
J. Algorithms 64 (2009) 152–168
Contents lists available at ScienceDirect

Journal of Algorithms
Cognition, Informatics and Logic

www.elsevier.com/locate/jalgor

Neuroevolution strategies for episodic reinforcement learning

Verena Heidrich-Meisner ∗, Christian Igel

Institut für Neuroinformatik, Ruhr-Universität Bochum, 44780 Bochum, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 April 2009
Available online 8 May 2009

Keywords:
Reinforcement learning
Evolution strategy
Covariance matrix adaptation
Partially observable Markov decision process
Direct policy search

Because of their convincing performance, there is a growing interest in using evolutionary
algorithms for reinforcement learning. We propose learning of neural network policies
by the covariance matrix adaptation evolution strategy (CMA-ES), a randomized variable-
metric search algorithm for continuous optimization. We argue that this approach,
which we refer to as CMA Neuroevolution Strategy (CMA-NeuroES), is ideally suited for
reinforcement learning, in particular because it is based on ranking policies (and therefore
robust against noise), efficiently detects correlations between parameters, and infers a
search direction from scalar reinforcement signals. We evaluate the CMA-NeuroES on
five different (Markovian and non-Markovian) variants of the common pole balancing
problem. The results are compared to those described in a recent study covering several
RL algorithms, and the CMA-NeuroES shows the overall best performance.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Neuroevolution denotes the application of evolutionary algorithms to the design and learning of neural networks [54,11].
Accordingly, the term Neuroevolution Strategies (NeuroESs) refers to evolution strategies applied to neural networks. Evolution
strategies are a major branch of evolutionary algorithms [35,40,8,2,7]. Although in principle applicable to general search and
optimization problems, most evolution strategies are tailored to real-valued optimization, and thus NeuroESs are usually
applied to adapt weights in neural networks.

There is a growing interest in using evolutionary algorithms for RL. “Although not often thought of in this way, genetic
algorithms are, in a sense, inherently a reinforcement technique” [51] and indeed evolutionary methods have been success-
fully applied to RL (see, e.g., [51,32,9,43]) and performed well in comparison with alternative approaches (see [50,14] for
recent studies). Still, evolutionary RL is often met with scepticism. The main argument is that a general purpose optimiza-
tion technique such as an evolutionary algorithm, even if slightly tailored to the learning problem, is not likely to compete
with highly specialized methods developed solely for the RL scenario. In this paper, we give strong empirical evidence and
summarize some arguments to dispel this concern.

The covariance matrix adaptation evolution strategy (CMA-ES, [19,18,46]) reflects the state-of-the-art in continuous evo-
lutionary optimization [7]. It is a variable-metric method efficiently adapting the metric of the search distribution according
to the structure of the search space. This and the rank-based selection makes the CMA-ES ideal for neuroevolution with
fixed network structures. The resulting algorithm, the CMA-NeuroES, was proposed for RL in [24] and has been applied
successfully in several studies [33,41,47,22,23,21].

In this article, we present the current version of the CMA-NeuroES. We apply the algorithm to the benchmark problems
described in [13,14,47] for a fair comparison of the CMA-ES to alternative RL approaches. In [13,14] various RL algorithms
are compared on different variants of the pole balancing control problem. The CMA-NeuroES performs well in that study

* Corresponding author.
E-mail addresses: Verena.Heidrich-Meisner@neuroinformatik.rub.de (V. Heidrich-Meisner), Christian.Igel@neuroinformatik.rub.de (C. Igel).
0196-6774/$ – see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgor.2009.04.002

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgor
mailto:Verena.Heidrich-Meisner@neuroinformatik.rub.de
mailto:Christian.Igel@neuroinformatik.rub.de
http://dx.doi.org/10.1016/j.jalgor.2009.04.002

V. Heidrich-Meisner, C. Igel / J. Algorithms 64 (2009) 152–168 153
even though the results for the CMA-NeuroES are taken from [24] where a by now outdated version of the CMA-ES was
employed. This may bias the comparison. Further, small differences in the benchmark specification could have influenced
the results.

In the following section, we present the CMA-ES and its application to neuroevolution. We briefly discuss the CMA-
NeuroES in the context of policy gradient methods. Section 3 is devoted to the experiments and their results. The article
ends with a discussion and conclusions.

2. Variable-metric NeuroES for reinforcement learning

In the standard reinforcement learning (RL) scenario, an agent interacts with its environment at discrete time steps t .
At each time step the environment is in a state st ∈ S . The agent perceives the environment to be in the observed state
O (st) ∈ Ω and takes an action at ∈ A according to its policy π : Ω → A (we assume deterministic policies throughout
this paper). After the execution of at , the environment makes a possibly stochastic transition to a state st+1 and emits a
possibly stochastic numerical reward rt+1 ∈ R. States, actions, transition dynamics, and expected rewards for each transition
constitute a Markov decision process (MDP). The objective of the agent is to adapt its policy such that some notion of
expected future reward is maximized. The observation of the agent is a possibly stochastic function of the previous state
and action. If the agent’s observation maps one-to-one to the current state of the environment the MDP is called fully
observable and partially observable otherwise.

Most RL algorithms search in the space of value functions that predict future rewards [44]. For example, in temporal-
difference learning a state–value function V : Ω → R or a state–action–value function Q : Ω × A → R for judging states or
state–action pairs, respectively, is learned. The policy π is then defined on top of this function. Actor-only algorithms are
an alternative RL approach. These methods, which include evolutionary methods [32] and some policy gradient methods
[45], search directly in the space of policies. In contrast to temporal difference learning, there is no need to learn to predict
future rewards.

When Ω or A is too large or generalization from experiences to new states and actions is desired, function approxima-
tors such as neural networks are used to model Q , V , or π . Here we consider direct search for neural network policies. In
the following, we outline the CMA-ES, an evolutionary algorithm for real-valued optimization we propose for neuroevolution
and RL. The description follows [46].

2.1. Covariance matrix adaptation evolution strategy

Evolution strategies are random search methods [8,7]. They iteratively sample a set of candidate solutions from a prob-
ability distribution over the search space (i.e., the space of policies), evaluate these potential solutions, and construct a
new probability distribution over the search space based on the gathered information. In evolution strategies, this search
distribution is parametrized by a set of candidate solutions, the parent population with size μ, and by parameters of the
variation operators that are used to create new candidate solutions (the offspring population with size λ) from the parent
population.

In the following, we present the covariance matrix adaptation evolution strategy (CMA-ES), a variable-metric algorithm
for real-valued optimization, and one of the most powerful evolutionary algorithms for continuous search spaces as shown
in a recent competition [4,16]. It can be regarded as “state-of-the-art in evolutionary optimization in real-valued R

n search
spaces” [7].

initialize m(1) = θ init , σ (1) , evolution paths p(1)
σ = p(1)

c = 0 and covariance matrix C (1) = I (unity matrix), k = 11
// k counts number of generations / policy updates:
repeat2

for l = 1, . . . , λ do x(k+1)

l = m(k) + σ (k)z(k)

l with z(k)

l ∼ N (0, C (k)) // create new offspring3

for l = 1, . . . , λ do fl ← performance(x(k+1)

l) // evaluate offspring4

m(k+1) ← ∑μ
i=1 wi x

(k+1)
i:λ // selection and recombination5

// step size control:

p(k+1)
σ ← (1 − cσ)p(k)

σ + √
cσ (2 − cσ)μeffC (k)− 1

2 m(k+1)−m(k)

σ (k)6

σ (k+1) ← σ (k) exp
(cσ

dσ

[‖p(k+1)
σ ‖
χ̂n

− 1
])

7
// covariance matrix update:

p(k+1)
c ← (1 − cc)p(k)

c + √
cc(2 − cc)μeff

m(k+1)−m(k)

σ (k)8

C (k+1) ← (1 − ccov)C (k) + ccov
μcov

p(k+1)
c p(k+1)

c
T + ccov

(
1 − 1

μcov

)∑μ
i=1 wi z(k)

i:λ z(k)
i:λ

T
9

k ← k + 110
until some stopping criterion is met11

Algorithm 1. rank-μ CMA-ES.

