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[...] Thus not only our reason fails us in the discovery of thendte connexion of causes
and effects, but even after experience has informed us of ¢bestant conjunction, it is
impossible for us to satisfy ourselves by our reason, why we shoutth@xhat experience
beyond those particular instances, which have fallen undestmservation. We suppose, but
are never able to prove, that there must be a resemblance betase bbjects, of which
we have had experience, and those which lie beyond the reasir discovery.

(David Hume, 1739 [14, 10])

Abstract The No Free Lunch (NFL) theorems for search and optimizadi@nre-
viewed and their implications for the design of metaheinssare discussed. The
theorems state that any two search or optimization algosthre equivalent when
their performance is averaged across all possible probérdseven over subsets
of problems fulfilling certain constraints. The NFL resustsow that if there is no
assumption regarding the relation between visited andamsearch points, effi-
cient search and optimization is impossible. There is nd peforming universal
metaheuristic, but the heuristics must be tailored to tlublpm class at hand us-
ing prior knowledge. In practice, it is not likely that theeppnditions of the NFL
theorems are fulfilled for a problem class and thus diffeesrimetween algorithms
exist. Therefore, tailored algorithms can exploit stroetunderlying the optimiza-
tion problem. Given full knowledge about the problem cléss,in theory possible
to construct an optimal algorithm.

1 Introduction

Metaheuristics such as evolutionary algorithms, simdlaenealing, swarm algo-
rithms, and tabu search are general in the sense that théyecapplied to any ob-
jective (target of fithess) functioh: 2" — %/, where. 2™ denotes the search space
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and?/ a set of totally ordered cost-values. The goal of designietahreuristics is

to come up with search or optimization methods that are suptr others when

applied to instances of a certain class of problems. In th&pter, we ask under
which conditions one heuristic can be better than anothalt ahd derive answers
based on the No Free Lunch (NFL) theorems.

Table 1 All possible functions{0,1}2 — {0, 1}, which will be used as examples throughout this
chapter.
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Fig. 1 Distribution of algorithm performance over a discrete spaceatflems. For random search
without replacement the average performance on a functioroisrshA performance profile such
as depicted for the “fantasy algorithm” is not possible if the sg@as the property of being closed
under permutation (e.g., as in the case of the problems showrbia Ta

Example 1Let us consider all objective functions mapping from soméefido-
main 2" to some finite set of value®’, for example those given by all functions
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{0,1}2 — {0,1} listed in Table 1. Figure 1 depicts the performance of thige-a
rithms over this set of functions. Performance could fornegke be measured in
terms of the number of objective function evaluations ndedefind the optimum
or by the quality of the best solution found in steps (or by any other measure
consistent with the definition given in the next section)eTiaseline is given by
the average performance of a random search algorithm, viiéis search points
uniformly at random without replacement (i.e., every pamvisited only once).
A highly specialized algorithm — which has been developedifany years based
on extensive domain knowledge — may have a performanceeasiindicated by
the triangles. It performs extremely well on a very few pesbs, but very badly on
all the others. Now, would it not be great to come up with aroatgm that per-
forms well, in particular better than random search, acatiggroblems as indicated
by the circles in Fig. 1? Could this be achieved by designingeéaheuristic using
principled methods? Unfortunately, the answer to thesstipres isno.

The NFL theorem for optimization — and we do not want to dggtish be-
tween search and optimization in this chapter — roughly ldpgastates that all
non-repeating search algorithms have the same mean parfoenwhen averaged
uniformly overall possible objective functionk: 2" — % [35, 24, 8, 36, 21, 6]. In
practice, of course, algorithms need not perform well oipadisible functions, but
only on a subset that arises from the application at hand.

In this chapter, we discuss extensions and implicationsisftindamental result.
In the next section, we introduce the basic notation and &tiynstate the original
NFL theorem as well as some of its refinements, in particuldk kesults for re-
stricted problem classes [28, 29, 20]. Section 3 discu$gesyitimization scenario
underlying these theorems. Section 4 studies how many goblasses fulfill the
prerequisites for a NFL result and if these problem claseeslely to be observed
in real-world applications. It ends with a discussion of Aleost NFL theorem [6].
In the more research oriented section 5 the link betweemdgation problems and
Markov decision processes is established and it is showntb@enstruct optimal
algorithms in this framework. Finally, the main results asenmarized and further
general conclusions are drawn.

2 The NFL Theorem for Search

In the following, we first fix the notation before we state tlaesic NFL theorem and
its extensions.

2.1 Basic Definitions

Let us assume a finite search spaeand a finite set of cost-value¥. Let .# be
the set of all objective function§ : 2~ — % to be optimized (also called target,
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performance measure target function
c(Y(f,ma)) f: 2 -
A A
Y(f,ma)= a(Tm) = Xmi1 € 2 f(Xme1) €Y

non-repeating black-box search algoritm

T = (0, £ () -5 (X, F(Xm)))

Fig. 2 Scheme of the optimization scenario considered in NFL theoremsnArepeating black-
box search algorithna chooses a new exploration point in the search space dependitigeon
sequencdy, of the already visited points with their corresponding costies. The target function
f returns the cost-value of a candidate solution as the onlyrrdtion. The performance @t

is determined using the performance measynehich is a function of the sequendd f,m a)
containing the cost-values of the visited points.

fithess, energy, or cost functions). No Free Lunch theoreailemtatements about
non-repeating search algorithms (referred to as algosjhihat explore a new point
in the search space depending on the history of previousliedi points and their
cost-values. Non-repeating means that no search poindisaed more than once.
Let the sequencln = (X1, f(x1)), (X2, T (X2)), ..., (Xm, T (Xm))) represenmpairs of
different search points € 27, Vi, j : % # xj and their cost-value$(x) € . An
algorithma appends a paifxm+1, f (Xnm+1)) to this sequence by mappirig, to a
new pointXy.1 wWith xn1 X fori=1,...,m.

