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Abstract

Traffic signs are characterized by a wide variability in thesual appearance in real-world environments. For exangiianges

of illumination, varying weather conditions and partiathsions impact the perception of road signs. In practidayge number

of different sign classes needs to be recognized with vegh Bccuracy. Traffic signs have been designed to be easiialéa

for humans, who perform very well at this task. For compujesteams, however, classifying traffic signs still seems teepa
challenging pattern recognition problem. Both image pssio® and machine learning algorithms are continuouslyedfio
improve on this task. But little systematic comparison aftsaystems exist. What is the status quo? Do today’s algasitieach
human performance? For assessing the performance obétdte-art machine learning algorithms, we present a plybdivailable
traffic sign dataset with more than 50,000 images of Germad signs in 43 classes. The data was considered in the seteged s
of the German Traffic Sign Recognition Benchmark held at INC2011. The results of this competition are reported and the
best-performing algorithms are briefly described. Contiohal neural networks (CNNs) showed particularly highssiéication
accuracies in the competition. We measured the performainfwgman subjects on the same data — and the CNNs outperformed
the human test persons.
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1. Introduction This does not only apply to real-world driving, where ricmeo
text information and multiple views of a single traffic sigrea
Traffic sign recognition is a multi-category classification gyajlable, but also to the recognition from individual ppled
problem with unbalanced class frequencies. Itis a chalieng jmages.
real-world computer vision problem of high practical relece, In this paper, we compare the traffic sign recognition per-
which has been a research topic for several decades. Mahy StUgrmance of humans to that of state-of-the-art machinalegr
ies have been published on this subject and multiple systemgigorithms. These results were generated in the contexieof t
which often restrict themselves to a subset of relevantssign gecond stage of th&erman Traffic Sign Recognition Bench-
are already commercially available in new high- and migEn  mark (GTSRB) held at IJCNN 2011. We present the extended
vehicles. Nevertheless, there has been little systemabé U  GTSRB dataset with 51,840 images of German road signs in 43
ased comparison of approaches and comprehensive benchmafksses. A website with a public leaderboard was set up dhd wi
datasets are not publicly available. _ be permanently available for submission of new resultsaiBet
Road signs are designed to be easily detected and recogpoyt the competition design and analysis of the resultheof t
nized by human drivers. They follow clear design principles  fjrst stage are described by Stallkamp et al. (2011).
ing color, shape, icons and text. These allow for a wide raige The paper is organized as follows: Section 2 presents re-
variations between classes. Signs with the same generalmegated work. Section 3 provides details about the benchmark
ing, such as the various speed limits, have a common generghtaset. Section 4 explains how the human traffic sign recogn
appearance, leading to subsets of traffic signs that aresirery  tjon performance is determined, whereas the benchmarked ma
ilar to each other. lllumination changes, partial occlasioo-  :hine learning algorithms are presented in Sec. 5. The avalu
tations, and weather conditions further increase the rarfige tjgn procedure is described in Sec. 6, together with thecisso
variations in visual appearance a classifier has to cope with  5tg(g public leaderboard. Benchmarking results are repartd

Humans are capable of recognizing the large variety of exgiscussed in Sec. 7 before conclusions are drawn in Sec. 8.
isting road signs in most situations with near-perfect eacy

2. Related work
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tracking or focus on the classification part only. Some ksic 3.1. Data collection

concentrate on subclasses of signs, for example on speid lim  The dataset was created from approx. 10 hours of video
signs and digit recognition. that were recorded while driving on different road types &rG
Bahlmann et al. (2005) present a holistic system coveringnany during daytime. The sequences were recorded in March,
all three processing steps. The classifier itself is clait®ed Qctober and November 2010. For data collectiorasilica
operate with a correct classification rate of 94 % onimageafr ¢ 1380CHcamera was used with automatic exposure control
23 classes. Training was conducted on 4,000 traffic signé®ag gnd a frame rate of 25 fps. The camera images, from which the
featuring an unbalanced class frequency of 30 to 600 exampley 5ffic sign images are extracted, have a resolution36f) x
The individual performance of the classification comporignt {94 pixels. The video sequences are stored in Bayer
evaluated on a test set of 1,700 samples. attern format (Bayer, 1975).
Moutarde et al. (2007) present a system for recognition OP Data collection, annotation and image extraction was per-
European and U. S. speed limit signs. Their approach is basqgrmed using theNISYS Advanced Development and Analysis

on single digit recognition using a neural network. Inchgli  Framework (ADAF), an easily extensible, module-based soft-
detection and tracking, the proposed system obtains arperfoyare system (see Fig. 1).