154 V. Heidrich-Meisner, C. Igel / J. Algorithms 64 (2009) 152–168
In each iteration k of the CMA-ES, which is shown in Algorithm 1, the lth offspring x(k+1)

l ∈ R
n (l ∈ {1, . . . , λ}) is generated

by multi-variate Gaussian mutation and weighted global intermediate recombination:

x(k+1)

l = m(k)︸︷︷︸
recombination

+σ (k)z(k)

l︸ ︷︷ ︸
mutation

.

Here z(k)

l ∼ N (0, C (k)) is the realization of a normally distributed random vector with zero mean and covariance matrix C (k)

and

m(k) =
μ∑

l=1

wlx
(k)

l:λ ,

where x(k)

l:λ denotes the lth best individual among x(k)
1 , . . . , x(k)

λ . This corresponds to rank-based selection, in which the best μ
of the λ offspring form the next parent population. A common choice for the recombination weights is wl ∝ ln(μ+1)− ln(l),
‖w‖1 = 1. The quality of the individuals is determined by the function performance(x) (see line 5), which corresponds
to the evaluation of the policy (controller) with parameters x.

The CMA-ES is a variable-metric algorithm adapting both the n-dimensional covariance matrix C (k) of the normal muta-
tion distribution as well as the global step size σ (k) ∈ R

+ . The covariance matrix update has two parts, the rank-1 update
considering the change of the population mean over time and the rank-μ update considering the successful variations in
the last generation. The rank-1 update is based on a low-pass filtered evolution path p(k) of successful (i.e., selected) steps

p(k+1)
c ← (1 − cc)p(k)

c + √
cc(2 − cc)μeff

m(k+1) − m(k)

σ (k)

and aims at changing C (k) to make steps in the promising direction p(k+1) more likely by morphing the covariance towards
[p(k+1)

c][p(k+1)
c]T. The evolution path represents a memory of a successful search direction and thus contains information

additional to the current distribution mean. The backward time horizon of the cumulation process is approximately c−1
c ,

where cc = 4/(n + 4) is roughly inversely linear in the dimension of the path vector. The variance effective selection mass

μeff =
(

μ∑
t=1

w2
i

)−1

is a normalization constant. The factor
√

μeff compensates for the loss of variance due to weighted averaging of random
variables during recombination. The rank-μ update aims at making the single steps that were selected in the last iteration
more likely by morphing C (k) towards [z(k)

i:λ][z(k)
i:λ]T. The complete update now reads

C (k+1) = (1 − ccov)C (k) + ccov

(
1

μcov
p(k+1)

c p(k+1)
c

T︸ ︷︷ ︸
rank-1 update

+
(

1 − 1

μcov

) μ∑
i=1

wi z
(k)
i:λ z(k)

i:λ
T

︸ ︷︷ ︸
rank-μ update

)
.

The constants ccov = 2
(n+√

2)2 and μcov = μeff are fixed learning rates. The learning rate ccov of the covariance matrix up-

date is roughly inversely proportional to the degrees of freedom of the covariance matrix. The parameter μcov mediates
between the rank-μ update (μcov → ∞) and the rank-one update (μcov = 1). The global step size σ (k) is adapted on a
faster timescale. It is increased if the selected steps are larger and/or more correlated than expected and decreased if they
are smaller and/or more anticorrelated than expected:

σ (k+1) ← σ (k) exp

(
cσ

dσ

[‖p(k+1)
σ ‖
χ̂n

− 1

])
,

where χ̂n denotes the expectation of the χn distribution, and the conjugate evolution path is

p(k+1)
σ ← (1 − cσ)p(k)

σ + √
cσ (2 − cσ)μeffC

(k)− 1
2 m(k+1) − m(k)

σ (k)
.

The learning rate is set to cσ = μeff+2
n+μeff+3 and dσ = 1 + 2 max

(
0,

√
μeff−1

n+1

) + cσ is a damping factor. The matrix C− 1
2 is

defined as B D−1 BT, where B D2 BT is an eigendecomposition of C (B is an orthogonal matrix with the eigenvectors of C
and D = diag(λ1, . . . , λn) a diagonal matrix with the corresponding eigenvalues) and sampling N (0, C) is done by sampling
B D N (0, I).

Sometimes it is advisable to have a lower bound on the step size. To prevent that the search distribution degenerates in
one dimension, this bound should be on σ (k+1)λ

(k+1)
n , where λ

(k+1)
n denotes the smallest eigenvalue of C (k+1) . If σ (k+1)λ

(k+1)
n

falls below a given threshold σmin, we simply set σ (k+1) ← σmin/λ
(k+1)
n .

V. Heidrich-Meisner, C. Igel / J. Algorithms 64 (2009) 152–168 155
The values of the learning rates and the damping factor are well considered. Their asymptotic behaviors reflect the
natural scaling of the adapted entities dependent on the problem dimension, and their exact forms have been derived
and validated by experiments on many basic test functions [18]. They need not be adjusted dependent on the problem and
should therefore not be regarded as hyperparameters of the algorithm. For a more detailed discussion of the learning rates and
the damping factor we refer to [19,18,17,46]. Also the population sizes can be set to default values by using the rules
λ = max(4 + �3 ln n�,5) and μ = � λ

2 � for offspring and parent population, respectively [18]. If we fix C (1) = I and σmin = 0,
the only problem dependent hyperparameter to be chosen is the initial global step size σinit = σ (1) .

The highly efficient use of information and the fast adaptation of σ and C make the CMA-ES to be one of the best
direct search algorithms for real-valued optimization [7]. For a detailed description of the CMA-ES we refer to the articles
by Hansen et al. [19,18,17,46], for a recent performance assessment to [4,16], and for theoretical analyses of evolution
strategies to [6,3,27].

2.2. CMA-ES and neuroevolution

The good results in real-valued optimization suggest to employ the CMA-ES for adapting the weights of neural networks.
In supervised learning, gradient-based optimization of neural network weights usually turns out to be faster than evolu-
tionary optimization (see [42,26,29] for applications of the CMA-ES for supervised neural network learning), although it
might be more prone to getting stuck in undesired local minima. In RL, however, evolutionary algorithms have proven to be
powerful and competitive approaches (e.g., [32,50,14,11,22,23,21]).

The CMA-ES has been proposed for RL in [24]. In this approach, a parametrized class of policies is chosen a priori. The in-
dividuals in the evolution strategy encode policy parameters x accordingly, and the performance function performance(x)
(i.e., the fitness function) in Algorithm 1 evaluates the corresponding policy. In the simplest case, this evaluation is just the
return (i.e., the potentially weighted sum of rewards over time) at the end of an episode or some statistics of the returns
collected from several roll-outs or episodes. That is, our algorithm has been designed for episodic RL, which means that the
interaction between agent and environment “naturally breaks down into a sequence of separate episodes” [44]. Within an
episode, intermediate reward signals are not exploited in the canonical form of our method.

If the class of policies are neural networks, we refer to our approach as CMA Neuroevolution Strategy (CMA-NeuroES). In
a more recent study, the CMA-NeuroES (without rank-μ update) was compared to 8–12 (depending on the task) other RL al-
gorithms including neuroevolution as well as value-function and policy gradient approaches [13]. On the four test problems
where the NeuroCMA-ES was considered, it ranked first, second (twice), and third. Further examples of successful applica-
tions of the CMA-ES for RL can be found in [33,41] and additional comparisons on RL benchmarks have been conducted by
the authors in [22,23,21] using linear policies.

When using a neural network for representing directly the policy of an agent (e.g., a control strategy), the network
weights parametrize the space of policies the network can realize. This parametrization is usually complex, there are strong
correlations and thus the optimization problem is far from being separable. Hence, the ability of an optimization algorithm
to detect dependencies between network parameters seems to be crucial for its performance in this case, and using a
variable-metric algorithm such as the CMA-ES is likely to pay off. The CMA-ES efficiently adapts the covariance matrix
of the mutation distribution and thereby accounts for correlations between parameters. By doing so, the CMA-ES infers
a promising search direction from the scalar reinforcement signals. It is often argued that RL problems are so difficult to
solve because the reinforcement signals do not provide a direction for adaptation – in contrast to a gradient in supervised
learning. The evolution path in the CMA-ES can be viewed as a means to learn such a direction. This is a decisive difference
of the CMA-ES compared to other direct search methods such as canonical genetic algorithms.

