
No Free Lunch Theorems: Limitations and
Perspectives of Metaheuristics

Christian Igel

[. . . ] Thus not only our reason fails us in the discovery of the ultimate connexion of causes
and effects, but even after experience has informed us of theirconstant conjunction, it is
impossible for us to satisfy ourselves by our reason, why we should extend that experience
beyond those particular instances, which have fallen under ourobservation. We suppose, but
are never able to prove, that there must be a resemblance betwixt those objects, of which
we have had experience, and those which lie beyond the reach ofour discovery.

(David Hume, 1739 [14, 10])

Abstract The No Free Lunch (NFL) theorems for search and optimizationare re-
viewed and their implications for the design of metaheuristics are discussed. The
theorems state that any two search or optimization algorithms are equivalent when
their performance is averaged across all possible problemsand even over subsets
of problems fulfilling certain constraints. The NFL resultsshow that if there is no
assumption regarding the relation between visited and unseen search points, effi-
cient search and optimization is impossible. There is no well performing universal
metaheuristic, but the heuristics must be tailored to the problem class at hand us-
ing prior knowledge. In practice, it is not likely that the preconditions of the NFL
theorems are fulfilled for a problem class and thus differences between algorithms
exist. Therefore, tailored algorithms can exploit structure underlying the optimiza-
tion problem. Given full knowledge about the problem class,it is in theory possible
to construct an optimal algorithm.

1 Introduction

Metaheuristics such as evolutionary algorithms, simulated annealing, swarm algo-
rithms, and tabu search are general in the sense that they canbe applied to any ob-
jective (target of fitness) functionf : X → Y , whereX denotes the search space
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andY a set of totally ordered cost-values. The goal of designing metaheuristics is
to come up with search or optimization methods that are superior to others when
applied to instances of a certain class of problems. In this chapter, we ask under
which conditions one heuristic can be better than another atall and derive answers
based on the No Free Lunch (NFL) theorems.

Table 1 All possible functions{0,1}2 → {0,1}, which will be used as examples throughout this
chapter.

(x1,x2) f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

(0,0) 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
(0,1) 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
(1,0) 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
(1,1) 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
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Fig. 1 Distribution of algorithm performance over a discrete space of problems. For random search
without replacement the average performance on a function is shown. A performance profile such
as depicted for the “fantasy algorithm” is not possible if the space has the property of being closed
under permutation (e.g., as in the case of the problems shown in Table 1).

Example 1.Let us consider all objective functions mapping from some finite do-
main X to some finite set of valuesY , for example those given by all functions



No Free Lunch Theorems: Limitations and Perspectives of Metaheuristics 3

{0,1}2 → {0,1} listed in Table 1. Figure 1 depicts the performance of three algo-
rithms over this set of functions. Performance could for example be measured in
terms of the number of objective function evaluations needed to find the optimum
or by the quality of the best solution found inm steps (or by any other measure
consistent with the definition given in the next section). The baseline is given by
the average performance of a random search algorithm, whichpicks search points
uniformly at random without replacement (i.e., every pointis visited only once).
A highly specialized algorithm – which has been developed for many years based
on extensive domain knowledge – may have a performance profile as indicated by
the triangles. It performs extremely well on a very few problems, but very badly on
all the others. Now, would it not be great to come up with an algorithm that per-
forms well, in particular better than random search, acrossall problems as indicated
by the circles in Fig. 1? Could this be achieved by designing ametaheuristic using
principled methods? Unfortunately, the answer to these questions isno.

The NFL theorem for optimization – and we do not want to distinguish be-
tween search and optimization in this chapter – roughly speaking states that all
non-repeating search algorithms have the same mean performance when averaged
uniformly overall possible objective functionsf : X →Y [35, 24, 8, 36, 21, 6]. In
practice, of course, algorithms need not perform well on allpossible functions, but
only on a subset that arises from the application at hand.

In this chapter, we discuss extensions and implications of this fundamental result.
In the next section, we introduce the basic notation and formally state the original
NFL theorem as well as some of its refinements, in particular NFL results for re-
stricted problem classes [28, 29, 20]. Section 3 discusses the optimization scenario
underlying these theorems. Section 4 studies how many problem classes fulfill the
prerequisites for a NFL result and if these problem classes are likely to be observed
in real-world applications. It ends with a discussion of theAlmost NFL theorem [6].
In the more research oriented section 5 the link between optimization problems and
Markov decision processes is established and it is shown howto construct optimal
algorithms in this framework. Finally, the main results aresummarized and further
general conclusions are drawn.

2 The NFL Theorem for Search

In the following, we first fix the notation before we state the basic NFL theorem and
its extensions.

2.1 Basic Definitions

Let us assume a finite search spaceX and a finite set of cost-valuesY . Let F be
the set of all objective functionsf : X → Y to be optimized (also called target,
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c(Y( f ,m,a))

performance measure

non-repeating black-box search algorithma

Tm = 〈(x1, f (x1)), . . . , (xm, f (xm))〉

target function

f : X → Y

Y( f ,m,a) =

〈 f (x1), . . ., f (xm)〉

a(Tm) = xm+1 ∈ X f (xm+1) ∈ Y

Fig. 2 Scheme of the optimization scenario considered in NFL theorems. A non-repeating black-
box search algorithma chooses a new exploration point in the search space depending onthe
sequenceTm of the already visited points with their corresponding cost-values. The target function
f returns the cost-value of a candidate solution as the only information. The performance ofa
is determined using the performance measurec, which is a function of the sequenceY( f ,m,a)
containing the cost-values of the visited points.

fitness, energy, or cost functions). No Free Lunch theorems make statements about
non-repeating search algorithms (referred to as algorithms) that explore a new point
in the search space depending on the history of previously visited points and their
cost-values. Non-repeating means that no search point is evaluated more than once.
Let the sequenceTm= 〈(x1, f (x1)),(x2, f (x2)), . . . ,(xm, f (xm))〉 representmpairs of
different search pointsxi ∈ X , ∀i, j : xi 6= x j and their cost-valuesf (xi) ∈ Y . An
algorithma appends a pair(xm+1, f (xm+1)) to this sequence by mappingTm to a
new pointxm+1 with xm+1 6= xi for i = 1, . . . ,m.