We assume that the performance of an algorighafterm < | 2| iterations with
respect to a functioti depends only on the sequence

Y(famaa) = <f(X1),f(X2),..., f(Xm)>

of cost-values the algorithm has produced. Let the funatidanote a performance
measure mapping sequences of cost-values to the real nsiriigure 2 depicts the
optimization scenario assumed in NFL theorems.

Example 21In the case of function minimization a performance meashatreturns
the minimum cost-value in the sequence could be a reasociatilee. Alternatively,
the performance measure could return the number of obgefttivction evaluations
that were needed to find a search point with a cost-value belosvtain threshold.

In general, one must distinguish between an algorithm andearch behavior.
For finite 2" and % and thus finite#, there are only finitely many different non-
repeating, deterministic search behaviors. For a giventiom f, there exist only
| 27"/ (| 2| — m)! different search behaviors corresponding to the possilders
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in which the search points can be visited. In practice, tvgodthms that always
exhibit the same search behavior (i.e., produce the sameesegT,, given the
same functiorf and number of step®) may differ, for example, in their space and
run time requirements (see section 3).

Example 3Given some functiorf : {0,1}? — {0,1} there are 12 possible search
behaviors for 2-step search resulting in the following ssmes:

(((6,0),%((0,0))),((0,1), £((0,1)))), {((0,0), £((0,0))),((1,0), £((1,0)))),
(((6,0),1((0,0))),((1,1), ((1,1)))), {((0, 1), £((0,1))),((0,0), £((0,0)))),
(((0.) £((0.1))).((1,0). F((L.O)))}, {((0.1). £((0.1))). (1, 1). f((L.1)))),
(((1,0),1((1,0))),((0,0), £((0,0)))). {((1,0), f((1,0))),((0,1), £((0,1)))),
(((1,0),1((1,0))), ((1,1), £((L,2)))), {((1,2),f((1,1))),((0,0), ((0,0)))),
(((1,1), £((1,2))),((0,1), £((0,1)))), {((1,2), £((1,2))),((1,0), £((2,0))))-

Often we are not interested in statements that assume ttiafwaction in.% is
equally likely to be the objective function. Instead, we wamake statements that
refer toproblem classedA reasonable general working definition of a problem class
is:

Definition 1 (problem class).Given a finite search spac2” and a finite set of
cost-valueg?, aproblem clas€an be defined by a probability distributigg: over

the spaceZ of all possible objective function§: 2" — %, wherepz(f) is the
probability thatf € .7 is the objective function faced by an algorithm.

In the special case that all functions that have a non-zesbafility of being the
target function are equally likely, we can identify a problelass by the subset
FC.ZwithfeF = ps(f)=1/|F| >0.

2.2 The NFL Theorem

The original and most popular version of the NFL theorem fptiroization was
formally stated and proven by Wolpert and Macready in 1995 B%]. It can be
expressed as:

Theorem 1 (NFL theorem [36]).For any two algorithms a and b, anykIR,
any me {1,...,|2°|}, and any performance measure ¢

Z 5(k7C(Y(famva))): z 5(k7C(Y(famab))) ° (1)

fez fez

Herein,d denotes the Kronecker functiod((, j) =1 ifi = j, o(i, j) = 0 otherwise).
Proofs can be found in [35, 36, 27, 21]. Equation (1) implies



6 Christian Igel

z C(Y(fam7a)) = z C(Y(fvmvb)) (2)

ferz fez

for any two algorithms andb, anyme {1,...,|27|}, and any performance measure
C.

This proves that statements such as “averaged over allidumsctmy search al-
gorithm is the best” are misconceptions. Radcliffe and yswere among the first
who appreciated and discussed this theorem [24]. Withgotous proof, the basic
NFL result was stated already earlier by Rawlins in 1991.[25]

When looking at the proof of the NFL theorem, it implies theduling state-
ments (see [33]):

Corollary 1. For any me {1,...,|.2"|} and any performance measure c we have:

1. For any two algorithms a and b, for each € .7 it holds
c(Y(fa,ma)) =k=3Ifye .7 :c(Y(fp,mb)) =Kk . (3)

2. For any two algorithms a and b and any subset of functions.% with comple-
ment FF = .% \ F it holds

ch(Y(f,m,a)) > (Z:C(Y(f,m,b)) = chC(Y(f’m’a)) < fZCC(Y(f,m,b)) .
(4)

The first statement says that for any functifyne .#, there is a functiorfy, € .%
on which algorithmb has the same performance as algorithion f,. That is, if
my algorithm outperforms your algorithm on some functioarttihere is also an
objective function on which your algorithm outperforms midnd if my algorithm
outperforms yours on some set of benchmark problems thareygerithm is better
than mine averaged over the remaining problems.

