggested by the model selection criterion TRM—this
would also be the outcome of single-objective optimization using TRM. Projecting
an (f1, f2) pair along the y-axis on 100 · CE(Dextern) yields the corresponding error
on an external test set.

directly determine and compare the solutions that minimizing TRM and TDM

would suggest.
The experiments confirm the findings in [15] that the heuristic bound TRM

is better suited for model selection than TDM. When looking at CE(Dextern)
and the minima of TRM and TDM, we can conclude that TDM puts too much
emphasis on the “radius-margin part” yielding worse classification results on
the external test set (except for breast-cancer where there is no difference on
Dextern). The heart and thyroid results suggest that even more weight should
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data after 1500 fitness evaluations [7]. For both kernel parameterizations, f2 and
100 · CE(Dextern) are plotted against f1.

be given to the slack variables (i.e., the performance on the training set) than
in TRM.

In the MOO approach, degenerated solutions resulting from a not appro-
priate weighting of objectives (which we indeed observed—without the chance
to change the trade-off afterwards—in single-objective optimization of SVMs)
become obvious and can be excluded. For example, one would probably not
pick the solution suggested by TDM in the diabetes benchmark. A typical
MOO heuristic is to choose a solution that belongs to the “interesting” part
of the Pareto front. In case of a typical convex front, this would be the area of
highest “curvature” (the “knee”, see Figure 4). In our benchmark problems,
this leads to results on a par with TRM and much better than TDM (except for
breast-cancer, where the test errors of all optimized trade-offs were the same).
Therefore, this heuristic combined with TRM (derived from the MOO results)
is an alternative for model selection based on modified radius margin bounds.

Adapting the scaling of the kernel (i.e., optimizing kD) sometimes led to
better objective values compared to kγI, see Figure 5 for an example, but not
necessarily to better generalization performance.

5 Real-world application: Pedestrian detection

In this section, we consider MOO of SVM classifiers for online pedestrian de-
tection in infrared images for driver assistance systems. This is a challenging
real-world task with strict real-time constraints requiring highly optimized
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classifiers and a considerate adjustment of sensitivity and specificity. Instead
of optimizing a single SVM and varying the bias parameter to get a ROC (re-
ceiver operating characteristic) curve [8, 38], we apply MOO to decrease the
false positive rate, the false negative rate, as well as the number of support
vectors. Reducing the latter directly corresponds to decreasing the capacity
and the computational complexity of the classifier. We automatically select
the kernel parameters, the regularization parameter, and the weighting of pos-
itive and negative examples during training. Gaussian kernel functions with
individual scaling parameters for each component of the input are adapted. As
neither gradient-based optimization methods nor grid-search techniques are
applicable, we solve the problem using the real-valued non-dominated sorting
genetic algorithm NSGA-II [2, 39].

5.1 Pedestrian detection

Robust object detection systems are a key technology for the next generation
of driver assistance systems. They make major contributions to the environ-
ment representation of the ego-vehicle, which serves a basis for different high-
level driver assistance applications. Besides vehicle detection the early detec-
tion of pedestrians is of great interest since it is one important step towards
avoiding dangerous situations. In this section we focus on the special case of
the detection of pedestrians in a single frame. This is an extremely difficult
problem, because of the large variety of human appearances, as pedestrians
are standing or walking, carrying bags, wearing hats, etc. Another reason
making pedestrian detection very difficult is that pedestrians usually appear
in urban environment with complex background (e.g., containing buildings,
cars, traffic signs, and traffic lights).

Most of the past work in detecting pedestrians was done using visual cam-
eras. These approaches use a lot of different techniques so we can name only a
few. In [40] segmentation was done by means of stereo vision and classification
by the use of neural networks. Classification with SVMs that are working on
wavelet features was suggested in [41]. A shape-based method for classifica-
tion was applied in [42]. In [43] a hybrid approach for pedestrian detection
was presented, which evaluates the leg-motion and tracks the upper part of
the pedestrian.

Recently some pedestrian detection systems have been developed that are
working with infrared images, where the color depends on the heat of the ob-
ject. The advantage of infrared based systems is that they are almost indepen-
dent on the lighting conditions, so that night-vision is possible. A shape-based
method for the classification of pedestrians in infrared images was developed
by [44, 45] and an SVM-based one was suggested in [46].
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5.2 Pedestrian detection system

In this section we give a description of our pedestrian detection system that
is working with infrared images. We keep it rather short because our focus
mainly lies on the classification task.

The task of detecting pedestrians is usually divided into two steps, namely
the segmentation of candidate regions for pedestrians and the classification of
the segmented regions (Figure 6). In our system the segmentation of candidate

Fig. 6. Results of our pedestrian detection system on an infrared image; the left
picture shows the result of the segmentation step, which provides candidate regions
for pedestrians; the image on the right shows the regions that has been labeled as
pedestrian.

regions for pedestrians is based on horizontal gradient information, which is
used to find vertical structures in the image. If the candidate region is at least
of size 10 × 20 pixels a feature vector is calculated and classified using an
SVM.