We assume that the performance of an algorithma afterm≤ |X | iterations with
respect to a functionf depends only on the sequence

Y( f ,m,a) = 〈 f (x1), f (x2), . . . , f (xm)〉

of cost-values the algorithm has produced. Let the functionc denote a performance
measure mapping sequences of cost-values to the real numbers. Figure 2 depicts the
optimization scenario assumed in NFL theorems.

Example 2.In the case of function minimization a performance measure that returns
the minimum cost-value in the sequence could be a reasonablechoice. Alternatively,
the performance measure could return the number of objective function evaluations
that were needed to find a search point with a cost-value belowa certain threshold.

In general, one must distinguish between an algorithm and its search behavior.
For finiteX andY and thus finiteF , there are only finitely many different non-
repeating, deterministic search behaviors. For a given function f , there exist only
|X |!/(|X | −m)! different search behaviors corresponding to the possibleorders
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in which the search points can be visited. In practice, two algorithms that always
exhibit the same search behavior (i.e., produce the same sequenceTm given the
same functionf and number of stepsm) may differ, for example, in their space and
run time requirements (see section 3).

Example 3.Given some functionf : {0,1}2 → {0,1} there are 12 possible search
behaviors for 2-step search resulting in the following sequences:
〈((0,0), f ((0,0))),((0,1), f ((0,1)))〉, 〈((0,0), f ((0,0))),((1,0), f ((1,0)))〉,
〈((0,0), f ((0,0))),((1,1), f ((1,1)))〉, 〈((0,1), f ((0,1))),((0,0), f ((0,0)))〉,
〈((0,1), f ((0,1))),((1,0), f ((1,0)))〉, 〈((0,1), f ((0,1))),((1,1), f ((1,1)))〉,
〈((1,0), f ((1,0))),((0,0), f ((0,0)))〉, 〈((1,0), f ((1,0))),((0,1), f ((0,1)))〉,
〈((1,0), f ((1,0))),((1,1), f ((1,1)))〉, 〈((1,1), f ((1,1))),((0,0), f ((0,0)))〉,
〈((1,1), f ((1,1))),((0,1), f ((0,1)))〉, 〈((1,1), f ((1,1))),((1,0), f ((1,0)))〉.

Often we are not interested in statements that assume that each function inF is
equally likely to be the objective function. Instead, we want to make statements that
refer toproblem classes. A reasonable general working definition of a problem class
is:

Definition 1 (problem class).Given a finite search spaceX and a finite set of
cost-valuesY , aproblem classcan be defined by a probability distributionpF over
the spaceF of all possible objective functionsf : X → Y , wherepF ( f ) is the
probability thatf ∈ F is the objective function faced by an algorithm.

In the special case that all functions that have a non-zero probability of being the
target function are equally likely, we can identify a problem class by the subset
F ⊆ F with f ∈ F ⇒ pF ( f ) = 1/|F |> 0.

2.2 The NFL Theorem

The original and most popular version of the NFL theorem for optimization was
formally stated and proven by Wolpert and Macready in 1995 [35, 36]. It can be
expressed as:

Theorem 1 (NFL theorem [36]).For any two algorithms a and b, any k∈ IR,
any m∈ {1, . . . , |X |}, and any performance measure c

∑
f∈F

δ (k,c(Y( f ,m,a))) = ∑
f∈F

δ (k,c(Y( f ,m,b))) . (1)

Herein,δ denotes the Kronecker function (δ (i, j) = 1 if i = j, δ (i, j) = 0 otherwise).
Proofs can be found in [35, 36, 27, 21]. Equation (1) implies



6 Christian Igel

∑
f∈F

c(Y( f ,m,a)) = ∑
f∈F

c(Y( f ,m,b)) (2)

for any two algorithmsa andb, anym∈{1, . . . , |X |}, and any performance measure
c.

This proves that statements such as “averaged over all functions, my search al-
gorithm is the best” are misconceptions. Radcliffe and Surry were among the first
who appreciated and discussed this theorem [24]. Without rigorous proof, the basic
NFL result was stated already earlier by Rawlins in 1991 [25].

When looking at the proof of the NFL theorem, it implies the following state-
ments (see [33]):

Corollary 1. For any m∈ {1, . . . , |X |} and any performance measure c we have:

1. For any two algorithms a and b, for each fa ∈ F it holds

c(Y( fa,m,a)) = k⇒∃ fb ∈ F : c(Y( fb,m,b)) = k . (3)

2. For any two algorithms a and b and any subset of functions F⊂F with comple-
ment Fc = F \F it holds

∑
f∈F

c(Y( f ,m,a))> ∑
f∈F

c(Y( f ,m,b))⇒ ∑
f∈Fc

c(Y( f ,m,a))< ∑
f∈Fc

c(Y( f ,m,b)) .