mance of 89 % for U. S. and 90 % for European speed limits,
respectively, on 281 traffic signs. Individual classifioatire-  * . — : —
sults are not provided. ! il N
Another traffic sign detection framework is presented by:
Ruta et al. (2010). The overall system including detectioth a '
classification of 48 different signs achieves a performanfce
85.3 % while obtaining classification error rates bel6w.
Broggi et al. (2007) apply multiple neural networks to clas-
sify different traffic signs. In order to choose the appraf@i |
network, shape and color information from the detectiogesta ;-
is used. The authors only provide qualitative classificate
sults. )
In the work by Keller et al. (2008), a number-based speed:
limit c':lf';\ss!fler s trained on 2,880 |mqges. It achieves aemjr Figure 1: Screenshot of the software used for the manual atioiot \We made
classification rate 092.4 % on 1,233 images. However, it iS se of the NISYS Advanced Development and Analysis FramewAlDiAF).
not clear whether images of the same traffic sign instance are
shared between sets. We will use the terniraffic sign instanceo refer to a physi-
Gao et al. (2006) propose a system based on color featureg| real-world traffic sign in order to discriminate agaitnatfic
inspired by human vision. They report recognition ratesaip t sign imagesvhich are captured when passing the traffic sign by
95 % on 98 British traffic sign images. car. The sequence of images originating from one traffic sign
Various approaches are compared on a dataset containifigstance will be referred to asack Each instance is unique.

1,300 preprocessed examples from 6 classes (5 speed lirdits an other words, the dataset only contains a single trackdohe
1 noise class) by Muhammad et al. (2009). The best classificzphysicm traffic sign.

tion performance observed was %.
In the study by Maldonado BasSo et al. (2010), a classi- 3.2, Data organization

fication performance d§5.5 % is achieved using support vec- From 144,769 labelled traffic sign images of 2,416 traffic

]Ef)r n_1ach|nes.l Thef (igt;:lbqse clomprlséﬁ,ooo Spin_'Sh trtaf] sign instances in 70 classes, the GTSRB dataset was compiled
ic sign samples o sign classes. However, it is not ¢ ez&égcording to the following criteria:

whether the training and test sets can be assumed to be in

pendent, as the random split only took care of maintainieg th 1. Discard tracks with less than 30 images.

distribution of traffic sign classes (see Sec. 3). To our Know

edge, this database is not publicly available. 2. Discard classes with less than 9 tracks.
Obviously, the results reported above are not comparable, a

all systems are evaluated on proprietary data, most of which

not publicly available. Therefore, we present a freely ladé,

extensive traffic sign data set to allow unbiased comparon  step 3 was performed for two reasons. First of all, the casgms

3. For the remaining tracks: If the track contains more than
30 images, equidistantly sample 30 images.

traffic sign recognition approaches. different traffic sign instances with different velocitiéspend-
ing on sign position and the overall traffic situation. In the
3. Dataset recording, this leads to different numbers of traffic sigmgas

) ] ) ) ) per track (approximately 5-250 images per track). Consezut
This section describes our publicly available benchmark

dataset. We explain the process of data collection and the pr
vided data representation. Ihtt p: / / www. ni sys. de
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Figure 4: Relative class frequencies in the dataset. Thes ¢ results from
enumerating the classes in Fig. 3 from top-left to bottomtrigh

Figure 2: A traffic sigrtrack, which containgraffic sign imagesaptured when The set contains images of more than 1,700 traffic sign in-
passing a particularaffic sign instance stances. The size of the traffic signs varies betwser 15
and 222 x 193 pixels. The images contain 10% margin (at