2.3 The Sharpened NFL Theorems

Theorem 1 assumes that all possible objective functiong iare equally likely.
Given that it is fruitless to design a metaheuristic for alkgible objective func-
tions, the question arises under which constraints theageeperformance of one
algorithm can be better than another when the average is taMg over a subset
F c .#. Thisis a relevant scenario if the goal is to develop metasies for certain
(e.g., “real-world”) problem classes.

The NFL theorem has been extended to subsets of functiohghvétproperty of
being closed under permutation (c.u.p.). Ilet.2" — 2" be a permutation ofZ".
The set of all permutations of” is denoted by7(2"). A setF C .# is said to be
c.u.p. if for anymr e (%) and any functionf € F the functionf o 1Tis also inF.
In [27, 28] the following result is proven:
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Theorem 2 (Sharpened NFL theorem [27, 28])If and only if F is c.u.p., then for
any two algorithms a and b, anykIR, any me {1,...,|.2"|}, and any performance

measure ¢
ZF o(k,c(Y(f,ma))) = rZ= o(k,c(Y(f,mb))) . (5)

This is an important extension of theorem 1, because it gigesssary and sufficient
conditions for NFL results for subsets of functions.

Example 4Consider again the mapping®,1}? — {0,1}, denoted byfo, fi,
..., f15 @as shown in Table 1. Theffy, fo, fa, fg} and{fo, f1, f2, fa, fg} are exam-
ples of sets that are c.u.p.. The $d{, o, f3, f4, fg} is not c.u.p., because some
functions are “missing”. These missing functions inclidgewhich results fromfs
by switching the elemeni®, 1) and(1,0).

Example 5Theorem 1 tells us that on average all algorithms need the siane
to find a desirable, say optimal, solution — but how long doé¢skie? The average
number of evaluations needed to find an optimum (the meandtiitme) depends
on the cardinality of the search spac&| and the numben of search points that are
mapped to a desirable solution. As the satlbfunctions wheren search points rep-
resent desirable solutions is c.u.p., itis sufficient to pata the average time to find
one of these points for an arbitrary algorithm, which is giby (] 2°|+1)/(n+ 1)
[17] (a proof forn =1 is given in chapteR?[reference to Thomas’ Black-Box
chapter]).

In theorems 1 and 2 it is implicitly assumed that each fumctin.# andF,
respectively, has the same probability to be the targettimmcbecause the sum-
mations in (1) and (5) average uniformly over the functiddewever, it is more
realistic to assume that different functions can have difieprobabilities to be the
target function. In this more general case, a problem ctadsscribed by a probabil-
ity distribution assigning each functiohits probability pz(f) to be the objective
function.

To derive results for this general scenario it is helpfulntvdaduce the concept
of #-histograms. A% -histogram(histogramfor short) is a mappin@: 2 — INg
such thaty, ., h(y) = |2|. The set of all histograms is denoted k. Any func-
tion f : 2~ — % implies a histogranh; (y) = |f~%(y)| that counts the number of
elements in2” that are mapped to the same vajue # by f. Herein, f~1(y) re-
turns the preimagéx| f(x) =y} of y under f. Further, two functionsd andg are
calledh-equivalentf and only if they have the same histogram. The correspandin
h-equivalence clasB;, C .7 containing all functions with histograimis termed a
basis classlt holds:

Lemma 1 ([18]). Any subset FZ .# that is c.u.p. is uniquely defined by a union of
pairwise disjoint basis classes, B equal to the permutation orbit of any function
f with histogram h, i.eyf € F : Bn, = Upep(2y{f o1}

Example 6 Consider the functions in Table 1. THg-histogram off; contains the
value zero three times and the value one one time, i.e., we ia0) = 3 and
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ht, (1) =1. The mappings, fo, f4, fg have the sam@ -histogram and are therefore
in the same basis claﬁﬁfl ={fy, f, T4, fg}. The sef{ f1, f2, f4, fg, f15} is c.u.p. and
corresponds tBhfl U Bhf15.

The following ramification of the Sharpened NFL theorem gkt indepen-
dently in [19], [29], and [7] generalizing the results in)]¥jives a necessary and
sufficient condition for a NFL result in the general case dfitaary distributions
ps over.Z:

Theorem 3 (non-uniform Sharpened NFL theorem [19, 29, 20, J]If and
only if for all histograms h

f,geBh= ps(f) =ps(9) , (6)

then for any two algorithms a and b, any value IR, any me {1,...,|.27|},
and any performance measure c

> pz(f)oke(Y(f,ma))= % pz(f)d(kc(Y(f,mb))) . (7)
fez fez

This observation is the “sharpest” NFL so far. It gives neaegand sufficient con-
ditions for NFL results for general problem classes.

3 The Preconditions in the NFL Theorem and the Sharpened
NFL Theorems

The NFL theorems 1, 2, and 3 consider a certain optimizattenario. In the fol-
lowing, we discuss its basic preconditions.

Independence of algorithmic complexity

It is important to note that the NFL theorems make no assumgt@bout the space
and time complexity of computing the next search point. k@ngple, it makes no
difference if the algorithm simply enumerates all elemexiits2” or comes up with
a decision after running some complex internal simulation.