(4)

The first statement says that for any functionfa ∈ F , there is a functionfb ∈ F

on which algorithmb has the same performance as algorithma on fa. That is, if
my algorithm outperforms your algorithm on some function then there is also an
objective function on which your algorithm outperforms mine. And if my algorithm
outperforms yours on some set of benchmark problems then your algorithm is better
than mine averaged over the remaining problems.

2.3 The Sharpened NFL Theorems

Theorem 1 assumes that all possible objective functions inF are equally likely.
Given that it is fruitless to design a metaheuristic for all possible objective func-
tions, the question arises under which constraints the average performance of one
algorithm can be better than another when the average is taken only over a subset
F ⊂F . This is a relevant scenario if the goal is to develop metaheuristics for certain
(e.g., “real-world”) problem classes.

The NFL theorem has been extended to subsets of functions with the property of
being closed under permutation (c.u.p.). Letπ : X → X be a permutation ofX .
The set of all permutations ofX is denoted byΠ(X ). A setF ⊆ F is said to be
c.u.p. if for anyπ ∈ Π(X ) and any functionf ∈ F the function f ◦π is also inF .
In [27, 28] the following result is proven:
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Theorem 2 (Sharpened NFL theorem [27, 28]).If and only if F is c.u.p., then for
any two algorithms a and b, any k∈ IR, any m∈ {1, . . . , |X |}, and any performance
measure c

∑
f∈F

δ (k,c(Y( f ,m,a))) = ∑
f∈F

δ (k,c(Y( f ,m,b))) . (5)

This is an important extension of theorem 1, because it givesnecessary and sufficient
conditions for NFL results for subsets of functions.

Example 4.Consider again the mappings{0,1}2 → {0,1}, denoted by f0, f1,
. . . , f15 as shown in Table 1. Then{ f1, f2, f4, f8} and{ f0, f1, f2, f4, f8} are exam-
ples of sets that are c.u.p.. The set{ f1, f2, f3, f4, f8} is not c.u.p., because some
functions are “missing”. These missing functions includef5, which results fromf3
by switching the elements(0,1) and(1,0).

Example 5.Theorem 1 tells us that on average all algorithms need the same time
to find a desirable, say optimal, solution – but how long does it take? The average
number of evaluations needed to find an optimum (the mean hitting time) depends
on the cardinality of the search space|X | and the numbern of search points that are
mapped to a desirable solution. As the set ofall functions wheren search points rep-
resent desirable solutions is c.u.p., it is sufficient to compute the average time to find
one of these points for an arbitrary algorithm, which is given by (|X |+1)/(n+1)
[17] (a proof forn = 1 is given in chapter??[reference to Thomas’ Black-Box
chapter]).

In theorems 1 and 2 it is implicitly assumed that each function in F and F ,
respectively, has the same probability to be the target function, because the sum-
mations in (1) and (5) average uniformly over the functions.However, it is more
realistic to assume that different functions can have different probabilities to be the
target function. In this more general case, a problem class is described by a probabil-
ity distribution assigning each functionf its probability pF ( f ) to be the objective
function.

To derive results for this general scenario it is helpful to introduce the concept
of Y -histograms. AY -histogram(histogramfor short) is a mappingh : Y → IN0

such that∑y∈Y h(y) = |X |. The set of all histograms is denoted byH . Any func-
tion f : X → Y implies a histogramhf (y) = | f−1(y)| that counts the number of
elements inX that are mapped to the same valuey∈ Y by f . Herein, f−1(y) re-
turns the preimage{x| f (x) = y} of y under f . Further, two functionsf andg are
calledh-equivalentif and only if they have the same histogram. The corresponding
h-equivalence classBh ⊆ F containing all functions with histogramh is termed a
basis class. It holds:

Lemma 1 ([18]).Any subset F⊆ F that is c.u.p. is uniquely defined by a union of
pairwise disjoint basis classes. Bh is equal to the permutation orbit of any function
f with histogram h, i.e.,∀ f ∈ F : Bhf =

⋃

π∈Π(X ){ f ◦π}.

Example 6.Consider the functions in Table 1. TheY -histogram off1 contains the
value zero three times and the value one one time, i.e., we have hf1(0) = 3 and
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hf1(1)= 1. The mappingsf1, f2, f4, f8 have the sameY -histogram and are therefore
in the same basis classBhf1

= { f1, f2, f4, f8}. The set{ f1, f2, f4, f8, f15} is c.u.p. and
corresponds toBhf1

∪Bhf15
.

The following ramification of the Sharpened NFL theorem (derived indepen-
dently in [19], [29], and [7] generalizing the results in [9]) gives a necessary and
sufficient condition for a NFL result in the general case of arbitrary distributions
pF overF :

Theorem 3 (non-uniform Sharpened NFL theorem [19, 29, 20, 7]). If and
only if for all histograms h

f ,g∈ Bh ⇒ pF ( f ) = pF (g) , (6)

then for any two algorithms a and b, any value k∈ IR, any m∈ {1, . . . , |X |},
and any performance measure c

∑
f∈F

pF ( f )δ (k,c(Y( f ,m,a))) = ∑
f∈F

pF ( f )δ (k,c(Y( f ,m,b))) . (7)

This observation is the “sharpest” NFL so far. It gives necessary and sufficient con-
ditions for NFL results for general problem classes.

3 The Preconditions in the NFL Theorem and the Sharpened
NFL Theorems

The NFL theorems 1, 2, and 3 consider a certain optimization scenario. In the fol-
lowing, we discuss its basic preconditions.