images of a traffic sign that was passed with low velocity ard®aSt 5 pixels) around the traffic sign to allow for the usage o
very similar to each other. They do not contribute to the dive €d9€ detectors. The original size and location of the traign
sity of the dataset. On the contrary, they cause an undegired Within the image (region of interest, ROI) is preserved ia th
balance of dependent images. Since the different velsaitie ~ Provided annotations. The images are not necessarily sguar
not uniformly distributed over all traffic sign types, thisuld ~ Figure 5 shows the distribution of traffic sign sizes takin@i
strongly favour image classes that are present in low-spagd account the larger of both dimensions of the traffic sign ROI.
fic (Stop Yield-right-of-way low speed limits). The GTSRB dataset was splitinto three subsets according to
Secondly, the question arises why to keep multiple image§9- 6- We applied stratified sampling. The split was perfedm
per track at all. Although consecutive images in long tracks2t random, but taking into account class and track memigershi
are nearly identical, the visual appearance of a traffic sam This makes sure thgt_ (a) the overall class d|st_r|but|on & pr
vary significantly over the complete track, as can be seen igérved for each individual set and that (b) all images of one
Fig. 2. Traffic signs at high distance result in low resolntio {raffic sign instance are assigned to the same set, as otfeerwi
while closer ones are prone to motion blur. The illuminationth® datasets could not be considered stochastically imiepe.
may change, and the motion of the car affects the perspec- "€ main split separates the data in to thigtraining set
tive with respect to occlusions and background. Selecting &nd thetest set The training set is ordered by class. Further-
fixed number of images per traffic sign both increases the difore. the images are grouped by tracks to preserve temperal i
versity of the dataset in terms of the variations mentiormya ~ formation, which may be exploited by algorithms that areecap
and avoids an undesired imbalance caused by large numberskJf of using privileged information (Vapnik and VashistO2).
nearly identical images. It can be used for final training of the classifier after allesc
The selection procedure outlined above reduced the numb&@"Y design decisions were made or for training of parameter
to 51,840 images of the 43 classes that are shown in Fig. € classifiers.

The relative class frequencies of the classes are show id Fi For thetest setin contrast to the training set, temporal in-
formation is not available. It is consecutively numbered an

shuffled to prevent deduction of class membership from other
images of the same track.
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Figure 3: Random representatives of the 43 traffic sign elassthe GTSRB Figure 5: Distribution of traffic sign sizes (in pixel).
dataset.
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Figure 6: For the two stages of the competition, the data wiisisip three
sets.

~®rcond principal component

For the first stage of the GTSRB (see Sec. 5 and Stallkam
et al., 2011), the full training set was partitioned into tseds.
The validation setis a subset of the full training set and is
still provided for convenience. It is generated accordmthe
aforementioned criteria and, thus, ensures consistess dia- Sa 2 y 0 1 2 3 7 5
tribution and clean separation from the other sets. It alfov first principal component
classifier selection, parameter search and optimizatiama ) . N ) o o
the validation set is available in two different configuoat: E;gnut;e 7: The "HOG1" training data projected on its first twinpipal compo-

(a) shuffled like the test set which allows a fixed system setup

for training and testing and (b) appended to lasic training

set— sorted by class and grouped by track — as part ofuhe HOG descriptors provide a good representation of the traffic

training set The validation set played the role of the test set insigns. As can be seen in Fig. 7, the first two principal compo-

the online competition (see Stallkamp et al., 2011 and Sec. 5 hents provide already a clear and meaningful separatioif-of d
ferent sign shapes (e.g., the diamond shaped signs aredocat

3.3. Data representation between the upwards and downwards pointing triangulas$ign

round  +
triangle up
triangle down * 4
diamond ©
octagoT

To allow participants without image processing background
to benchmark their machine learning approaches on the data,

all sets are provided in different representations. Thevdhg 33 Haar-like features o .
pre-calculated features are included: The popularity of Haar features is mainly due to the efficient

computation using théntegral imageproposed by Viola and
Jones (2001) and their outstanding performance in rea-tim

3.3.1. Colorimages . . h u
ject detection employing a cascade of weak classifiers.

Originally, the videos are recorded byBayersensor array.
All extracted traffic sign images are converted iRGB color
images employing an edge-adaptive, constant-hue derkesaic [I E E ‘:I:I E
ing method (Gunturk et al., 2005; Ramanath et al., 2002). The

images are stored iRPM format alongside the corresponding Figure 8: Haar features types used to generate one of theseations pro-
annotations in a text file. vided by the competition organizers.

3.3.2. HOG features Just as for the HOG features, images were rescalé@it)

Histograms of Oriented Gradient (HOG) descriptors havedixels. In order to compute Haar features, they were coedert
been proposed by Dalal and Triggs (2005) for pedestrian delo grayscale after rescaling. We computed five differenesyp
tection. Based on gradients of color images, different eig ~ (see Fig. 8) in different sizes to a total of 11,584 featuisip-
and normalized histograms are calculated: first for smaik-no age. While one would usually apply feature selection (Salmen
overlappingeells of multiple pixels that cover the whole image €t al., 2010) we provide all Haar-feature responses in the se
and then for larger overlappirocksthat integrate over multi-
ple cells. 3.3.4. Color histograms