For many practical applications, it is indeed reasonabkessume that the time
needed to evaluate the fitness dominates the computatiosia of computing the
next step and that memory requirements are not an issuett8sineeds not always
be true.

Example 7The update of the strategy parameters in CMA-ES scales gticalty
with the search space dimension ([13, 30], see chapfneference to Niko's
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CMA-ES chapter]). For extremely high-dimensional fithess functions that ba
evaluated quickly this may have a significant impact on thetime (however, in
most practical applications | dealt with, the evaluatiohaf objective function was
by far the dominating term).

This topic is discussed in more detail in sect®hof chapter??[reference to
Thomas’ Black-Box chapter], which demonstrates the differences betwalkeyo-
rithmic complexityandblack-box complexitgf search algorithms.

Non-repeating algorithms

Metaheuristics often do not have the non-repeating prgpiéi randomized algo-
rithm searches locally in discrete (or discretized) dormsdime chance to resample a
search point can be high even if the search space is hugeollrtienary algorithms,
the variation operators that are used to generate a nevisohased on an existing
one are often symmetric in the sense that the probabilityeteate some solution
X' from x is equal to generating from X'. Thus, there is always a chance to jump
back to an already visited point.

We can always turn a repeating search algorithm into a npeaténg one by
adding a look-up table for already visited points. The atban then internally uses
this look-up table and only evaluates the objective fumcfice., “makes a step”) for
previously unseen points. Of course, this increases theameraquirements of the
algorithm.

Example 8 Studies in which evolutionary algorithms searching a spagraphs
are turned into non-repeating algorithms by coupling theith & search-point
database are described in [16, 23].

Deterministic and randomized algorithms

In general, NFL results hold for deterministic as well asd@mized algorithms.
A randomized search algorithencan be described by a probability distributipg
over deterministic search behaviors [6]: Every searchyiehgenerated by a single
application of a randomized algorithm has a certain prditgabihe same behavior
could have been generated by some deterministic algorihme.can view the ap-
plication of a randomized algorithmas picking — according to a fixed, algorithm
dependent distributiop, — a deterministic search behavior at random and applying
it to the problem (we view the deterministic algorithms asibset of the random-
ized algorithms having degenerated probability distidng). An alternative way
to see this is to think of drawing all realizations of randoariables required by
a randomized search method at once prior to the search pracesto use these
events as inputs to a deterministic algorithm (see ch&geference to Thomas’
Black-Box chapter] for a detailed discussion of this issue).

Let the setA contain all deterministic search behaviors operatingZnThe
performance of a randomized search algoritAroorresponds to the expectation
over the possible search behavidres.r.t. p; [22]:
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E{c(Y(f,ma))} = Z pa(@)c(Y(f,ma’)) (8)

acA

For deterministic algorithms, the previous theorems doamly state that the av-
erage performance of two algorithms is the same acrossradtitins, but als@any
statistic — in particular the variance — of the performaralees is the same. We can
derive a similar result for randomized algorithms. Let usuase that the conditions
of theorem 3 are met. We consider two randomized algorithessribed byp, and
pp and extend the NFL theorems using simple transformations:

> pz(f) Z Pa(@)d(k,c(Y(f,ma)))

fez a'ceA
= 3 pal@) 3 pr(Hdlke(v(fma))
acA fes
independent of
because of theorem 3
for any
algorithmz
TET S pa(Da(ko(v(f,m2) 3 pa(@)
feF acA
= py(f)é(kﬁ(Y(f,m,Z)))bZ po(b')
fers €A

reversing the
prev. arguments

7 (f B)8(k c(Y(f,mb))) (9
fezgp, ( )bZApb( )o(k.c(Y(f,mb))) (9)

Equation (2) holds for randomized algorithms if we simplglezec(-) by E{c(-)}.}

Finiteness of domain and co-domain

If optimization problems solved on today’s digital compstare considered, the
restriction to finite domains and co-domains is no restittt all. Still, NFL results
for continuous search spaces are very interesting fromhté@rétical point of view.
The reader is referred to [26] and [1] for different views bisttopic as well as to
chapter??[reference to Marc’s Bayesian Search Game chapterjvhich explains
why assumptions on the Lebesgue measurabilitp fplay a role when studying
NFL in continuous search spaces.

Restriction to a single objective

The basic NFL theorems considers single-objective optition. However, it also
holds for multi-objective (vector) optimization as provier{5].

1 In general, this cannot be done in the theorems becgused (K, S yca Pa(&@)c(Y(f,m,&))) #
Yter YaenPa(@)d(k c(Y(f,m.a))).
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Fixed objective functions

The framework considered in this chapter does not includeated game scenarios
in which the “objective function” for some agent can vary dden the behavior of
other agents as it is the case in coevolutionary processesegults and discussions
of NFL in such game-like scenarios the reader is referrethéontork by Wolpert
and Macready presented in [37].

Averaging over all search behaviors and all performancéetia

The NFL theorems rely on averages over all possible seatwévis and all pos-
sible performance criteria. However, in practice we aretrnfien concerned with
the comparison of a subset of algorithfkasing a fixed performance measgrand
some fixed number of steps This scenario is consideredkocused NFL theorems
[32]. Given a set of algorithmA and a performance measwand some fixed hum-
ber of stepsn, Whitley and Rowe define focus sefas a set of functions on which
the algorithms ilA have the same mean performance measured &fferm steps).
Theorbit of an objective functiorf is the smallest of these focus sets containiing
It is important to note that focus sets need not be c.u.p..