Independence of algorithmic complexity

It is important to note that the NFL theorems make no assumptions about the space
and time complexity of computing the next search point. For example, it makes no
difference if the algorithm simply enumerates all elementsof X or comes up with
a decision after running some complex internal simulation.

For many practical applications, it is indeed reasonable toassume that the time
needed to evaluate the fitness dominates the computational costs of computing the
next step and that memory requirements are not an issue. Still, this needs not always
be true.

Example 7.The update of the strategy parameters in CMA-ES scales quadratically
with the search space dimension ([13, 30], see chapter??[reference to Niko’s
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CMA-ES chapter]). For extremely high-dimensional fitness functions that can be
evaluated quickly this may have a significant impact on the run time (however, in
most practical applications I dealt with, the evaluation ofthe objective function was
by far the dominating term).

This topic is discussed in more detail in section?? of chapter??[reference to
Thomas’ Black-Box chapter], which demonstrates the differences betweenalgo-
rithmic complexityandblack-box complexityof search algorithms.

Non-repeating algorithms

Metaheuristics often do not have the non-repeating property. If a randomized algo-
rithm searches locally in discrete (or discretized) domains, the chance to resample a
search point can be high even if the search space is huge. In evolutionary algorithms,
the variation operators that are used to generate a new solution based on an existing
one are often symmetric in the sense that the probability to generate some solution
x′ from x is equal to generatingx from x′. Thus, there is always a chance to jump
back to an already visited point.

We can always turn a repeating search algorithm into a non-repeating one by
adding a look-up table for already visited points. The algorithm then internally uses
this look-up table and only evaluates the objective function (i.e., “makes a step”) for
previously unseen points. Of course, this increases the memory requirements of the
algorithm.

Example 8.Studies in which evolutionary algorithms searching a spaceof graphs
are turned into non-repeating algorithms by coupling them with a search-point
database are described in [16, 23].

Deterministic and randomized algorithms

In general, NFL results hold for deterministic as well as randomized algorithms.
A randomized search algorithma can be described by a probability distributionpa

over deterministic search behaviors [6]: Every search behavior generated by a single
application of a randomized algorithm has a certain probability. The same behavior
could have been generated by some deterministic algorithm.One can view the ap-
plication of a randomized algorithma as picking – according to a fixed, algorithm
dependent distributionpa – a deterministic search behavior at random and applying
it to the problem (we view the deterministic algorithms as a subset of the random-
ized algorithms having degenerated probability distributions). An alternative way
to see this is to think of drawing all realizations of random variables required by
a randomized search method at once prior to the search process and to use these
events as inputs to a deterministic algorithm (see chapter??[reference to Thomas’
Black-Box chapter] for a detailed discussion of this issue).

Let the setA contain all deterministic search behaviors operating onF . The
performance of a randomized search algorithma corresponds to the expectation
over the possible search behaviorsA w.r.t. pa [22]:
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E{c(Y( f ,m,a))}= ∑
a′∈A

pa(a
′)c(Y( f ,m,a′)) (8)

For deterministic algorithms, the previous theorems do notonly state that the av-
erage performance of two algorithms is the same across all functions, but alsoany
statistic – in particular the variance – of the performance values is the same. We can
derive a similar result for randomized algorithms. Let us assume that the conditions
of theorem 3 are met. We consider two randomized algorithms described bypa and
pb and extend the NFL theorems using simple transformations:

∑
f∈F

pF ( f ) ∑
a′∈A

pa(a
′)δ (k,c(Y( f ,m,a′)))

= ∑
a′∈A

pa(a
′) ∑

f∈F

pF ( f )δ (k,c(Y( f ,m,a′)))

︸ ︷︷ ︸

independent ofa′
because of theorem 3

for any
algorithmz

= ∑
f∈F

pF ( f )δ (k,c(Y( f ,m,z))) ∑
a′∈A

pa(a
′)

= ∑
f∈F

pF ( f )δ (k,c(Y( f ,m,z))) ∑
b′∈A

pb(b
′)

reversing the
prev. arguments

= ∑
f∈F

pF ( f ) ∑
b′∈A

pb(b
′)δ (k,c(Y( f ,m,b′))) (9)

Equation (2) holds for randomized algorithms if we simply replacec(·) byE{c(·)}.1

Finiteness of domain and co-domain

If optimization problems solved on today’s digital computers are considered, the
restriction to finite domains and co-domains is no restriction at all. Still, NFL results
for continuous search spaces are very interesting from the theoretical point of view.
The reader is referred to [26] and [1] for different views on this topic as well as to
chapter??[reference to Marc’s Bayesian Search Game chapter], which explains
why assumptions on the Lebesgue measurability ofpF play a role when studying
NFL in continuous search spaces.

Restriction to a single objective

The basic NFL theorems considers single-objective optimization. However, it also
holds for multi-objective (vector) optimization as provenin [5].

1 In general, this cannot be done in the theorems because∑ f∈F δ (k,∑a′∈A pa(a′)c(Y( f ,m,a′))) 6=
∑ f∈F ∑a′∈A pa(a′)δ (k,c(Y( f ,m,a′))).
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Fixed objective functions

The framework considered in this chapter does not include repeated game scenarios
in which the “objective function” for some agent can vary based on the behavior of
other agents as it is the case in coevolutionary processes. For results and discussions
of NFL in such game-like scenarios the reader is referred to the work by Wolpert
and Macready presented in [37].