We provided three sets of features from differently con-  This set of features was provided to complement the grad-
figured HOG descriptors, which we expected to perform wellient-based feature sets with color information. It corga@n
when used for classification. To compute HOG features, all imglobal histogram of the hue values in HSV color space, result
ages were scaled to a size4sfx 40 pixels. For sets 1 and 3 ing in 256 features per image.
the sign of the gradient response was ignored. Sets 1 and 2 use
cells of size5 x 5 pixels, a block size of x 2 cells and an ori-
entation resolution of 8, resulting in feature vectors ofglén
1568. In contrast, for “‘HOG 3” cells of siz&x 4 pixels and Traffic signs are designed to be easily distinguishable and
9 orientations resulted in 2916 features. readable by humans. Once spotted, recognition of the mjori

of traffic signs is not a challenging problem for them. Altigbu
real-life traffic provides rich context, it is not requiredrfthe

4. Human Performance



task of pure classification. Humans are well capable to recog 1or

nize the type of a traffic sign from clipped images such asén th sl
GTSRB dataset (e.g., see Fig. 3).

In order to determine the human traffic sign recognition per-
formance, two experiments were conducted. During these ex-
periments, images were presented to the test person in three
different versions (see Fig. 9): the original image, an rgyad 2r

Frequency

] Homan T Sgn Recogion ) el e 0 <0975 <088 <0985 <099 <0.995
- Correct classification rate

Figure 10: Distribution of individual performance averagehuman perfor-
mance experiment.

were confronted with a randomly selected, but fixed subset of
500 images of the validation set. The best-performing orne wa
selected to classify the test set. In addition to selectiograli-

date, the model selection step served as an initial trajlivage
ﬁ.@.@ to get used to the sometimes unfamiliar appearance of traffic
- . - - . g . - . signs in the dataset. To reduce a negative impact of deoggasi
| concentration on recognition performance, the experinoent

@ the full test set was split into multiple sessions.
|

Figure 9: User interface of the human performance application

5. Benchmarked methods

This section describes the machine learning algorithmrs tha
were evaluated on the GTSRB dataset. This evaluation eonsti
version to improve readability of small images and a coitras tuted the second stage of the IJCNN 2011 competifioa Ger-
enhanced, enlarged version to improve readability of dack a man Traffic Sign Recognition Benchmarkd was performed at
low-contrast samples like the example in the Fig. 9. The testhe conference. The first stage of the competition — conducte
person assigned a class ID by clicking the corresponding bu@nline before the conference — attracted more than 20 teams
ton. Please note that this class ID assignment was for gestiffom all around the world (Stallkamp et al., 2011). A wide
purposes only, not for generation of the ground-truth dasa, range of state-of-the-art machine learning methods was em-
this was done on the original camera images (see Sec. 3.1 aRpyed, including (but not limited to) several kinds of nalr
Fig. 1). networks, support vector machines, linear discriminastyan

For the first experiment, the images in the test set were presis, subspace analysis, ensemble classifiers, slow festahg-
sented in chunks of 400 randomly chosen images each to 32 e, kd-trees, and random forests. The top teams werednate
persons. Over the complete course of the experiment, each irfh€ conference for a final competition session. Howevetigar
age was presented exactly once for classification. Thislgiel iPation was not limited to these teams. Any researcher ontea
an averagetraffic sign recognition performance over all sub- could enter regardless of their participation or perforogaim
jects. This experiment was executed in analogy to the onlinéhe first stage of competition. The second stage was set to re-
competition (Stallkamp et al., 2011). produce or improve the results of the online stage and teeptev

As shown in Fig. 10, there is some variance w.r.t. the indi-Potential cheating.
vidual performance. To some extent, this can be explained by In addition to a baseline algorithm, we present the appresch
the random selection of images that were presented to each @f the three best-performing teams.
the subjects. Somebody with a lower performance might just
have got more difficult images than somebody else with highep-1. Baseline: LDA
performance. As a baseline for comparison, we provide results of a linear

To eliminate this possibility, we set up another experimentclassifier trained by linear discriminant analysis (LDAn&ar
to determine the traffic sign recognition performance of-ind discriminant analysis is based om&aximum a posterioresti-
vidual subjects on the full test set (12,630 images). As manmate of the class membership. The classification rule iseleri
ual classification of this amount of data is a very tediouseti  under the assumption that the class densities are muititgar
consuming and concentration-demanding task, the expetimeGaussians having a common covariance matrix. Linear dis-
was limited to a singlevell-performingtest person. crimination using LDA gives surprisingly good results irapf

To find a suitable candidate, we performechadel selec- tice despite its simplicity (Hastie et al., 2001). The LDAsva
tion step, very much in the same sense as it is used when choos-
ing or tuning a classifier for a problem. Eight test persons