Example 9 Assume we want to compare two deterministic algorittenandb run
for m steps using performance measaré&urther, assume two objective functions
f1 and fy with c(Y(f1,m,a)) = c(Y(fz2,m,b)) andc(Y(f2,ma)) = c(Y(f1,mb)).
Then{f1, f2} is clearly a focus set foA = {a,b}, c, andm — regardless whether
{f1, f2} is c.u.p. or not.

For details about Focused NFL theorems the reader is rdféaord32] and
??[reference to Darrell’'s chapter]

4 Restricted Function Classes and NFL

In this section we take a look at restricted function claskast, we compute the
probability that a randomly chosen function class meetstmalitions of the NFL
theorems. Then it is argued that there are certain resinietihat are likely to con-
strain problem classes corresponding to “real-world " pgois. It is shown that
these constraints are not compatible with the conditiorte@NFL theorems. This
is an encouraging result for the design of metaheuristiosve¥er, it is difficult to
evaluate heuristics empirically, because good performamncsome functions does
not necessarily imply good performance on others — evere#dtunctions seem to
be closely related. This is underlined by the Almost NFL tleeo discussed at the
end of this section.
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4.1 How Likely Are the Conditions for NFL?

The question arises whether the preconditions of the NFar#mas are ever fulfilled
in practice. How likely is it that a randomly chosen subset.isp.? There exist

2(#11) _ 1 non-empty subsets o and it holds:

Theorem 4 ([18]). The number of non-empty subsetg6f that are c.u.p. is given
by

(\,‘?f\ﬂ??\—l)
/=1 (20)
and therefore the fraction of non-empty subsets c.u.pvisgby

(2<f> _1) /(20#17) 1) (1)

fraction of subsets c.u.p.
=
<
N
o
o

=4
\

N
S
]

Fig. 3 Fraction of subsets of objective functions that are closed upelenutation (c.u.p.) of all
possible subsets depending on the number of search points andntibemof possible objective
function values. The ordinate gives the fraction of subsetp.can logarithmic scale given the

cardinality|.2"| of the search space. The different curves correspond to diffesgdinalities of
the space of objective function valugs.

Figure 3 shows a plot of the fraction of non-empty subsetpcuersus the car-
dinality of 2" for different values of#/|. The fraction decreases for increas|wj|

as well as for increasing? |. More precisely, using bounds for binomial coefficients
one can show that (11) converges to zero double exponegrfaal with increasing



No Free Lunch Theorems: Limitations and Perspectives of Metatties 13

| 2| (for |#| > €| 2°|/(|Z"| —e), wheree is Euler's number). Already for small
| 2| and|#/| the fraction almost vanishes.

Thus, the statement “I'm only interested in a sulfSedf all possible functions
and the precondition of the Sharpened NFL theorem is notlédfiis true with a
probability close to one i is chosen uniformly at random ar#d and 2~ have
reasonable cardinalities.

The probability that a randomly chosen distribution overdkt of objective func-
tions fulfills the preconditions of theorem 3 has measure.Z€nis means that in
this general and realistic scenario the conditions for a k#=lult do not hold almost
surely.

4.2 Structured Search Spaces and NFL

Although the fraction of subsets c.u.p. is close to zercaalyefor small search and
cost-value spaces, the absolute number of subsets c.ovs gapidly with increas-
ing | 2’| and|#/|. What if these classes of functions are the relevant onesein th
sense that they correspond to the problems we are dealihgngtractice?

It can be argued that presumptions can be made for most ofittetiéns rele-
vant in real-world optimization: First, the search space $@me structure. Second,
the set of objective functions fulfills some constraints medi based on this struc-
ture. More formally, there exists a non-trivial neighboodaelation onZ™ based on
which constraints on the set of functions under considemedre formulated. Such
constraints include upper bounds on the ruggedness or anakienum number of
local minima. Concepts such as ruggedness or local optynmaljuire a notion of
neighborhood.

A neighborhood relation o®” is a symmetric functiom: 2" x 2~ — {0,1}.
Two elementsq, xj; € 2 are called neighbors if(x;, ;) = 1. A neighborhood re-
lation is called non-trivial i8x;,x; € 2" 1 X # Xj AN(X;,X;) =1 and3x, x € 2" :

Xk # X A N(Xg,X ) = 0. There are only two trivial neighborhood relations, eaitbe
ery two points are neighbored or no points are neighbored-thaal neighborhood
relations are not preserved under permutations, it holds:

Theorem 5 ([18]).A non-trivial neighborhood relation o™ is not invariant under
permutations of2’,i.e.,

I, x; € Z,me N(Z) :n(x,x;) #n(mx), m(x;)) . (12)

This result is quite general. Assume that the search s@acan be decomposed
asZ =21 x---x 2,1 >1, and let a non-trivial neighborhoad : 2; x Z; —
{0, 1} exists on one componer#;. This neighborhood induces a non-trivial neigh-
borhood on%", where two points are neighbored if theith components are neigh-
bored with respect to; regardless of the other components. Thus, the constraints
discussed in the examples below need only refer to a singpanent. Note that the
neighborhood relation need not be the canonical one (&g.Hamming-distance



14 Christian Igel

for Boolean search spaces). For example, if integers amdeddy bit-strings, then
the bit-strings can be defined as neighbored iff the cormedipg integers are. The
following examples illustrate further implications of trem 5 [18].