Averaging over all search behaviors and all performance criteria

The NFL theorems rely on averages over all possible search behaviors and all pos-
sible performance criteria. However, in practice we are most often concerned with
the comparison of a subset of algorithmsA using a fixed performance measurec and
some fixed number of stepsm. This scenario is considered inFocused NFL theorems
[32]. Given a set of algorithmsA and a performance measurec and some fixed num-
ber of stepsm, Whitley and Rowe define afocus setas a set of functions on which
the algorithms inA have the same mean performance measured byc (aftermsteps).
Theorbit of an objective functionf is the smallest of these focus sets containingf .
It is important to note that focus sets need not be c.u.p..

Example 9.Assume we want to compare two deterministic algorithmsa andb run
for m steps using performance measurec. Further, assume two objective functions
f1 and f2 with c(Y( f1,m,a)) = c(Y( f2,m,b)) andc(Y( f2,m,a)) = c(Y( f1,m,b)).
Then{ f1, f2} is clearly a focus set forA = {a,b}, c, andm – regardless whether
{ f1, f2} is c.u.p. or not.

For details about Focused NFL theorems the reader is referred to [32] and
??[reference to Darrell’s chapter].

4 Restricted Function Classes and NFL

In this section we take a look at restricted function classes. First, we compute the
probability that a randomly chosen function class meets theconditions of the NFL
theorems. Then it is argued that there are certain restrictions that are likely to con-
strain problem classes corresponding to “real-world ” problems. It is shown that
these constraints are not compatible with the conditions ofthe NFL theorems. This
is an encouraging result for the design of metaheuristics. However, it is difficult to
evaluate heuristics empirically, because good performance on some functions does
not necessarily imply good performance on others – even if these functions seem to
be closely related. This is underlined by the Almost NFL theorem discussed at the
end of this section.
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4.1 How Likely Are the Conditions for NFL?

The question arises whether the preconditions of the NFL theorems are ever fulfilled
in practice. How likely is it that a randomly chosen subset isc.u.p.? There exist

2(|Y ||X |)−1 non-empty subsets ofF and it holds:

Theorem 4 ([18]).The number of non-empty subsets ofY X that are c.u.p. is given
by

2(
|X |+|Y |−1

|X | )−1 (10)

and therefore the fraction of non-empty subsets c.u.p. is given by
(

2(
|X |+|Y |−1

|X | )−1

)/(

2(|Y ||X |)−1
)

. (11)
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Fig. 3 Fraction of subsets of objective functions that are closed under permutation (c.u.p.) of all
possible subsets depending on the number of search points and the number of possible objective
function values. The ordinate gives the fraction of subsets c.u.p. on logarithmic scale given the
cardinality |X | of the search space. The different curves correspond to different cardinalities of
the space of objective function valuesY .

Figure 3 shows a plot of the fraction of non-empty subsets c.u.p. versus the car-
dinality of X for different values of|Y |. The fraction decreases for increasing|X |
as well as for increasing|Y |. More precisely, using bounds for binomial coefficients
one can show that (11) converges to zero double exponentially fast with increasing
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|X | (for |Y | > e|X |/(|X | − e), wheree is Euler’s number). Already for small
|X | and|Y | the fraction almost vanishes.

Thus, the statement “I’m only interested in a subsetF of all possible functions
and the precondition of the Sharpened NFL theorem is not fulfilled” is true with a
probability close to one ifF is chosen uniformly at random andY andX have
reasonable cardinalities.

The probability that a randomly chosen distribution over the set of objective func-
tions fulfills the preconditions of theorem 3 has measure zero. This means that in
this general and realistic scenario the conditions for a NFLresult do not hold almost
surely.

4.2 Structured Search Spaces and NFL

Although the fraction of subsets c.u.p. is close to zero already for small search and
cost-value spaces, the absolute number of subsets c.u.p. grows rapidly with increas-
ing |X | and |Y |. What if these classes of functions are the relevant ones in the
sense that they correspond to the problems we are dealing with in practice?

It can be argued that presumptions can be made for most of the functions rele-
vant in real-world optimization: First, the search space has some structure. Second,
the set of objective functions fulfills some constraints defined based on this struc-
ture. More formally, there exists a non-trivial neighborhood relation onX based on
which constraints on the set of functions under consideration are formulated. Such
constraints include upper bounds on the ruggedness or on themaximum number of
local minima. Concepts such as ruggedness or local optimality require a notion of
neighborhood.

A neighborhood relation onX is a symmetric functionn : X ×X → {0,1}.
Two elementsxi ,x j ∈ X are called neighbors ifn(xi ,x j) = 1. A neighborhood re-
lation is called non-trivial if∃xi ,x j ∈ X : xi 6= x j ∧ n(xi ,x j) = 1 and∃xk,xl ∈ X :
xk 6= xl ∧ n(xk,xl ) = 0. There are only two trivial neighborhood relations, either ev-
ery two points are neighbored or no points are neighbored. Non-trivial neighborhood
relations are not preserved under permutations, it holds:

Theorem 5 ([18]).A non-trivial neighborhood relation onX is not invariant under
permutations ofX ,i.e.,

∃xi ,x j ∈ X ,π ∈ Π(X ) : n(xi ,x j) 6= n(π(xi),π(x j)) . (12)

This result is quite general. Assume that the search spaceX can be decomposed
asX = X1× ·· ·×Xl , l > 1, and let a non-trivial neighborhoodni : Xi ×Xi →
{0,1} exists on one componentXi . This neighborhood induces a non-trivial neigh-
borhood onX , where two points are neighbored if theiri-th components are neigh-
bored with respect toni regardless of the other components. Thus, the constraints
discussed in the examples below need only refer to a single component. Note that the
neighborhood relation need not be the canonical one (e.g., the Hamming-distance
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for Boolean search spaces). For example, if integers are encoded by bit-strings, then
the bit-strings can be defined as neighbored iff the corresponding integers are. The
following examples illustrate further implications of theorem 5 [18].