2.3. NeuroES and policy gradient methods

It is interesting to compare the CMA-NeuroES to policy gradient methods (PGMs), see [22,23,21]. Both search directly in a
space of policies with a fixed parametrization, but the CMA-NeuroES is an actor-only method while PGMs often have actor-
critic architectures, that is, they maintain an explicit representation of value functions. In contrast to the NeuroES, PGMs
require a differentiable structure on the search space and stochastic policies for learning. Exploration of the search space
is realized by random perturbations in both methods. The CMA-NeuroES perturbs a deterministic policy by mutation and
recombination, while in PGMs the random variations are an inherent property of stochastic policies. In the CMA-NeuroES
there is only one initial stochastic variation per generation. In contrast, the stochastic policy introduces perturbations in
every time step of every episode. While the number n of parameters of the policy determines the n-dimensional random
variation in evolution strategies, in PGMs the usually lower dimensionality of the action corresponds to the dimensionality of
the random perturbations. The adaptation of the global step size and the covariance matrix in the CMA-NeuroES resembles
learning the (Fisher) metric in natural PGMs [28,36,34].

We think that a decisive difference between the CMA-NeuroES and PGMs is that the evolution strategy is based on
ranking policies and not on the absolute values of performance estimates or even their gradients. We hypothesize that this
makes the CMA-NeuroES more robust. This claim is supported by our experiments using linear policies [22,23,21].

In more biological terms (e.g., see [10]), the CMA-NeuroES implements trial-and-error learning based on extrinsic dy-
namic perturbations of synaptic weights, where the mutations correspond to extrinsic perturbations [20]. In contrast, most

156 V. Heidrich-Meisner, C. Igel / J. Algorithms 64 (2009) 152–168
Fig. 1. Illustration of the pole balancing task with two poles.

PGMs can be viewed as trial-and-error learning relying on intrinsic perturbations – intrinsic, because the exploration is an
inherent property of the stochastic policies – on the level on activities of action encoding neurons.

3. Experimental evaluation on pole balancing problems

In the following, we empirically evaluate the CMA-NeuroES on five instances of the common pole balancing benchmark.
First, we describe the RL problems. Then we discuss the details of the CMA-NeuroES, in particular the neural network
architectures and hyperparameter settings. After that we will present the main results of our experiments.

3.1. Pole balancing problems

Pole balancing problems, which are also known as inverted pendulum, pole–cart, broom balancer, or stick balancer
problems, are standard benchmark tasks for the design of controllers for unstable systems. They have been used as example
problems since the early work on machine intelligence [30], RL [5], and neuroevolution [52,51] as well as in most recent
studies on comparing different approaches to RL [14].

The task is to balance one or several poles hinged on a wheeled cart, which can move on a finite length track, by
exerting forces either left or right on the cart. The movements of the cart and the poles are constrained within the vertical
plane. Control of carts with more than one pole becomes possible when the poles have different lengths. Fig. 1 illustrates
the task, and the corresponding equations of motion, which we solve by a fourth-order Runge–Kutta method, are given in
Appendix A. The problem of designing a controller for the cart can be viewed as an RL task, where the actions are the
applied forces and the perceived state corresponds to the information about the system provided to the controller.

In this article, we consider five different pole balancing scenarios. First, the simple single pole task, where only one pole
is hinged to the cart and the controller gets as inputs the offset x of the cart from the middle of the track, the velocity ẋ
of the cart, the angle θ1 of the pole, and the angular velocity θ̇1. Second, the more difficult double pole task with two poles
and two additional inputs, namely the angle θ2 and the angular velocity θ̇2 of the second pole. Both tasks are Markovian in
the sense that the controller perceives the complete information to predict the system (i.e., the complete real system state).
The remaining scenarios are only partially observable and lack the Markov property. In the single pole without velocities and
double pole without velocities tasks again one or two poles have to be balanced, but this time without velocity information.
That is, the input to the controllers is just (x, θ1) and (x, θ1, θ2), respectively. For the most difficult task, balancing two poles
without velocity information, additionally an alternative performance function is considered. We refer to this fifth scenario
as modified double pole without velocities. Special care has been taken to make our experiments directly comparable to the
results obtained in the comprehensive study by Gomez, Schmidhuber, and Miikkulainen [14]. In the following, we provide
some details about the problem settings.

In all simulations, each discrete time step corresponds to 0.02 s. The length of the second, shorter pole is l2 = 0.1l1. The
initial state of the first, longer pole is always ζ1 = 0.07 rad, the shorter pole starts from ζ2 = 0 rad. In all five scenarios
a trial is considered to be successful if a controller can balance the pole for 105 time steps. If the cart leaves the track
(i.e., x /∈ [−2.4,2.4]) or a pole becomes too unstable (θ1, θ2 /∈ [−0.2 rad,0.2 rad] in case of the single pole and θ1, θ2 /∈
[−0.63 rad,0.63 rad] in case of the double pole tasks) a balancing attempt is regarded as a failure.

In the first four scenarios, the performance – the reinforcement signal – is the number of steps the controller manages
to balance the pole(s). In the modified double pole without velocities task, which was introduced by [15] and is also used in
[12,43,14], the performance function is the weighted sum of two components 0.1 f1 + 0.9 f2 defined over 1000 time steps
given by

f1 = t/1000,

f2 =
{

0 if t < 100,
0.75∑t

t′=t−99(|x|+|ẋ|+|θ̇1|+|θ̇2|) otherwise.

Here t denotes the number of steps the controller is able to balance the poles starting from the same initial state as for the
standard fitness function. The first addend rewards successful balancing. The component f2 penalizes oscillations. The idea
behind this second term is to prohibit the control strategy from balancing the poles by just moving the cart quickly back
and forth from the set of solutions (see [15,12,43,14]).

V. Heidrich-Meisner, C. Igel / J. Algorithms 64 (2009) 152–168 157
Fig. 2. Structure of the feedforward neural networks for
the single pole with velocities task with 4 input neurons,
2 hidden neurons, and one output neuron with optional
bias and shortcut connections.

Fig. 3. Structure of the recurrent neural networks for the double pole without
velocities task with 3 input neurons, 2 hidden neurons, and one output neu-
ron with optional bias. The output neuron does not differ functionally from
the hidden neurons except that its activity is regarded as the control signal.

3.2. Setup of the CMA-NeuroES

Given a learning problem, the CMA-ES has basically only one hyperparameter that may need some tuning, namely the
initial global step size σinit. However, the performance of the CMA-NeuroES depends on the a priori fixed family of policies,
that is, on the neural network structure. In this study, we therefore test many different architectures in order to investigate
this dependency.

For the Markovian tasks, standard feedforward networks with a single hidden layer with and without shortcut con-
nections are used. We try architectures with and without bias (threshold) parameters. As the pole balancing problem has
inherent symmetries it is reasonable not to use a bias parameter [24].

Recurrent neural networks are used in the partially observable balancing problems without velocity information. Recur-
rent neural networks store history information which can be fused with the actual input signals to represent belief states on
which the policy can be defined. We use a simple family of architectures as proposed in [24]. Let xi(t) for 0 < i � ninputs
be the activation at time step t of the ninputs input units of a network with nneurons neurons (including input, hidden, and
output units). The activation of the other neurons is given by

xi(t) = f

(ninputs∑
j=1

wij x j(t) +
nneurons∑

j=ninputs+1

wij x j(t − 1)

)

for ninputs < i � nneurons, where the parameters wij are the weights and f (a) = a/(|a| + 1) is a sigmoidal transfer function.
The network structures we use are illustrated in Figs. 2 and 3. All neural networks have a single output neuron and the

input signals provided to the networks are appropriately scaled. The number of parameters of each network depends on
the structure (feedforward or recurrent), on the number of input neurons (here 4 and 6 for the fully observable single and
double pole and 2 and 3 for the partially observable cases, respectively), the number of output neurons (here always one
output neuron), the number of hidden neurons (here set to either 1, 2, 4, or 8) and whether bias and shortcuts are used.
Table 1 summarizes the resulting degrees of freedom for different network architectures used in our experiments.