Example 10Consider a non-empty subsétc .# where the co-domains of the
functions have more than one element and a non-trivial meidtood relation ex-
ists. If for eachf € F it is not allowed that a global maximum is neighbored to a
global minimum (i.e., we have a constraint “steepness§nth is not c.u.p. (be-
cause for every € F there exists a permutation that maps a global minimum and a
global maximum off to neighboring points). An example of such a function class
is OneMax as described in sectid?? of chapter??[reference to Thomas’ Black-

Box chapter].

Example 11lmposing an upper bound on the complexity of possible ohjefiinc-
tions can lead to function classes that are not c.u.p. Lessisme without loss of
generality minimization tasks. Then the number of subogtilmcal minima is of-
ten regarded as a measure of complexity of an objectiveifum{31] (see section
4.3 for other notions of complexity). Given a neighborhoethtion on.2", a lo-
cal minimum can be defined as a point whose neighbors all havsewWitness. As
a concrete example, consider all mappif@s1}’ — {0,1} not having maximum
complexity in the sense that they have less than the maximumbar of 2~ lo-
cal minima w.r.t. the ordinary hypercube topology ffh1}‘. For example, this set
does not contain mappings such as the parity function, wikiohe iff the number
of ones in the input bitstring is even. This set is not c.ulpe §eneral statement that
imposing an upper bound on the number of local minima leadsrtction classes
not c.u.p. can be formally proven using the following lineasuments. Let(f)
be the number of local minima of a functidnc .7 and letB,, C .# be the set of
functions in# with the same? -histogram ad (i.e., functions where the number of
points in.Z" that are mapped to ea¢ki-value is the same as fdéj). Given a function

f we define ™(f) = maXycg, [(f’) as the maximal number of local minima that

functions in.# with the same? -histogram ad can possibly have. For a non-empty
subsetr C .7 we definel ™(F) = max;cp I™®(f). Let g(F) € % be a function
with 1(g(F)) = IM®(F) local minima and the sam®& -histogram as a function in
F. Now, if the number of local minima of every functidne F is constrained to be
smaller than™®(F) (i.e., maxce () < IM(F)), thenF is not c.u.p.—because
3f € F with the same? -histogram ag and thusime M(2") : fomr=g.

4.3 The Almost NFL Theorem

The results presented above are encouraging, becauseuitpggss that for a re-
stricted problem class the NFL results will most likely nppsy. However, this does
not promise “free lunch”. For a problem class violating tbeditions for a NFL re-
sult, the average performance of two algorithms may diBet.this difference may
be negligible.
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The performance on two functions, although they are sinaitaording to some
reasonable similarity measure, may differ significanthyphrticular, for any func-
tion f on which algorithma performs well, there may be many functions on which
it performs badly and that are similar fdn a reasonable sense. This becomes clear
from the AlImost NFL (ANFL) theorem derived by Droste, Janserd Wegener [6],
which proves such statements for a particular scenario:

Theorem 6 (Almost NFL theorem [6]). Let .# be the set of objective functions
f:{0,1}" — {0,1,...,N—1} for fixed positive integers n and N. For any algorithm
a operating on# and any function f .# there exist at least RI°*~1 functions in
Z that agree with f on all but at mo&"/2 inputs for which a does not find their
optimum within2"/3 steps with a probability bounded above by"3.

Exponentially many of these functions have the additiomaperty that their
evaluation time, circuit size representation, and Kolnmmogacomplexity is only by
an additive term of (n) larger than the corresponding complexity of f.

The last sentence formalizes that extremely bad behaviobeaxpected on func-
tions which are similar to our reference (e.g., benchmaikgfion f. These func-
tions do not only coincide on"® inputs with f, they also have a similar complex-
ity. Complexity can either be measured in the number of steesled to evaluate
the objective function at a certain point (evaluation tintag length of the short-
est program implementin§l (Kolmogorov complexity), or by the size of a circuit
representation of (circuit size representation).

5 Search and Markov Decision Processes

If a problem class does not fulfill the assumptions for NFlertthere may be differ-
ences in performance between algorithms on this class. Uéstiqn arises: what is
then the best method given a problem clpss a performance measure, and a num-
ber of stepsn? In the following, it is shown how to determine an optimalalthm
using dynamic programming (DP) [15]. For a similar approseg [1] and chapter
??[reference to Olivier's Optimal Search chapter] However, it is not claimed
that this way is efficient.