Example 10.Consider a non-empty subsetF ⊂ F where the co-domains of the
functions have more than one element and a non-trivial neighborhood relation ex-
ists. If for eachf ∈ F it is not allowed that a global maximum is neighbored to a
global minimum (i.e., we have a constraint “steepness”), then F is not c.u.p. (be-
cause for everyf ∈ F there exists a permutation that maps a global minimum and a
global maximum off to neighboring points). An example of such a function class
is OneMax∗ as described in section??of chapter??[reference to Thomas’ Black-
Box chapter].

Example 11.Imposing an upper bound on the complexity of possible objective func-
tions can lead to function classes that are not c.u.p. Let us assume without loss of
generality minimization tasks. Then the number of suboptimal local minima is of-
ten regarded as a measure of complexity of an objective function [31] (see section
4.3 for other notions of complexity). Given a neighborhood relation onX , a lo-
cal minimum can be defined as a point whose neighbors all have worse fitness. As
a concrete example, consider all mappings{0,1}ℓ → {0,1} not having maximum
complexity in the sense that they have less than the maximum number of 2n−1 lo-
cal minima w.r.t. the ordinary hypercube topology on{0,1}ℓ. For example, this set
does not contain mappings such as the parity function, whichis one iff the number
of ones in the input bitstring is even. This set is not c.u.p. The general statement that
imposing an upper bound on the number of local minima leads tofunction classes
not c.u.p. can be formally proven using the following line ofarguments. Letl( f )
be the number of local minima of a functionf ∈ F and letBhf ⊆ F be the set of
functions inF with the sameY -histogram asf (i.e., functions where the number of
points inX that are mapped to eachY -value is the same as forf ). Given a function
f we definelmax( f ) = maxf ′∈Bhf

l( f ′) as the maximal number of local minima that

functions inF with the sameY -histogram asf can possibly have. For a non-empty
subsetF ⊂ F we definelmax(F) = maxf∈F lmax( f ). Let g(F) ∈ F be a function
with l(g(F)) = lmax(F) local minima and the sameY -histogram as a function in
F . Now, if the number of local minima of every functionf ∈ F is constrained to be
smaller thanlmax(F) (i.e., maxf∈F l( f ) < lmax(F)), thenF is not c.u.p.—because
∃ f ∈ F with the sameY -histogram asg and thus∃π ∈ Π(X ) : f ◦π = g.

4.3 The Almost NFL Theorem

The results presented above are encouraging, because they suggest that for a re-
stricted problem class the NFL results will most likely not apply. However, this does
not promise “free lunch”. For a problem class violating the conditions for a NFL re-
sult, the average performance of two algorithms may differ.But this difference may
be negligible.
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The performance on two functions, although they are similaraccording to some
reasonable similarity measure, may differ significantly. In particular, for any func-
tion f on which algorithma performs well, there may be many functions on which
it performs badly and that are similar tof in a reasonable sense. This becomes clear
from the Almost NFL (ANFL) theorem derived by Droste, Jansen, and Wegener [6],
which proves such statements for a particular scenario:

Theorem 6 (Almost NFL theorem [6]). Let F be the set of objective functions
f : {0,1}n →{0,1, . . . ,N−1} for fixed positive integers n and N. For any algorithm

a operating onF and any function f∈ F there exist at least N2
n/3−1 functions in

F that agree with f on all but at most2n/3 inputs for which a does not find their
optimum within2n/3 steps with a probability bounded above by2−n/3.

Exponentially many of these functions have the additional property that their
evaluation time, circuit size representation, and Kolmogorov complexity is only by
an additive term of O(n) larger than the corresponding complexity of f .

The last sentence formalizes that extremely bad behavior can be expected on func-
tions which are similar to our reference (e.g., benchmark) function f . These func-
tions do not only coincide on 2n/3 inputs with f , they also have a similar complex-
ity. Complexity can either be measured in the number of stepsneeded to evaluate
the objective function at a certain point (evaluation time), the length of the short-
est program implementingf (Kolmogorov complexity), or by the size of a circuit
representation off (circuit size representation).

5 Search and Markov Decision Processes

If a problem class does not fulfill the assumptions for NFL, then there may be differ-
ences in performance between algorithms on this class. The question arises: what is
then the best method given a problem classpF , a performance measure, and a num-
ber of stepsm? In the following, it is shown how to determine an optimal algorithm
using dynamic programming (DP) [15]. For a similar approachsee [1] and chapter
??[reference to Olivier’s Optimal Search chapter]. However, it is not claimed
that this way is efficient.

The problem of finding an optimal search algorithm can be transformed to a
finite horizon optimal control problemthat can be solved by DP. In the context of
mathematical optimization for optimal control, DP is concerned with some discrete-
time dynamic system, in which at timet the statest of the system changes according
to given transition probabilities that depend on some action at+1 (I adopt a standard
formalism and usea for actions instead of algorithms in this section). Each transition
results in some immediate rewardrt+1 (or, alternatively, immediate cost) [3]. The
dynamic system can be described by a finite Markov decision process:

Definition 2 (finite MDP ). A finite Markov decision process[S ,A ,P,R] (finite
MDP) is given by:
1. a finite setS of states;
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2. a finite set of actionsA , whereA (s) denotes the set of possible actions in state
s∈ S ;

3. transition probabilitiesPa
ss′ = Pr{st+1 = s′ |st = s,at = a} describing how

likely it is to go froms∈ S to s′ ∈ S when taking actiona∈ A , and
4. expected reward valuesRa

ss′ = E{rt+1 |st+1 = s′,st = s,at = a} expressing the
expected reward when going froms∈ S to s′ ∈ S after taking actiona∈ A .