5



improved performance. The details on the architecture fier o
convolutions subsampling convolutions full DNN iS ShOWﬂ in Tab 1

connection

|

Table 1: 8-layer DNN architecture used by Team IDSIA.

convolutions subsampling

output Layer Type #Maps Neurons/Map Kernel

0 input 3 48 x48
Figure 11: CNN architecture employed by Sermanet and LeCuhl)2@ho 1 convolutional 100 42 % 492 TX7T
kindly provided this figure. 2 max pooling 100 21 %21 2% 9

3 convolutional 150 18x 18 4x4
based on the implementation in the Shark Machine Learning 4 max pooling 150 99 2x2
Library (Igel et al., 2008), which is publicly availaBle S convolutional 250 66 4x4

6 max pooling 250 3x3 2x2
5.2. Team Sermanet: Multi-Scale CNN 7 fully connected 300 Ix1

8 fully connected 43 1x1

Sermanet and LeCun (2011) employed a multi-scale con-
volutional neural network (CNN or ConvNet). CNNs are bi-
ologically inspired multi-layer feed-forward networksathare
able to learn task-specific invariant features in a hieiaath In contrast to teanSermanef(see 5.2), teanDSIA only
manner, as sketched in Fig. 11. The multiple feature extract Uses the central ROI containing the traffic sign and igndres t
stages are trained using supervised learning. The raw snag&'argin. This region is scaled to a size 4 x 48 pixels. In
are used as input. Each feature extraction stage of the etwocomparison to their approach for the online competitioa ab-
consists of a convolutional layer, a non-linear transfdaioma ~ thors improved the preprocessing of the data by using four im
layer and a spatial pooling layer. The latter reduces the sp#de adjustments methods. Histogram stretching increases i
tial resolution which leads to improved robustness agaimstl ~ @ge contrast by remapping pixel intensities so use thednlie
translations, similar to “complex cells” in the standarddets ~ Of available values. Histogram equalization transformelpi
of the visual cortex. In contrast to traditional CNNs, notyon intensities so that the histogram of the resulting imagepis a
the output of the last stage but of all feature extractiogesta Proximately uniform. Adaptive histogram equalization kep
are fed into the classifier. This results in a combinationif d the same principle, but to non-overlapping tiles rathen tee
ferent scales of the receptive field, providing both globad a full image. Contrast normalization enhances edges byifijer
local features. Moreover, Sermanet and LeCun employed altethe image with a difference of Gaussians. The latter was in-
native non-linearities. They used a combination of a retifi SPired by the approach of teafermanet Each preprocessing
sigmoid followed by subtractive and divisive local norrzali ~ Step was applied individually to the training data, resigliin a
tion inspired by computational neuroscience models obuisi five-fold increase of the number of training samples. The gen
(Lyu and Simoncelli, 2008; Pinto et al., 2008). eralization of the individual networks is further increddey

The input was scaled to a size3#x 32 pixels. Color infor- random perturbations of the training data in terms of t@ansl
mation was discarded and the resulting grayscale images weton, rotation and scale. However, in contrast to tezemmanet
contrast-normalized. To increase the robustness of thesicla these distortions are computed on-the-fly every time anénag
fier, Sermanet and LeCun increased the training set size fivéassed through the network during training. Thus, evergema

fold by perturbing the available samples with small, randomis distorted differently in each epoch. The training of eB&N
changes of translation, rotation and scale. requires about 25 epochs and takes about 2 hours. This eads t

total training time of approximately 50 hours for MCDNN.

5.3. Team IDSIA: Committee of CNNs
5.4. Team CAOR: Random Forests

TeamIDSIA used a committee of CNNSs in the form of a - )
The competition entry of teaBAORIs based on a Random

multi-column deep neural network (MCDNN). It is based on X .
a flexible, high-performance GPU implementation. The ap_Forest of 500 trees. A Random Forest is an ensemble classi-

proach in Ciresan et al. (2011) won the first stage of the cTiier that is based on a set Qf .non—pru_ned random decision trees
SRB competition by using a committee of CNNs trained On(Bre|man, 2001). Eac.h'deC|S|ontree IS bU|It'o_n arandqmly ch
raw image pixels and multi-layer perceptrons (MLP) traipad ~ S€" subset of the _traln!ng data. The remaining data is used to
the three provided HOG feature sets. For the second and fin§Ftimate the classification error. In each node of a tree adl.sm
competition stage, for which results are presented in thiEp randomly chosen subset of features is selected and thegdbiest s

the authors dropped the MLPs. In turn, they increased the nun?f the data is determined based on this selection. For fitssi

ber of DNNs. because MCDNN with more columns showedtion: @ sample is passed through all decision trees. Thewgc
’ of the Random Forest is a majority vote over all trees. Team

CAORused the official HOG 2 dataset. More details on this
2htt p: // shar k- pr oj ect . sour cef or ge. net approach are reported by Zaklouta et al. (2011).




|N| \Nsn;a performanc_:e. The _results can be made publicly visible as soo
Rl RUB as publication details are provided. Approaches are rab&sed

: - on their performance on the whole test dataset. Nevertheles

we allow re-sorting based on subset evaluation.