The problem of finding an optimal search algorithm can besfiamed to a
finite horizon optimal control problerthat can be solved by DP. In the context of
mathematical optimization for optimal control, DP is comzd with some discrete-
time dynamic system, in which at tinh¢he states; of the system changes according
to given transition probabilities that depend on some adio; (I adopt a standard
formalism and usa for actions instead of algorithms in this section). Eachdgition
results in some immediate reward ; (or, alternatively, immediate cost) [3]. The
dynamic system can be described by a finite Markov decisioogss:

Definition 2 (finite MDP ). A finite Markov decision proceds”, <7, 2, %) (finite
MDP) is given by:
1. afinite set” of states;
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2. afinite set of actions?, where<(s) denotes the set of possible actions in state
se.’;

3. transition probabilities?3, = Pr{s;1 =S |s = s,a& = a} describing how
likely it is to go froms e . to s’ € . when taking actior € <7, and

4. expected reward valueg?, = E{rt1|s:1=95,% = S & = a} expressing the
expected reward when going frose . to s’ € . after taking actiora € .«7.

The goal of dinite horizon problerhis to find a policyw : . — 7 that maxi-
mizes the accumulated-step reward

m

Rn= % rv . (13)

t'=1

Given|., o/ , &2, 2] the optimal policy can be computed using established stdnda
techniques [3, 2].

Now we turn an optimization problem (as illustrated Fig. r&pia finite MDP.
First, we need to fix some additional notation. The length a&feguencely, =
((x1, f(x1)),---, (Xm, T(xm))) is given by lengtliT,,) = m. Adding an element to a
sequence is indicated Hyy, Xz, ..., %) &X = (X1, X2,..., %, X ). GivenTy, we de-
note the corresponding sequence and set of search poiKtSRY = (X1,%2, . .., Xm)
and 2 (Tm) = {x1,%2,...,Xm}, respectively, and the sequence of cost values by
Y (Tm) = (F(xa), F(X2), ..., F(Xm)).

We define the sd¥ (Ty,) of all functions that areompatible with [, in F € .% by

F(Tm) ={glg€eF AVx€ 27(Tm) 1 g(X) = f(X)} (14)

The search MDP(S-MDP) given an optimization scenario can now be formalize
as follows:

Definition 3 (S-MDP). Given a problems clagsz, a performance measuceand
a number of steps e {1,...,|27|}, the search MDP (S-MDP) is defined by

1. . = set of all possible tracek, with 0 < n<m;
2.9(s) =2\ Z(s);

0 X(s) #X(s)@a
3. P = > pz(9) / S pz(h) otherwise ;
geF(s) heF(s)
4 78 — {0 if length(s) #m—1
S T ) e(Y(S))  otherwise '

This MDP has been constructed such that the following thedrelds, which es-
tablishes the link between optimal search algorithm anagv@tpolicy:

Theorem 7.For any performance measure c, any problem clagsqver.#, and
any me {1,...,].2|}, an algorithm b that maximizes

2 tis also possible to map the optimization toiafinite horizon problenwith appropriateabsorb-
ing states
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;izpy(f)C(Y(f,"LbX

is given by the optimal policy for the corresponding S-MDRHw=0and g = ()).

Proof. By definition, every policy operating on a S-MDP is an aldarit The states
of the dynamic system correspond to the sequences of psdyieuvaluated search
points and an action correspond to exploring a new searctt.poi

First, we verify that the definition of”g, leads to proper probability distribu-
tions, that is, that'sc .77 : Va € &/(S) : Yy v P& = 1. We rewrite the definition
of 7%, as

4 =X X(9@a) Y pr@)/ Y pr(h) . (15)
geF(9) heF(s)
For everyf € F(s) anda € <7 (s) there is exactly ond € .7 with X(s') = X(s) ®a
andf € F(s). Thus we have

S psh= 3 p7(@)= T 8(X().X(9®a) T ps(g)
heF(s) =4 geF(9) e geF(9)
AX(s) =X(s)®a

I m

(16)

and the normalization is correct.

Next, we show that maximizing the accumulated rewia{@Ry | o = () , @} max-
imizes the performance measWecr p# (f)c(Y(f,m w)). The accumulated im-
mediate reward reduces to

m
&
Given a functionf € % and a policyw we havery, = ¢(Y(f,m, @)) and therefore
E{R0|SO = <>7 fJD} = E{rm‘So = <> ) f,(D} = C(Y(f7m>w)) (18)
as the process is deterministic for fixédThus

fer
which completes the proof.O

Solving the S-MDP leads to an optimal algorithm, which “@athe next search
points in order to maximize the reward (e.g., to find the belstt®n inmsteps). Al-
though solving a MDP can be done rather efficiehityterms of scaling with.#|,
|«7|, andm, solving the S-MDP is usually intractablecausé.””| obviously scales

3 In a S-MDP no state is ever revisited. Hence, for any policytthesition probability graph is
acyclic and thusvalue iterationfinds the optimal policy after at mosh steps, where each step
needsO(|.</||.7|)? computations (see [3, sec. 2.2.2] or [2]).
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badly with the dimensionality of the optimization problelmchapter??[reference
to Olivier's Optimal Search chapter], Teytaud and Vazquez discuss this issue and
optimal search algorithms in general in more detail.

6 What Can We Learn from the NFL Results for the Design of
Metaheuristics?

There is no universal best search or optimization algoritArfcareful considera-

tion of the No Free Lunch theorems forces us to ask what setobigms we want

to solve and how to solve them” [33]. The NFL theorem “hightigthe need for
exploiting problem-specific knowledge to achieve bettanttandom performance”
[37]. Its essence is nicely captured in the discussion oNtRE results for learning

[34] by Bousquet et al. [4]. If “there is no a priori restrimti on the possible phe-
nomena that are expected [...] there is no better algoritmy &lgorithm would be

beaten by another one on some phenomena)” [4]. If their wargsdapted for the
search and optimization scenario, the main message of thettforems may be
summarized as follows:

If there is no restriction on how the past (already visiteohfx) can be related
to the future (not yet explored search points), efficientad®and optimization
is impossible.