The goal of afinite horizon problem2 is to find a policyϖ : S → A that maxi-
mizes the accumulatedm-step reward

Rm =
m

∑
t ′=1

rt ′ . (13)

Given[S ,A ,P,R] the optimal policy can be computed using established standard
techniques [3, 2].

Now we turn an optimization problem (as illustrated Fig. 2) into a finite MDP.
First, we need to fix some additional notation. The length of asequenceTm =
〈(x1, f (x1)), . . . ,(xm, f (xm))〉 is given by length(Tm) = m. Adding an element to a
sequence is indicated by〈x1,x2, . . . ,xn〉⊕ x′ = 〈x1,x2, . . . ,xn,x′〉. GivenTM, we de-
note the corresponding sequence and set of search points byX(Tm) = 〈x1,x2, . . . ,xm〉
and X (Tm) = {x1,x2, . . . ,xm}, respectively, and the sequence of cost values by
Y(Tm) = 〈 f (x1), f (x2), . . . , f (xm)〉.

We define the setF(Tm) of all functions that arecompatible with Tm in F ∈F by

F(Tm) = {g|g∈ F ∧ ∀x∈ X (Tm) : g(x) = f (x)} (14)

Thesearch MDP(S-MDP) given an optimization scenario can now be formalized
as follows:

Definition 3 (S-MDP). Given a problems classpF , a performance measurec, and
a number of stepsm∈ {1, . . . , |X |}, the search MDP (S-MDP) is defined by

1. S = set of all possible tracesTn with 0≤ n≤ m;
2. A (s) = X \X (s);

3. P
a
ss′ =







0 X(s′) 6= X(s)⊕a

∑
g∈F(s′)

pF (g)
/

∑
h∈F(s)

pF (h) otherwise ;

4. R
a
ss′ =

{

0 if length(s) 6= m−1

c(Y(s′)) otherwise
.

This MDP has been constructed such that the following theorem holds, which es-
tablishes the link between optimal search algorithm and optimal policy:

Theorem 7.For any performance measure c, any problem class pF overF , and
any m∈ {1, . . . , |X |}, an algorithm b that maximizes

2 It is also possible to map the optimization to aninfinite horizon problemwith appropriateabsorb-
ing states.
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∑
f∈F

pF ( f )c(Y( f ,m,b))

is given by the optimal policy for the corresponding S-MDP (with t = 0 and s0 = 〈〉).

Proof. By definition, every policy operating on a S-MDP is an algorithm. The states
of the dynamic system correspond to the sequences of previously evaluated search
points and an action correspond to exploring a new search point.

First, we verify that the definition ofPa
ss′ leads to proper probability distribu-

tions, that is, that∀s∈ S : ∀a∈ A (s) : ∑s′∈S Pa
ss′ = 1. We rewrite the definition

of Pa
ss′ as

P
a
ss′ = δ (X(s′),X(s)⊕a) ∑

g∈F(s′)

pF (g)
/

∑
h∈F(s)

pF (h) . (15)

For everyf ∈ F(s) anda∈ A (s) there is exactly ones′ ∈ S with X(s′) = X(s)⊕a
and f ∈ F(s′). Thus we have

∑
h∈F(s)

pF (h)= ∑
s′ ∈ S

∧X(s′) = X(s)⊕a

∑
g∈F(s′)

pF (g)= ∑
s′∈S

δ (X(s′),X(s)⊕a) ∑
g∈F(s′)

pF (g)

(16)

and the normalization is correct.
Next, we show that maximizing the accumulated rewardE{R0 |s0 = 〈〉 ,ϖ} max-

imizes the performance measure∑ f∈F pF ( f )c(Y( f ,m,ϖ)). The accumulated im-
mediate reward reduces to

R0 =
m

∑
t ′=1

rt ′ = rm . (17)

Given a functionf ∈ F and a policyϖ we haverm = c(Y( f ,m,ϖ)) and therefore

E{R0 |s0 = 〈〉 , f ,ϖ}=E{rm|s0 = 〈〉 , f ,ϖ}= c(Y( f ,m,ϖ)) (18)

as the process is deterministic for fixedf . Thus

E{R0 |s0 = 〈〉 ,ϖ}= ∑
f∈F

pF ( f )c(Y( f ,m,ϖ)) , (19)

which completes the proof.⊓⊔

Solving the S-MDP leads to an optimal algorithm, which “plans” the next search
points in order to maximize the reward (e.g., to find the best solution inmsteps). Al-
though solving a MDP can be done rather efficiently3 in terms of scaling with|S |,
|A |, andm, solving the S-MDP is usually intractablebecause|S | obviously scales

3 In a S-MDP no state is ever revisited. Hence, for any policy, thetransition probability graph is
acyclic and thusvalue iterationfinds the optimal policy after at mostm steps, where each step
needsO(|A ||S |)2 computations (see [3, sec. 2.2.2] or [2]).
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badly with the dimensionality of the optimization problem.In chapter??[reference
to Olivier’s Optimal Search chapter], Teytaud and Vazquez discuss this issue and
optimal search algorithms in general in more detail.