We also want to study the influence of the global step size parameter σinit controlling the initial exploration. In the
Markovian tasks, we therefore vary σinit ∈ {0.1,1,10,50}. As generally the weights of recurrent neural networks are more
“sensitive” to changes compared to feedforward architectures, we just consider σinit ∈ {0.1,1} in the non-Markovian tasks.

Table 1
Number of weights (degrees of freedom, DOF) for i input neurons, h hidden neurons, and a single output neuron for feedforward neural networks (FFNNs)
and recurrent neural networks (RNNs).

shortcuts (s) bias (b) DOF

FFNN no no h(i + 1)

FFNN yes no h(i + 1) + i
FFNN no yes h(i + 1) + (h + 1)

FFNN yes yes h(i + 1) + i + (h + 1)

RNN – no (h + 1)2 + (h + 1)i
RNN – yes (h + 1)2 + (h + 1)i + (h + 1)

158 V. Heidrich-Meisner, C. Igel / J. Algorithms 64 (2009) 152–168
Table 2
Summary of tested parameter configurations for the CMA-NeuroES in all experiments. The parameters in parentheses are only tested for feedforward
networks.

Parameter Values

number of hidden neurons h 1, 2, 4, 8
initial global step size σinit 0.1, 1 (10, 25, 50)
bias active b yes, no
shortcuts active s yes, no
lower bound on global step size σmin 0, 1

2 σinit

We additionally consider a lower bound on the global step size σmin = 1
2 σinit as suggested for the CMA-NeuroES and recur-

rent networks in [24]. Table 2 summarizes all configurations.
The experiments can be reproduced using the CMA-ES implementation in the Shark machine learning library [25].

3.3. Previous work

We give a brief overview of other RL methods that have been applied to inverted pendulum problems. These methods
will serve as a reference for the performance evaluation of the CMA-NeuroES. In the literature there are often small dif-
ferences regarding the formulation of the task. For example, sometimes the control signal is continuous between −10 N
and 10 N and sometimes only two actions, the full forces −10 N and 10 N, are possible. Often the search spaces (e.g., the
possible NN architectures) differ, see also the comparison by Gomez, Schmidhuber, and Miikkulainen [14].

We took the results of other RL algorithm from the literature and consider the same studies as in the extensive compar-
ison by Gomez et al. [14]. In the following, we briefly list the alternative RL strategies. We refer to the original publications
and the overview in [14] for details.

Random weight guessing (RWG) repeatedly draws all weights of the neural network randomly from fixed, a priori fixed
intervals, evaluates the corresponding policy, and keeps the best policy found so far [39]. This simple strategy provides a
baseline for comparison.

Policy gradient methods [45] are considered, namely Policy Gradient RL (PGRL) and Recurrent Policy Gradients (RPG) [53].
We consider Q-learning [49] with feedforward NN function approximator, referred to as Q-Learning with MLP (Q-MLP).
SARSA(λ) with CMAC (SARSA-CMAC) is an on-policy temporal difference method using eligibility traces. In [37] a CMAC

(Cerebellar Model Articulation Controller [1]) neural network is used as function approximator to map the continuous state–
action space to a discrete space.

We consider several neuroevolution methods. Conventional Neuroevolution (CNE) refers to an early approach using a ge-
netic algorithm [52], Cellular Encoding (CE) to the genetic programming approach in [15], Evolutionary Programming (EP) to
the work in [38], Symbiotic Adaptive Neuro-Evolution (SANE) to [31], Enforced Sub-Population (ESP) to [12], NeuroEvolution of
Augmenting Topologies (NEAT) to [43], and finally Cooperative Synapse Neuroevolution (CoSyNE) to the approach favored in [14].

It is important to note that CNE, EP, ESP, CoSyNE, and CMA-NeuroES as well as the non-evolutionary approaches operate
on a priori fixed neural network structures. In contrast, CE, SANE, and NEAT evolve the neural network structure and the
weights simultaneously. In all neuroevolution methods (1) no discretization of the state spaces is used (as opposed, e.g., to
the solutions of pole balancing problems in the seminal papers [30] and [5]), and (2) the function approximators considered
here are non-linear in the parameters.

4. Results

For each scenario in Table 2, 50 independent trials were conducted. If after 105 evaluations no successful control strategy
was found, a trial was regarded as a failure. In such a case, the number of evaluations was set to 105 when computing the
average number of pole balancing attempts.

We compare the CMA-NeuroES performance with results from the literature taken from the study by Gomez et al. [14].
To this end, we considered different hyperparameter settings. In the following, we first present the results achieved by the
best CMA-NeuroES setting. All results can be found in the appendix showing the robustness of our approach. We want to
stress that the results reported in [14] have also been obtained with different hyperparameter settings (for CoSyNE just two
settings have been used depending on the Markov property, see Section 4.5).

4.1. Fully observable tasks

In the single pole with velocities scenario, on average 91 balancing attempts were sufficient to find a control strategy for a
network with 2 hidden neurons, shortcuts, and no bias. Thus, the CMA-NeuroES outperformed the previously best method
CoSyNE, see Table 3. The complete results for the Markovian single pole balancing are given in Table B.1.

On the double pole with velocities the best results, 585 evaluations on average, were achieved with networks having 2
hidden neurons and no bias. This is almost two times better than the best result so far, see Table 4. The complete results
for the Markovian double pole balancing are given in Table B.2.

V. Heidrich-Meisner, C. Igel / J. Algorithms 64 (2009) 152–168 159
Table 3
Comparison of various learning methods on the Markovian single pole balancing problem with continuous control. Results for all methods except CMA-
NeuroES are taken from [14] and are averages over 50 independent runs. The RPG results are in parentheses because they refer to experiments in which
the goal was to balance the poles just for 104 steps.

Method Evaluations

PGRL 28,779
Q-MLP 2056
SARSA-CMAC 540
RPG (863)

CNE 352
SANE 302
NEAT 743
ESP 289
RWG 199
CoSyNE 98
CMA-NeuroES 91

Table 4
Two poles with complete state information. The EP results are taken from [38].

Method Evaluations

RWG 474,329
EP 307,200
CNE 22,100
SANE 12,600
Q-MLP 10,582
RPG (4981)

NEAT 3600
ESP 3800
CoSyNE 954
CMA-NeuroES 585

Table 5
One pole with incomplete state information.

Method Evaluations

SARSA-CMAC 13,562
Q-MLP 11,331
RWG 8557
RPG (1893)

NEAT 1523
SANE 1212
CNE 724
ESP 589
CMA-NeuroES 192
CoSyNE 127

Tables 3 and 4 show that the CMA-NeuroES outperformed all other approaches on the fully observable single pole and
double pole problems.

If no bias neuron was used (see Section 4.4), the evolution strategy was quite robust against the choice of the initial
global step size σinit on both the single and double pole balancing task, as long as it was not too small (σinit < 1), and the
number of hidden neurons h was not too large (h < 8).

4.2. Partially observable tasks

The complete results for the single pole without velocities task are given in Table B.3 and a comparison with other methods
in Table 5. The best result, 192 steps on average, was achieved for one hidden neuron without bias, initial global step size
σinit = 50 and with a lower bound on the global step size.

This is the only scenario considered in this study where CoSyNE outperformed the best CMA-NeuroES, which was how-
ever still about three times faster than the next best method.

The complete results for the two non-Markovian double pole balancing tasks are given in Tables B.4 and B.5. The best
results (successfully balancing the poles after on average 1141 evaluations for the damping and 860 for the standard perfor-
mance function) were achieved for networks without bias, a lower bound on the global step size and 1 hidden neuron for
both the damping and standard performance function. The optimal initial global step size was with σinit = 0.1 in both cases
smaller than in the fully observable experiments.