Resuits The website provides a more detailed result analysis, for in

: stance online computation of the confusion matrix and aofist

all misclassified images. For even more detailed offline-anal

NEWS ABOUT DATASET SCHEDULE  SUBMISSIONS  CONTACT

ICNN2011 COMPETITION

= = ysis, an open-source software application can be downtbade
T m that additionally enables participants to compare mutigb-
mcon |
by proaches.
ey We encourage researchers to continue submitting their re-
reterences sults. While different machine learning algorithms alrebéye
been shown to achieve very high performance, there is acparti
ular interest in having more real-time capable methods er ap
proaches focusing on difficult subsets.

7. Results & Discussion

Figure 12: The GTSRB submission website, which is open for cemiribu-
tions. We report the classification performance of the three best-
performing machine learning approaches complemented with
the results of the baseline algorithm as described in Sdtuis.
thermore, we present the results of the experiments on human

Participating algorithms need to classify the single insage traffic sign recognition performance (see Sec. 4). The tesul
of the GTSRB test set. For model selection and training ofhat are reported in this section are summarized in Tab. 2.
the final classifier, the basic training set and the valicasiet
(cf. Sec. 3) can be used either independently or combindid (fu
training set).

Here, we explain how the performance of the algorithms
is assessed and introduce the benchmark website featuring a
public leaderboard and detailed result analysis. 99.46 IDSIA Committee of CNNs

99.22 INI-RTCV  Human (best individual)
98.84 INI-RTCV Human (average)

6. Evaluation procedure

Table 2: Result overview for the final stage of the GTSRB.

CCR (%) Team Method

6.1. Performance metric
The performance is evaluated based on the 0/1 loss, that is,

by basically counting the number of misclassifications. r€he 98.31 Sermanet Multi-Scale CNN

fore, we are able to rank algorithms based on their empirical 96.14 CAOR Random Forests

correct class_lﬁcatlon ratéCCR). _ o 95.68 INI-RTCV LDA (HOG 2)
The loss is chosen equal for all misclassifications, althoug

the test set is strongly unbalanced w.r.t. the number of Esmp 93.18  INI-RTCV LDA (HOG 1)

per class. This accounts for the fact that every sign is équal 92.34 INI-RTCV LDA (HOG 3)

important independent of variable frequencies of appearan
Nevertheless, the performance for the different subsetdds
tionally considered separately (see Sec. 7.4).

7.1. Human performance

6.2. Public leaderboard For a human observer, the images in the dataset vary strongly

In addition to the benchmark dataset itself, we provide ann terms of quality and readability. This is, to a large exten
evaluation Websit?efeaturing a public leaderboard. It was in- caused by visual artifacts — such as low resolution, low con-
spired by a similar website for comparison of stereo visibn a trast, motion blur, or reflections — which originate from the
gorithm¢ established by Scharstein and Szeliski (2002). Figdata acquisition process and hardware. Although the meachin
ure 12 shows a screenshot of the GTSRB submission websitelearning algorithms have to deal with these issues as vell, t

Our benchmark website will remain permanently open foryisual appearance of traffic signs in deficientimages carebe v
submissions. It allows participants to upload result filesa(  ynfamiliar to human observers compared to traffic signs they
simple CSV format) and get immediate feedback about theigncounter in reality.