6 What Can We Learn from the NFL Results for the Design of
Metaheuristics?

There is no universal best search or optimization algorithm. A “careful considera-
tion of the No Free Lunch theorems forces us to ask what set of problems we want
to solve and how to solve them” [33]. The NFL theorem “highlights the need for
exploiting problem-specific knowledge to achieve better than random performance”
[37]. Its essence is nicely captured in the discussion of theNFL results for learning
[34] by Bousquet et al. [4]. If “there is no a priori restriction on the possible phe-
nomena that are expected [...] there is no better algorithm (any algorithm would be
beaten by another one on some phenomena)” [4]. If their wordsare adapted for the
search and optimization scenario, the main message of the NFL theorems may be
summarized as follows:

If there is no restriction on how the past (already visited points) can be related
to the future (not yet explored search points), efficient search and optimization
is impossible.

Between the two extremes of knowing nothing about a problem domain and
knowing a domain so well that an efficient, highly specialized algorithm can be
derived in reasonable time, there is enough room for the application of well de-
signed metaheuristics. Often we have only little, quite general knowledge about the
properties of a problem class. In such a case, using quite general metaheuristics ex-
ploiting these properties may be a good choice. In practice,sometimes fine tuning
an algorithm to a problem class is not efficient in terms of development time and
costs. Then a more broadly tuned metaheuristic may be preferable.

Finally, let me mention some further conclusions that can bedrawn from the
results reviewed in this chapter.

The preconditions of the NFL theorem are not met in practice

I argue that if we consider a restricted class of problems, itis reasonable to assume
that the necessary conditions in the NFL theorems are not fulfilled. First, if we
would select a problem class at random, the probability thatthe conditions hold
is extremely low. Second, if the objective functions in a problem class obey some
constraints that are defined with respect to some neighborhood relation on the search
space, then the necessary prerequisites are likely to be violated. Thus, we can hope



No Free Lunch Theorems: Limitations and Perspectives of Metaheuristics 19

to come up with metaheuristics showing above average performance for real world
problem classes.

However, one has to keep in mind that the strict NFL results refer to averages
over all possible search behaviors and performance criteria. If we compare a selec-
tion of algorithms using a fixed criterion, there can exist sets of functions on which
the algorithms have the same mean performance even if the sets do not meet the con-
ditions of the general NFL theorems. This is investigated inthe context of Focused
NFL theorems, see [32] and??[reference to Darrell’s chapter].

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16

interesting problem class

some algorithm

specialized, invariant algorithm

random search w/o replacement

p
er
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m
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space of functions

Fig. 4 Distribution of mean performance over a discrete space of problemsfor some randomized
algorithms. The algorithms indicated by triangles and circlesboth have a similar mean performance
on the interesting problems (i.e., some problem class we are developing a metaheuristic for), but a
different variance. Both are biased towards the interesting problems. Uniform random search and
the algorithm indicated by triangles are invariant under the choice of the problem instance from
the class of interesting problems.

Generalization from benchmark problems is dangerous

The Almost NFL theorem and the second statement of corollary1 show that drawing
general conclusions about the ranking of algorithms – even if referring to a restricted
problem class – based on evaluating them on single benchmarkfunctions is danger-
ous (see the discussion in [33]). For every set of functions on which algorithma
outperforms algorithmb there is a set of function on which the opposite is true.
Thus, one must ensure that the results on the considered benchmark functions can
be generalized to the whole class of problems the algorithmsare designed for. If al-
gorithmb outperformsa on some test functions that are not likely to be observed in
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practice (in my opinion this includes functions frequentlyused in benchmark suites,
e.g., some “deceptive” problems), this can even be regardedas an argument in favor
of a.

There are ways to derive valid statements about algorithm performance on a prob-
lem class without testing the algorithm on every instance ofthe class. First, one can
derive formal proofs about the performance of the algorithms. Of course, this can
be extremely difficult. Second, it is possible to generalizefrom empirical results on
single benchmark functions to a class of problems in a strictsense if the algorithms
have certain invariance properties, see [11, 12] and chapter ??[reference to chapter
discussing invariance by Niko]for a discussion.

Example 12.Evolutionary algorithms in which the selection is based on ranking,
such as the CMA-ES [13] presented in chapter??[reference to Niko’s CMA-ES
chapter], are invariant under order-preserving transformations ofthe fitness func-
tion. For example, if the fitness values given by a functionf (x) are all positive, the
performance of a purely rank-based algorithm onf generalizes tof (x)2, log( f (x)), . . . .
The CMA-ES has several additional invariance properties, in particular it is invariant
under rotation of the search space.

As there is no well-performing universal search algorithm,the metaheuristics we are
developing must be biased towards certain problem classes.There is some trade-off
between the specialization to a problem class required for efficient optimization and
invariance properties. This becomes obvious by the invariance properties of uni-
form random-search, which is fully unbiased. Figure 4 illustrates specialization and
invariance properties, especially showing the performance of an algorithm that is
biased towards an interesting problem class and at the same time invariant under
the choice of the problem instance from this class. Understanding, formulating, and
achieving the right bias and the right invariance properties is perhaps the most im-
portant aspect when designing metaheuristics.

Further Reading

The book chapter on “Complexity Theory and the No Free Lunch Theorem” by
Whitley and Watson is recommended for an alternative review of NFL for search
and optimization [33]. The proof of the basic NFL theorem canfound in [36], the
proof of the Sharpened NFL theorem in [27]. Theorem 3 is proven in [20] and the
results in section 4.1 and 4.2 in [18]. The Almost NFL theoremis derived in [6], and
Focused NFL is discussed in [32].
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