160 V. Heidrich-Meisner, C. Igel / J. Algorithms 64 (2009) 152–168
Table 6
Two poles with incomplete state information. The table shows the number of evaluations, using the standard performance function and using the damping
performance function, respectively.

Method Evaluations standard Evaluations damping

RWG 415,209 1,232,296
CE – (840,000)

SANE 262,700 451,612
CNE 76,906 87,623
ESP 7374 26,342
NEAT – 6929
RPG (5649) –
CoSyNE 1249 3416
CMA-NeuroES 860 1141

Table 7
The effect of bias neurons in pole balancing tasks. The respective best results with and without bias are given.

Task w/o bias

Evaluations

mean value median 25th percentile 75th percentile

single pole with velocities 91 98 53 120
double pole with velocities 585 491 376 736

single pole w/o velocities 192 179 130 255
double pole w/o velocities 860 735 563 1038
modified double pole w/o velocities 1141 750 530 1168

Task with bias

Evaluations

mean value median 25th percentile 75th percentile

single pole with velocities 167 129 92 221
double pole with velocities 1090 864 673 1272

single pole w/o velocities 3599 2018 1560 5256
double pole w/o velocities 2978 2794 2382 3278
modified double pole w/o velocities 3432 3091 2393 3971

As in the fully observable experiments a small number of hidden neurons was more beneficial. The comparison with
other methods is shown in Table 6. Here the CMA-NeuroES again outperformed all other algorithms.

4.3. Ensuring ongoing exploration

As can be seen in Tables B.1, B.3, B.2, B.4 and B.5, a lower bound σmin = 1
2 σinit on the global step always improved the

performance especially for difficult tasks.

4.4. Influence of network structure

It is striking that the architectures without bias parameters clearly outperformed those with bias parameters and the
same number of hidden neurons, see Table 7. This was not a mere consequence of the increase in the degrees of freedom
when adding thresholds, because larger neural networks without bias gave better results than smaller ones with bias, see
Tables B.1 and B.2.

4.5. Most successful configurations

Table 8 gives a summary of the most successful configurations across all tasks. The five scenarios inevitably require
different network architectures, because of the different number of inputs and the need for recurrent connections in the
non-Markovian tasks. However, the question arises whether a unique hyperparameter setting can be found for the CMA-
NeuroES performing well in comparison to the other methods with tuned hyperparameters.

Reasonably good results (ranking at least second compared to the other methods) were achieved for the following con-
figuration in all experiments, see Table 9: 1 hidden neuron, no bias, σinit = 1, σmin = 0.5 and shortcuts connections for the
feedforward networks in the fully observable scenarios.

If we differentiate between the CMA-NeuroES applied to feedforward and recurrent network topologies, as done for
CoSyNE in [14], two different “general” settings can be identified as shown in Table 9. Using just these two settings would

V. Heidrich-Meisner, C. Igel / J. Algorithms 64 (2009) 152–168 161
Table 8
Best CMA-NeuroES hyperparameter configurations for the different pole balancing problems.

Task h s b σinit σmin Evaluations

single pole with velocities 2 yes no 50 0 91
double pole with velocities 2 yes no 10 5 585

single pole w/o velocities 1 – no 1 0.5 192
double pole w/o velocities 1 – no 1 0.5 860
modified double pole w/o velocities 1 – no 1 0.5 1141

Table 9
Best CMA-NeuroES hyperparameter configurations for all five tasks as well as for feedforward and recurrent network architectures, respectively.

Best overall configuration: h = 1, s : yes, b : no, σinit = 1, σmin = 0.5

Task Evaluations

mean value median 25th percentile 75th percentile

single pole with velocities 190 148 112 204
double pole with velocities 1185 525 381 898

single pole w/o velocities 192 179 130 255
double pole w/o velocities 860 735 563 1038
modified double pole w/o velocities 1141 750 530 1168

Best configuration for both fully observable problems: h = 2, s : yes, b : no, σinit = 10, σmin = 5

Task Evaluations

mean value median 25th percentile 75th percentile

single pole with velocities 98 94 53 120
double pole with velocities 585 491 376 736

Best configuration for all partially observable experiments: h = 1, b : no, σinit = 1, σmin = 0.5

Task Evaluations

mean value median 25th percentile 75th percentile

single pole w/o velocities 192 179 130 255
double pole w/o velocities 860 735 563 1038
modified double pole w/o velocities 1141 750 530 1168

not change the ranking of the CMA-NeuroES in our comparison, except for the single pole with velocities task, where
CoSyNE and CMA-NeuroES now perform equally well.

5. Discussion

5.1. Performance of the CMA-NeuroES

Using standard neural network architectures and the CMA evolution strategy for adapting the weights led to better
results for solving pole balancing reinforcement learning tasks than reported so far, only in the non-Markovian single pole
balancing scenario the CMA-NeuroES ranked second after CoSyNE.

All algorithms considered in the comparison depend on hyperparameters, which have been chosen depending on the
task, and we reported the best results given in the original publications. While the CMA-ES has basically one crucial hy-
perparameter, the initial global set size, in the CMA-NeuroES we additionally have to choose the neural network topology.
However, our experiments show that the choice of the hyperparameters of the CMA-NeuroES depends only weakly on the
particular instance of the pole balancing benchmark. Only few hidden neurons are needed to solve the inverted pendulum
tasks (actually, for the Markovian tasks no hidden neurons are needed at all [22]). In both fully observable problems 2 hid-
den neurons gave the best results. For the partially observable balancing problems, a single hidden neuron appears to be the
overall preferable choice. Since the output neuron in our recurrent networks does not differ from the hidden neurons except
that it is externally observed, this is analogous to the 2 hidden neurons needed in the fully observable experiments. Thus,
the preferable structure is similar in all setups. The optimal initial global step size differs between the fully and partially
observable tasks. This is a direct consequence of the different properties of feedforward and recurrent neural networks. For
the fully observable case the CMA-NeuroES is very robust w.r.t. different choices of σinit. For the partially observable cases
the step size needs to be small since recurrent neural networks are more sensitive to changes in their weights.

Network architectures without bias parameters turned out to be better suited for pole balancing than those with bias
parameters and the same number of hidden neurons. This is not simply due to the increase of the degrees of freedom, but

162 V. Heidrich-Meisner, C. Igel / J. Algorithms 64 (2009) 152–168
the reason for these differences in performance is the inherent symmetry of the inverted pendulum tasks, which is broken
by bias terms.

The Markovian single pole task can be easily solved by random weight guessing. Choosing a large initial global step size
in the CMA-NeuroES mimics this. In this case the search is mainly driven by exploration which is – as the CMA-NeuroES
nevertheless finds a successful solution in a small number of evaluations – sufficient to solve this simple task.

Further, fine tuning of the weights seems to be not very important – this may be typical for many RL tasks (e.g.,
compared to standard regression problems) – and therefore a lower bound on the variance of the mutation distribution of
the CMA-NeuroES appears to have no negative effect. Quite the contrary, in almost all scenarios, in particular when ongoing
exploration is needed in the absence of selection pressure, bounding the variance improves the results considerably. This
indicates that the learning problems have many undesired local optima.

5.2. CMA-NeuroES and structure optimization

Our experiments show that sophisticated neuroevolution algorithms are not necessary for learning good control strate-
gies for pole balancing. Still, the network structure indeed matters, which becomes obvious from the differences between
structures with and without bias parameters and between architectures with different numbers of hidden neurons.

Recently, Togelius et al. [47,48] pointed out that additional meaningless input variables (especially noise) seriously impair
the behavior of the CMA-NeuroES (and other methods that do not specifically identify meaningful features). Hence, indeed
methods are required that evolve both the structure and the weights of neural networks for reinforcement tasks. However,
the standard CMA-NeuroES – as a policy gradient method – is limited to a fixed number of object parameters. Of course,
the CMA-ES can be used in a nested neuroevolution algorithm, in which the network structure is evolved in an outer loop
and the CMA-ES optimizes the weights in an inner loop as in [24]. This approach is implemented in [41,47,48].