Between the two extremes of knowing nothing about a problemain and
knowing a domain so well that an efficient, highly specializdgorithm can be
derived in reasonable time, there is enough room for theicgijmn of well de-
signed metaheuristics. Often we have only little, quiteegahknowledge about the
properties of a problem class. In such a case, using quiterglemetaheuristics ex-
ploiting these properties may be a good choice. In pracsiometimes fine tuning
an algorithm to a problem class is not efficient in terms ofedtggment time and
costs. Then a more broadly tuned metaheuristic may be plaéer

Finally, let me mention some further conclusions that cardizevn from the
results reviewed in this chapter.

The preconditions of the NFL theorem are not met in practice

| argue that if we consider a restricted class of problenis,riégasonable to assume
that the necessary conditions in the NFL theorems are nbligd| First, if we
would select a problem class at random, the probability ti@tconditions hold
is extremely low. Second, if the objective functions in alpeon class obey some
constraints that are defined with respect to some neighbdntedation on the search
space, then the necessary prerequisites are likely to letedib Thus, we can hope
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to come up with metaheuristics showing above average peéioce for real world
problem classes.

However, one has to keep in mind that the strict NFL resulisr® averages
over all possible search behaviors and performance aiténive compare a selec-
tion of algorithms using a fixed criterion, there can exiss 4 functions on which
the algorithms have the same mean performance even if thdsabt meet the con-
ditions of the general NFL theorems. This is investigatethencontext of Focused
NFL theorems, see [32] arRP[reference to Darrell's chapter].

interesting problem class
random search w/o replacemen{ill °

some algorithm @

specialized, invariant algorithm A

AAAAAA‘

performance measure

fp fo f3 f4 f5 fg f7 fg fg9 fig fi1 f12 f13 f14 f15 fi6
space of functions

Fig. 4 Distribution of mean performance over a discrete space of probi@ns®me randomized
algorithms. The algorithms indicated by triangles and cirbleth have a similar mean performance
on the interesting problems (i.e., some problem class we areafenwgla metaheuristic for), but a
different variance. Both are biased towards the interestinglems. Uniform random search and
the algorithm indicated by triangles are invariant under ¢hoice of the problem instance from
the class of interesting problems.

Generalization from benchmark problems is dangerous

The Almost NFL theorem and the second statement of corallahow that drawing
general conclusions about the ranking of algorithms — eéufiérring to a restricted
problem class — based on evaluating them on single benchHoaskons is danger-
ous (see the discussion in [33]). For every set of functiamsvbich algorithma
outperforms algorithnb there is a set of function on which the opposite is true.
Thus, one must ensure that the results on the consideretirbaric functions can
be generalized to the whole class of problems the algoritmaslesigned for. If al-
gorithmb outperformsa on some test functions that are not likely to be observed in
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practice (in my opinion this includes functions frequentsed in benchmark suites,
e.g., some “deceptive” problems), this can even be regasled argument in favor
of a.

There are ways to derive valid statements about algorithifoymeance on a prob-
lem class without testing the algorithm on every instandhefclass. First, one can
derive formal proofs about the performance of the algor#gh@®f course, this can
be extremely difficult. Second, it is possible to generdiinen empirical results on
single benchmark functions to a class of problems in a stense if the algorithms
have certain invariance properties, see [11, 12] and chapfeeference to chapter
discussing invariance by Niko]for a discussion.

Example 12Evolutionary algorithms in which the selection is based anking,
such as the CMA-ES [13] presented in chapt@freference to Niko’'s CMA-ES
chapter], are invariant under order-preserving transformationtheffitness func-
tion. For example, if the fitness values given by a functigx) are all positive, the
performance of a purely rank-based algorithnfageneralizes td (x)2, log( f (x)),. ...
The CMA-ES has several additional invariance propertiegarticular it is invariant
under rotation of the search space.

As there is no well-performing universal search algorittime,metaheuristics we are
developing must be biased towards certain problem clagbese is some trade-off
between the specialization to a problem class requiredfiorent optimization and
invariance properties. This becomes obvious by the inmadgroperties of uni-
form random-search, which is fully unbiased. Figure 4 tiates specialization and
invariance properties, especially showing the perforreasfcan algorithm that is
biased towards an interesting problem class and at the samadrivariant under
the choice of the problem instance from this class. Undedstg, formulating, and
achieving the right bias and the right invariance propsiigeperhaps the most im-
portant aspect when designing metaheuristics.

Further Reading

The book chapter on “Complexity Theory and the No Free Lunbkofem” by
Whitley and Watson is recommended for an alternative revieNFL for search
and optimization [33]. The proof of the basic NFL theorem &@md in [36], the
proof of the Sharpened NFL theorem in [27]. Theorem 3 is pnang20] and the
results in section 4.1 and 4.2 in [18]. The Almost NFL theoisikerived in [6], and
Focused NFL is discussed in [32].
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