As noted in Sec. 4, the first experiment on human perfor-
mance Yyields amveragetraffic sign recognition rate over all
subjects. The distribution of individual classificationrfjoe-
mances of the 32 test persons is shown in Fig. 10. However,

Shttp://benchmark.ini.rub.de
4http://vision. nmddl ebury. edu/ stereo



this does not give a clear picture of human traffic sign recog7.4. Subsets

nition performance as the individual image sets that weee pr In order to gain a deeper insight into the results, we split
sented to the test subjects could vary significantly in diffic  the dataset into groups of similar traffic sign classes as/sho
due to the aforementioned reasons. Although the test @pplicin Fig. 13. The individual results per approach and subset ar
tion is designed to improve readability of low-quality inesg listed in Tab. 3. A more detailed view is provided by the con-
and, thus, reduce the impact of this variation of difficuity, fusion matrices for the different approaches in Fig. 14. The
cannot resolve the issues completely. Therefore, theti@m@a classes are ordered by subsets as defined in Fig. 13a to 13f,
of individual performance are caused both by varying difficu  from left-to-right and top-to-bottom respectively. Rowentte

of the selected images and by differing ability of the sutsjec the true class, columns the assigned class. The subsetspare s
to cope with these issues and to actually recognize thedraffiarated by the grey lines. The confusion matrices show the dis
signs. The model selection step of the second human perfotribution of error over the different classes.

mance experiment prevents the former issue by using a random Common to all approaches except the multi-scale CNN, al-
but fixeddataset. Thus, the varying performance in this experthough to different extents, is a clustering in two areasthi
iment is due to individual ability of the test persons. As cantop-left corner, which corresponds to the subsesmged limit

be seen in Tab. 2, the single best test person performs signi§igns (see Fig. 13a) and in the large area in the lower rigit (s
icantly better (McNemar's tesp < 0.001) than the average, ond last row/column) which corresponds to the subset afitria
reaching an accuracy of 99.22 %. Therefore, future ref@®nc gular dangersigns (see Fig. 13e). As can be seen in Fig. 14,
in this section refer to the human performance of the singét b the signs in these subsets are mostly mistaken for signsin th

individual. same subset. So the general shape is matched correctlggbut t
contained number or icon can not be discriminated. If a traf-
7.2. Machine learning algorithms fic sign provided less-detailed content, like the bin@ndatory

As can be seen in Tab. 2, most of the machine learning alsigns (see Fig. 13d), or if the sign has a very distinct shapke s
gorithms achieved a correct recognition rate of more the#95 as theuniquesigns (see Fig. 13f), the recognition rate is usually
with the committee of CNNs reaching near-perfect accuracyabove average, with humans even achieving perfect accuracy
outperforming the human test persons. The HOG-based LDA is able to discriminate the round signs

From an application point of view, processing time and re-from the triangular ones. However, it easily confuses alhib
source requirements are important aspects when choosiagra ¢ Signs (and some of the unique signs as well)speed limits
sifier. In this context, it is notable how well LDA — a very sim- This is caused by the strongly imbalanced dataset, in which a
ple and computationally cheap classifier — performs in comthird of all signs belong to this subset.
parison to the more complex approaches. Especially theoconv  Although similar in overall performance, the Random For-
lutional networks are computationally demanding, bothirdur ~ est approach is not affected by this imbalance. Each decisio
training and testing. Not surprisingly, the performancédA  tree in the forest is trained on a different, random sampteef
was considerably dependent on the feature representdtion. training data. Therefore, the class distribution in thisske
the following, we just refer to the best LDA results achievedcan be very different from the overall dataset.
with the HOG 2 representation. e

The performance results of the machine learning algorithm¢->- Incorrectly classified images
are all significantly different from each other. With exdept Visual inspection of errors allows to better understand why
of the comparison of Random Forests and LA 0.00865), a certain approach failed at correct classification. Figilse
all pairwisep-values are smaller thatd—1°. The values were Shows the images that were incorrectly classified by the best

calculated with McNemar's test for paired samples machine learning approach and by the best individual in the
human performance experiment. For presentation purpales,
7.3. Man vs Computer images were contrast-enhanced and scaled to a fixed size.

Both the best human individual and the best machine learn- Itis nptable that Iarge part Of. thg error of the comm|ttee

. . ) : e of CNNs is caused by a single traffic sign instance, a diamond-
ing algorithm achieve a very high classification accuradye T : .

. S shapedight-of-waysign. It accounts for more than 15 % of the
Committee of CNNs performs significantly better than the bes : : o

S ) total error. However, noall images of this traffic sign track
human individual (McNemar's tesp, = 0.01366). However, . o .