5.3. Pole balancing problems

Pole balancing or inverted pendulum problems are the Drosophila of neurocontrol and RL. For this reason, they are well
suited for comparing the CMA-NeuroES with other RL methods, because inverted pendulum results are widely available in
the literature. Pole balancing is straight-forward to implement (and free implementations are available) and the problem
difficulty can be easily tuned by adding poles, changing the lengths of poles, varying the starting conditions, making the
environment partially observable, etc.

Of course, concentrating on variants of pole balancing – as done here and in other studies – for comparing algorithms
introduces a strong bias. For example, because the intermediate reward signal during a balancing attempt contains no mean-
ingful information, the task does not favor approaches with online learning. Further, our experiments show that evolving
the neural network structure does not really pay off when solving pole balancing tasks. Having none or few hidden neurons
(and no bias) is already a good solution. In this sense, the pole balancing problems are too simple. This holds especially
for Markovian single pole balancing, where random weight guessing gives competitive results and, as argued above, the
NeuroCMA-ES performs best with large initial step sizes. The field of RL must definitely move to more ambitious bench-
marks and evaluating the CMA-NeuroES on these will be part of our future work.

However, we are confident that our positive evaluation of the CMA-NeuroES is not limited to the family of pole balancing
problems. The CMA-NeuroES has already proven to work well on other (toy) benchmark problems from the RL literature
[23] and in applications [33,41].

6. Conclusions

We presented and discussed the most recent version of the covariance matrix evolution strategy (CMA-ES) applied to
learning the weights of neural networks for reinforcement learning (RL), an approach we termed CMA-NeuroES. The algo-
rithm has many appealing properties, in particular the CMA-NeuroES

(1) allows for direct search in policy space and is not restricted to optimizing the policy “indirectly” by adapting state–value
or state–action–value functions,

(2) is straightforward to apply and comparatively robust with respect to the tuning of meta-parameters (e.g., we found
choosing the right learning rates etc. for temporal-difference learning and policy gradient methods much harder than
adjusting the CMA-ES [22,23,21]),

(3) is based on ranking policies, which is less susceptible to noise (which arises in RL for several reasons, e.g., because of
random rewards and transitions, random initialization, and noisy state observations) compared to estimating a value
function or a gradient of a performance measure w.r.t. policy parameters [23],

(4) is a variable-metric algorithm learning an appropriate metric (by means of adapting the covariance matrix and thereby
considering correlations between parameters) for searching for better policies,

(5) can be applied if the function approximators are non-differentiable, whereas many other methods require a differen-
tiable structure for gradient-based optimization steps, and

(6) extracts similarly to policy gradient methods a search direction from the scalar reward signals.

V. Heidrich-Meisner, C. Igel / J. Algorithms 64 (2009) 152–168 163
We evaluated the CMA-NeuroES on five different variants of the common pole balancing problem. The results were com-
pared to those described in a recent study that looks at several RL algorithms. In all scenarios, the CMA-ES gave the best
results, except for one scenario, where it ranked second.

Because of the conceptual reasons listed above and our empirical findings in this and other studies [33,22,23,21], the
CMA-NeuroES is our algorithm of choice for episodic RL tasks if episodes are short and/or intermediate reward signals
cannot be exploited.

Acknowledgments

The authors thank Marc Höner for help with the experiments, Faustino Gomez for making his implementation of the pole
balancing tasks available and acknowledge support from the German Federal Ministry of Education and Research within the
Bernstein group “The grounding of higher brain function in dynamic neural fields”.

Appendix A. Equations of motion

A system with N poles is governed by

ẍ = F − μc sgn(ẋ) + ∑N
i=1 F̃ i

mc + ∑N
i=1 m̃i

,

θ̈i = − 3

4l̃i

(
ẍ cos θi + g sin θi + μi θ̇i

mil̃i

)
,

F̃ i = mil̃i θ̇
2
i sin θi + 3

4
mi cos θi

(
μi θ̇i

mil̃i

+ g sin θi

)
,

m̃i = mi

(
1 − 3

4
cos2 θi

)
for i = 1, . . . , N , see [52]. Here, x is the distance of the cart from the center of the track, F is the force applied to the cart,
and g = 9.8 m/sec2 is the acceleration due to gravity. The mass and the coefficient of friction of the cart are denoted by mc
and μc, respectively. The variables mi , l̃i , li , θi , and μi stand for the mass, the half of the length, the length, the angle from
the vertical, and the coefficient of friction of the ith pole, respectively. The effective force from pole i on the cart is given
by F̃ i and its effective mass by m̃i . The sign function sgn “inherits” the unit of measurement of its argument.

In our benchmark experiments, we use the most common choices for the parameters of the systems and the most
frequently used numerical solution method. In all experiments, mc = 1 kg, m1 = 0.1 kg, l̃1 = 0.5l1, l1 = 1 m, and the width of
the track is 4.8 m. In the double pole experiments, l̃2 = 0.1l̃1, m2 = 0.1m1. The coefficients of friction are μc = 5 ·10−4 Ns/m
and μ1 = μ2 = 2 · 10−6 Nms. The dynamical system is numerically solved using fourth-order Runge–Kutta integration with
step size τ = 0.01 s.

Appendix B. Detailed results

Table B.1
Average number of episodes required to find a successful control strategy for the fully observable single pole for all hyperparameter configurations.

h s b σinit σmin Evaluations h s b σinit σmin Evaluations

1 no no 0.1 0 10,000.00 1 no no 0.1 0.05 10,000.00
1 yes no 0.1 0 4828.38 1 yes no 0.1 0.05 915.08
1 no yes 0.1 0 9640.94 1 no yes 0.1 0.05 1854.78
1 yes yes 0.1 0 5845.08 1 yes yes 0.1 0.05 1302.62

1 no no 1 0 10,000.00 1 no no 1 0.5 10,000.00
1 yes no 1 0 375.08 1 yes no 1 0.5 189.10
1 no yes 1 0 5063.02 1 no yes 1 0.5 454.46
1 yes yes 1 0 273.48 1 yes yes 1 0.5 277.02

1 no no 10 0 10,000.00 1 no no 10 5 10,000.00
1 yes no 10 0 470.10 1 yes no 10 5 104.70
1 no yes 10 0 1487.08 1 no yes 10 5 302.88
1 yes yes 10 0 551.76 1 yes yes 10 5 195.56

1 no no 25 0 10,000.00 1 no no 25 12.5 10,000.00
1 yes no 25 0 266.98 1 yes no 25 12.5 173.82
1 no yes 25 0 2779.70 1 no yes 25 12.5 399.34
1 yes yes 25 0 348.52 1 yes yes 25 12.5 197.28

(continued on next page)

164 V. Heidrich-Meisner, C. Igel / J. Algorithms 64 (2009) 152–168
Table B.1 (continued)

h s b σinit σmin Evaluations h s b σinit σmin Evaluations
1 no no 50 0 10,000.00 1 no no 50 25 10,000.00
1 yes no 50 0 199.30 1 yes no 50 25 181.56
1 no yes 50 0 2216.18 1 no yes 50 25 450.38
1 yes yes 50 0 166.04 1 yes yes 50 25 166.62

2 no no 0.1 0 9489.06 2 no no 0.1 0.05 1837.62
2 yes no 0.1 0 4509.50 2 yes no 0.1 0.05 1383.82
2 no yes 0.1 0 9695.90 2 no yes 0.1 0.05 3168.28
2 yes yes 0.1 0 6220.40 2 yes yes 0.1 0.05 2026.08

2 no no 1 0 575.50 2 no no 1 0.5 434.48
2 yes no 1 0 197.94 2 yes no 1 0.5 204.94
2 no yes 1 0 1776.52 2 no yes 1 0.5 585.56
2 yes yes 1 0 487.92 2 yes yes 1 0.5 195.56