The calculation of the feature vectors is based on contour points and the
corresponding discretized angles, which are obtained using a Canny filter [47].
To make the approach scaling-invariant we put a 4× 8 grid on the candidate
region and determine the histograms of eight different angles for each of these
fields. In a last step the resulting 256-dimensional feature vector is normalized
to the range [−1, 1]256.

5.3 Model selection

In practice the common way for assigning a performance to a classifier is
to analyze its ROC curve. This analysis visualizes the trade-off between the
two partially conflicting objectives false negative and false positive rate and
allows for the selection of a problem specific solution. A third objective for
SVM model-selection, which is especially important for real-time tasks like
pedestrian detection, is the number of support vectors, because it directly
determines the computational complexity of the classifier.
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We use an EA for the tuning of much more parameters than would be pos-
sible with grid-search, thus making a better adaptation to the given problem
possible. Concretely we tune the parameters C+, C−, and D, that is, indepen-
dent scaling factors for each component of the feature vector (see Sections 2.2
and 3.3).

For the optimization we generated four datasets Dtrain, Dval, Dtest, and
Dextern, whose use will become apparent in the discussion of the optimization
algorithm. Each of the datasets consists of candidate regions (256-dimensional
feature vectors) that are manually labeled pedestrian or non-pedestrian. The
candidate regions are obtained by our segmentation algorithm to ensure that
the datasets are realistic in that way that all usually appearing critical cases
are contained. Furthermore the segmentation algorithm provides much more
non-pedestrians than pedestrians and therefore negative and positive exam-
ples in the data are highly unbalanced. The datasets are obtained from dif-
ferent image sequences, which have been captured on the same day to ensure
similar environmental conditions, but no candidate region from the same se-
quence is in the same dataset.

For optimization we use the NSGA-II, where the fitness of an individual
is determined on dataset Dval with an SVM that has been trained on dataset
Dtrain. This training is done using the individual’s corresponding SVM param-
eterization. To avoid overfitting we keep an external archive of non-dominated
solutions, which have been evaluated on the validation set Dtest for every indi-
vidual that has been created by the optimization process. The dataset Dextern

is used for the final evaluation (cf. [28]).
For the application of the NSGA-II we choose a population size of 50

and create the initial parent population by randomly selecting non-dominated
solutions from a 3D-grid-search on the parameters C+, C−, and one global
scaling factor γ, that is D = γI. The other parameters of the NSGA-II are
chosen like in [39] (pc = 0.9, pm = 1/n, ηc = 20, ηm = 20). We carried out 10
optimization trials, each of them lasting for 250 generations.

5.4 Results

In this section we give a short overview about the results of the MOO of the
pedestrian detection system.

The progress of one optimization trial is exemplary shown in Figure 7. It
illustrates the Pareto-optimal solutions in the objective space that are con-
tained in the external archive after the first and after the 250th generation.
The solutions in the archive after the first generation roughly correspond to
the solutions that have been found by 3D-grid search. The solutions after the
250th generation have obviously improved and clearly reveal the trade-off be-
tween the three objectives, thereby allowing for a problem-specific choice of
an SVM.

For assessing the performance of a stochastic optimization algorithm it is
not sufficient to evaluate a single optimization trial. A possibility for visual-
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izing the outcome of a series of optimization trials are the so-called summary
attainment surfaces [48] that provide the points in objective space that have
been attained in a certain fraction of all trials.

We give the summary attainment curve for the two objectives true positive
and false positive rate, which are the objectives of the ROC curve. Figure 8
shows the points that have been attained by all, 50%, and the best of our
optimization trials.
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6 Conclusions

Designing classifiers is a multi-objective optimization (MOO) problem. The
application of “true” MOO algorithms allows for visualizing trade-offs, for
example between model complexity and learning accuracy or sensitivity and
specificity, for guiding the model selection process.

We considered evolutionary MOO of support vector machines (SVMs).
This approach can adapt multiple hyperparameters of SVMs based on con-
flicting, not differentiable criteria.

When optimizing the norm of the slack variables and the radius-margin
quotient as two objectives, it turned out that standard MOO heuristics based
on the curvature of the Pareto front led to comparable models as correspond-
ing single-objective criteria proposed in the literature. In benchmark problems
it appears that the latter should put more emphasis on minimizing the slack
variables.

We demonstrated MOO of SVMs for the detection of pedestrians in in-
frared images for driver assistance systems. Here the three objectives are the
false positive rate, the false negative rate, and the number of support vectors.
The Pareto front of the first two objectives can be viewed as a ROC curve
where each point corresponds to a learning machine optimized for that partic-
ular trade-off between sensitivity and specificity. The third objective reduces
the model complexity in order to meet real-time constraints.
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