. N . were misclassified, but only half of them. In fact, the commit
even without taking into account that the experimental getu

. .~ tee misclassified those images in this track that were sc over
for the human performance was unfamiliar for the test subjec . .
. ) . L exposed that the yellow center is mostly lost. For humaiis, th
and did not reflect real-life traffic scenarios, it needs tobkd

that the best human test person significantly outperforniied a>'dn class generally POSEs no prqblem d_u_e toits unique shape
Furthermore, the algorithm misclassified a few images due

other machine learning algorithms in this comparison. Alrp ; . o .
. . ) to occlusion (such as reflections and graffiti) and two images
wise p-values, as calculated with McNemar’s test, are smaller . . . .
“10 due to inaccurate annotation that resulted in a non-cehtéee/
than10—'°. . . . o
of the traffic sign. These images are easily classified by Imsma
In contrast, the most difficult class for humans apeed
5We provide and discugsvalues instead of confidence levels to show that limit signs, especially at low resolution which impairs discrimi
correcting for multiple testing still leads to significansuéts. nation of single digits and, thus, correct recognition. Btiran
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(a) Speed limit signs (t_)) Other prohibitory (c) Derestriction signs (d) Mandatory signs
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(e) Danger signs (f) Unique signs

Figure 13: Subsets of traffic signs.
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Figure 14: Confusion matrices. The grid lines separate #ffidisign subsets defined in Fig. 13. The encoded values aneatiaed per class and in the range [0,1].

Table 3: Individual results for subsets of traffic signs. Bglpe denotes the best result(s) per subset.

Speed limits Other Derestriction ~ Mandatory Danger Unique
prohibitions
Committee of CNNs 99.47 99.93 99.72 99.89 99.07 99.22
Human (best individual) 98.32 99.87 98.89 100.00 99.21 100.00
Human (average) 97.63 99.93 98.89 99.72 98.67 100.00
Multi-Scale CNN 98.61 99.87 94.44 97.18 98.03 98.63
Random Forests (HOG 2) 95.95 99.13 87.50 99.27 92.08 98.73
LDA (HOG 2) 95.37 96.80 85.83 97.18 93.73 98.63




(a) Committee of CNNs (b) Human Performance (best individual)

Figure 15: Incorrectly classified images.

70% percent of the error can be accounted to this subset «
traffic signs. Misclassification alangersigns causes the ma-
jor part of the remaining error for the the same reasons. Typ
ical examples for confusions are caused by similar strestur
for example the exclamation mark (genedahgersign) being
confused for theraffic light sign and vice versa (second and
ninth traffic sign in Fig. 13e), or theurvy roadsign being con-
fused withcrossing deeffifth and last traffic sign in Fig. 13e),
which both show a diagonal distibution of black pixels in the
icon area.

Correct classification rate

—+— Committee of CNNs
. 0.92 —— HumanF’erformancebes‘
7.6. Image size —_— HumanPerformanceavg
As shown in Fig. 5, the images in the dataset vary strongl —8— Multi-scale CNN
in size. Smaller images provide lower resolution by defini-  09: _e_fggd(%fgg’rgfts (HOG 2)

<25 <35 <45 <55 <65 <75 <85 <95 > 95

tion, whereas the very large images, i.e., the ones of traffi
signs in close proximity to the ego vehicle, often show bhgr

or ghost images (showing the sign twice, blurry and slightly
shifted) due to the larger relative motion in the image plane
Figure 16 shows the classification performance of all preskn
approaches in dependency of the image size. It is not surpris
ing that, for all approaches, the recognition rate is the-low does not occur for mid-size images which often are of good
est for the smallest images. The low resolution strongly im-quality in terms of resolution and blurring. As the number of
pairs discriminability of fine details such as the singleitdig images per size level is strongly decreasing with increpisin

on speed limitsigns or the icons odangersigns. The human age size (see Fig. 5), the sensitivity to single misclaskifecks
performance continuously increases with increasing insagge ~ (or a large parts thereof) increases and impairs perforemanc
reaching perfect accuracy for images larger than 45 pixels (
the larger of both dimensions) for the best individual and fo
images larger than 75 pixels in the average case. The dlgorit

mic approaches, however, show reduced performance for very e presented a detailed comparison of the traffic sign recog-

close images. Possible reasons are the strong motion blur @ftion performance of state-of-the-art machine learnitgpa

the presence of ghostimages such as in the lower leftimages jithms and humans. Although the best individual in the human

Fig. 15a. performance experiment achieved a close-to-perfect acgur
This reduction of performance is strongest for Random Forgf 99.22 %, it was outperformed in this challenging task by

ests and LDA which generally show a very similar performancene pest-performing machine learning approach, a comenitte

when differentimage sizes are considered. In additioth 8pt  of convolutional neural networks, with 99.46 % correct slis

proaches show a major impact on recognition performance fogation rate. In contrast to traditional computer vision,eneh
very small images. Contrary to expectation, the smallasirer

10

Size range [pixels]

Figure 16: Recognition performance depending on image size.

8. Conclusions
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; g 1 : . Pattern Recognitionpages 886—893.
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