2 no no 10 0 942.66 2 no no 10 5 426.90
2 yes no 10 0 98.20 2 yes no 10 5 98.20
2 no yes 10 0 513.80 2 no yes 10 5 302.90
2 yes yes 10 0 200.70 2 yes yes 10 5 200.70

2 no no 25 0 967.76 2 no no 25 12.5 624.10
2 yes no 25 0 102.74 2 yes no 25 12.5 102.74
2 no yes 25 0 777.98 2 no yes 25 12.5 377.48
2 yes yes 25 0 234.98 2 yes yes 25 12.5 227.82

2 no no 50 0 2130.84 2 no no 50 25 902.74
2 yes no 50 0 90.52 2 yes no 50 25 90.52
2 no yes 50 0 885.44 2 no yes 50 25 355.2
2 yes yes 50 0 370.5 2 yes yes 50 25 192.76

4 no no 0.1 0 9009.24 4 no no 0.1 0.05 3239.40
4 yes no 0.1 0 3509.70 4 yes no 0.1 0.05 2139.38
4 no yes 0.1 0 8677.60 4 no yes 0.1 0.05 4799.40
4 yes yes 0.1 0 4494.96 4 yes yes 0.1 0.05 2884.16

4 no no 1 0 505.62 4 no no 1 0.5 343.10
4 yes no 1 0 237.54 4 yes no 1 0.5 237.54
4 no yes 1 0 638.66 4 no yes 1 0.5 599.40
4 yes yes 1 0 334.96 4 yes yes 1 0.5 328.60

4 no no 10 0 150.28 4 no no 10 5 150.28
4 yes no 10 0 107.70 4 yes no 10 5 107.70
4 no yes 10 0 281.14 4 no yes 10 5 281.14
4 yes yes 10 0 342.86 4 yes yes 10 5 319.98

4 no no 25 0 151.00 4 no no 25 12.5 151.00
4 yes no 25 0 118.18 4 yes no 25 12.5 118.18
4 no yes 25 0 314.36 4 no yes 25 12.5 315.70
4 yes yes 25 0 306.70 4 yes yes 25 12.5 307.62

4 no no 50 0 151.34 4 no no 50 25 151.34
4 yes no 50 0 125.46 4 yes no 50 25 125.46
4 no yes 50 0 316.60 4 no yes 50 25 315.64
4 yes yes 50 0 272.94 4 yes yes 50 25 272.94

8 no no 0.1 0 8166.40 8 no no 0.1 0.05 5842.00
8 yes no 0.1 0 4259.08 8 yes no 0.1 0.05 3509.08
8 no yes 0.1 0 8302.12 8 no yes 0.1 0.05 7610.10
8 yes yes 0.1 0 5537.64 8 yes yes 0.1 0.05 5001.86

8 no no 1 0 366.90 8 no no 1 0.5 366.90
8 yes no 1 0 310.92 8 yes no 1 0.5 310.92
8 no yes 1 0 576.54 8 no yes 1 0.5 574.16
8 yes yes 1 0 421.72 8 yes yes 1 0.5 421.72

8 no no 10 0 137.06 8 no no 10 5 137.06
8 yes no 10 0 138.4 8 yes no 10 5 138.40
8 no yes 10 0 386.46 8 no yes 10 5 386.46
8 yes yes 10 0 282.98 8 yes yes 10 5 282.98

8 no no 25 0 173.24 8 no no 25 12.5 173.24
8 yes no 25 0 140.58 8 yes no 25 12.5 140.58
8 no yes 25 0 326.90 8 no yes 25 12.5 326.90
8 yes yes 25 0 326.60 8 yes yes 25 12.5 326.60

8 no no 50 0 200.34 8 no no 50 25 200.34
8 yes no 50 0 144.62 8 yes no 50 25 144.62
8 no yes 50 0 352.30 8 no yes 50 25 352.30
8 yes yes 50 0 316.24 8 yes yes 50 25 316.24

V. Heidrich-Meisner, C. Igel / J. Algorithms 64 (2009) 152–168 165
Table B.2
Average number of episodes required to find a successful control strategy for the double pole with velocities task for all configurations.

h s b σinit σmin Evaluations h s b σinit σmin Evaluations
1 no no 0.1 0 10,000.00 1 no no 0.1 0.05 10,000.00
1 yes no 0.1 0 6850.80 1 yes no 0.1 0.05 2660.02
1 no yes 0.1 0 10,000.00 1 no yes 0.1 0.05 3452.70
1 yes yes 0.1 0 7158.88 1 yes yes 0.1 0.05 3062.98

1 no no 1 0 10,000.00 1 no no 1 0.5 10,000.00
1 yes no 1 0 2019.40 1 yes no 1 0.5 1184.60
1 no yes 1 0 7728.62 1 no yes 1 0.5 1786.82
1 yes yes 1 0 2691.76 1 yes yes 1 0.5 1090.36

1 no no 10 0 10,000.00 1 no no 10 5 10,000.00
1 yes no 10 0 1232.76 1 yes no 10 5 1087.92
1 no yes 10 0 6493.36 1 no yes 10 5 1227.24
1 yes yes 10 0 2982.46 1 yes yes 10 5 1245.28

1 no no 25 0 10,000.00 1 no no 25 12.5 10,000.00
1 yes no 25 0 1431.94 1 yes no 25 12.5 1289.02
1 no yes 25 0 5013.10 1 no yes 25 12.5 1262.40
1 yes yes 25 0 2527.38 1 yes yes 25 12.5 1247.18

1 no no 50 0 10,000.00 1 no no 50 25 10,000.00
1 yes no 50 0 2456.80 1 yes no 50 25 1897.66
1 no yes 50 0 5940.80 1 no yes 50 25 1342.88
1 yes yes 50 0 3417.16 1 yes yes 50 25 1580.76

2 no no 0.1 0 9563.16 2 no no 0.1 0.05 3513.48
2 yes no 0.1 0 6047.82 2 yes no 0.1 0.05 3136.26
2 no yes 0.1 0 9401.14 2 no yes 0.1 0.05 5081.20
2 yes yes 0.1 0 6723.30 2 yes yes 0.1 0.05 3849.96

2 no no 1 0 2925.06 2 no no 1 0.5 1186.08
2 yes no 1 0 1169.24 2 yes no 1 0.5 860.76
2 no yes 1 0 5074.48 2 no yes 1 0.5 1688.66
2 yes yes 1 0 2170.10 2 yes yes 1 0.5 1388.80

2 no no 10 0 2249.08 2 no no 10 5 884.96
2 yes no 10 0 635.40 2 yes no 10 5 584.84
2 no yes 10 0 3290.10 2 no yes 10 5 1654.32
2 yes yes 10 0 1452.04 2 yes yes 10 5 1367.58

2 no no 25 0 1522.62 2 no no 25 12.5 892.12
2 yes no 25 0 1507.36 2 yes no 25 12.5 793.44
2 no yes 25 0 2787.02 2 no yes 25 12.5 1478.48
2 yes yes 25 0 2229.42 2 yes yes 25 12.5 1480.44

2 no no 50 0 2336.40 2 no no 50 25 933.66
2 yes no 50 0 1257.04 2 yes no 50 25 925.08
2 no yes 50 0 2075.28 2 no yes 50 25 1251.88
2 yes yes 50 0 2726.80 2 yes yes 50 25 1627.92

4 no no 0.1 0 8849.28 4 no no 0.1 0.05 6715.94
4 yes no 0.1 0 4994.86 4 yes no 0.1 0.05 4115.16
4 no yes 0.1 0 8900.14 4 no yes 0.1 0.05 8574.42
4 yes yes 0.1 0 6964.08 4 yes yes 0.1 0.05 5924.36

4 no no 1 0 1383.24 4 no no 1 0.5 1060.70
4 yes no 1 0 732.70 4 yes no 1 0.5 723.26
4 no yes 1 0 3299.18 4 no yes 1 0.5 2257.82
4 yes yes 1 0 1599.24 4 yes yes 1 0.5 1505.52

4 no no 10 0 767.78 4 no no 10 5 775.0
4 yes no 10 0 661.76 4 yes no 10 5 658.84
4 no yes 10 0 1808.52 4 no yes 10 5 1573.64
4 yes yes 10 0 1660.78 4 yes yes 10 5 1618.88

4 no no 25 0 624.08 4 no no 25 12.5 630.66
4 yes no 25 0 741.64 4 yes no 25 12.5 910.36
4 no yes 25 0 2312.18 4 no yes 25 12.5 1912.42
4 yes yes 25 0 1747.10 4 yes yes 25 12.5 1499.92

4 no no 50 0 857.12 4 no no 50 25 752.02
4 yes no 50 0 667.50 4 yes no 50 25 668.98
4 no yes 50 0 2031.04 4 no yes 50 25 1755.52
4 yes yes 50 0 1941.06 4 yes yes 50 25 1775.32

8 no no 0.1 0 8048.44 8 no no 0.1 0.05 7866.22
8 yes no 0.1 0 6249.64 8 yes no 0.1 0.05 6078.66
8 no yes 0.1 0 9514.60 8 no yes 0.1 0.05 9514.60
8 yes yes 0.1 0 7486.38 8 yes yes 0.1 0.05 7492.06

(continued on next page)

166 V. Heidrich-Meisner, C. Igel / J. Algorithms 64 (2009) 152–168
Table B.2 (continued)

h s b σinit σmin Evaluations h s b σinit σmin Evaluations
8 no no 1 0 1104.84 8 no no 1 0.5 1094.58
8 yes no 1 0 931.32 8 yes no 1 0.5 931.32
8 no yes 1 0 2425.66 8 no yes 1 0.5 2416.74
8 yes yes 1 0 1731.22 8 yes yes 1 0.5 1729.08

8 no no 10 0 856.12 8 no no 10 5 856.12
8 yes no 10 0 753.54 8 yes no 10 5 757.26
8 no yes 10 0 2301.90 8 no yes 10 5 2277.9
8 yes yes 10 0 1899.72 8 yes yes 10 5 1865.46

8 no no 25 0 873.76 8 no no 25 12.5 873.76
8 yes no 25 0 794.80 8 yes no 25 12.5 805.28
8 no yes 25 0 2228.40 8 no yes 25 12.5 2170.78
8 yes yes 25 0 2444.38 8 yes yes 25 12.5 2247.14

8 no no 50 0 969.32 8 no no 50 25 960.48
8 yes no 50 0 820.96 8 yes no 50 25 820.96
8 no yes 50 0 2373.04 8 no yes 50 25 2287.92
8 yes yes 50 0 2263.80 8 yes yes 50 25 2241.62

Table B.3
Average number of episodes required to find a successful control strategy for the non-Markovian single pole balancing task for all configurations.

h b σinit σmin Evaluations h b σinit σmin Evaluations
1 no 0.1 0 570.34 1 no 0.1 0.05 396.00
1 yes 0.1 0 9481.74 1 yes 0.1 0.05 3599.06

1 no 1 0 413.30 1 no 1 0.5 192.46
1 yes 1 0 9613.96 1 yes 1 0.5 5587.86

2 no 0.1 0 368.04 2 no 0.1 0.05 368.04
2 yes 0.1 0 9657.04 2 yes 0.1 0.05 5515.36

2 no 1 0 448.20 2 no 1 0.5 338.42
2 yes 1 0 10,000.00 2 yes 1 0.5 8977.28

4 no 0.1 0 527.78 4 no 0.1 0.05 527.78
4 yes 0.1 0 8675.30 4 yes 0.1 0.05 7892.24

4 no 1 0 758.22 4 no 1 0.5 803.64
4 yes 1 0 10,000.00 4 yes 1 0.5 10,000.00

8 no 0.1 0 795.98 8 no 0.1 0.05 795.98
8 yes 0.1 0 9280.78 8 yes 0.1 0.05 9223.82

8 no 1 0 3319.82 8 no 1 0.5 3415.90
8 yes 1 0 9946.20 8 yes 1 0.5 10,000.00

Table B.4
Average number of episodes required to find a successful control strategy for the non-Markovian double pole standard performance function for all config-
urations.

h b σinit σmin Evaluations h b σinit σmin Evaluations
1 no 0.1 0 6031.80 1 no 0.1 0.05 2209.00
1 yes 0.1 0 9105.12 1 yes 0.1 0.05 2977.92

1 no 1 0 984.60 1 no 1 0.5 859.60
1 yes 1 0 6906.16 1 yes 1 0.5 3660.18

2 no 0.1 0 4750.72 2 no 0.1 0.05 2536.32
2 yes 0.1 0 8752.78 2 yes 0.1 0.05 5790.64

2 no 1 0 1920.24 2 no 1 0.5 1640.24
2 yes 1 0 6772.8 2 yes 1 0.5 4822.66

4 no 0.1 0 3877.90 4 no 0.1 0.05 3375.00
4 yes 0.1 0 9149.90 4 yes 0.1 0.05 8760.30

4 no 1 0 2645.80 4 no 1 0.5 2756.90
4 yes 1 0 7495.10 4 yes 1 0.5 7179.20

8 no 0.1 0 5692.92 8 no 0.1 0.05 5608.68
8 yes 0.1 0 9826.00 8 yes 0.1 0.05 9933.68

8 no 1 0 5696.76 8 no 1 0.5 5356.20
8 yes 1 0 9809.60 8 yes 1 0.5 9830.48

V. Heidrich-Meisner, C. Igel / J. Algorithms 64 (2009) 152–168 167
Table B.5
Average number of episodes required to find a successful control strategy for the non-Markovian double pole with damping performance function for all
configurations.

h b σinit σmin Evaluations h b σinit σmin Evaluations
1 no 0.1 0 7687.00 1 no 0.1 0.05 2386.00
1 yes 0.1 0 8959.70 1 yes 0.1 0.05 3432.02

1 no 1 0 2170.20 1 no 1 0.5 1141.00
1 yes 1 0 7711.28 1 yes 1 0.5 4348.36

2 no 0.1 0 5102.88 2 no 0.1 0.05 2649.44
2 yes 0.1 0 9227.38 2 yes 0.1 0.05 5183.42

2 no 1 0 2022.32 2 no 1 0.5 1907.68
2 yes 1 0 7177.02 2 yes 1 0.5 5184.48

4 no 0.1 0 3827.60 4 no 0.1 0.05 3379.20
4 yes 0.1 0 9182.70 4 yes 0.1 0.05 8839.60

4 no 1 0 2951.80 4 no 1 0.5 3242.90
4 yes 1 0 8513.60 4 yes 1 0.5 8326.00

8 no 0.1 0 4111.56 8 no 0.1 0.05 4104.36
8 yes 0.1 0 9766.92 8 yes 0.1 0.05 9813.76

8 no 1 0 5277.32 8 no 1 0.5 5583.92
8 yes 1 0 9565.16 8 yes 1 0.5 9529.16

References

[1] J.S. Albus, A new approach to manipulator control: The cerebellar model articulation controller (CMAC), Trans. ASME J. Dyn. Syst. Meas. Control 97
(1975) 220–227.

[2] D.V. Arnold, Noisy Optimization with Evolution Strategies, Kluwer Academic Publishers, 2002.
[3] A. Auger, Convergence results for the (1, λ)-SA-ES using the theory of ϕ-irreducible Markov chains, Theoret. Comput. Sci. 334 (1) (2005) 35–69.
[4] A. Auger, N. Hansen, A restart CMA evolution strategy with increasing population size, in: Proceedings of the IEEE Congress on Evolutionary Computa-

tion (CEC 2005), IEEE Press, 2005, pp. 1769–1776.
[5] A.G. Barto, R.S. Sutton, C.W. Anderson, Neuronlike elements that can solve difficult learning control problems, IEEE Trans. Syst. Man Cybernet. 13 (5)

(1983) 835–846.
[6] H.-G. Beyer, The Theory of Evolution Strategies, Nat. Comput. Ser., Springer-Verlag, 2001.
[7] H.-G. Beyer, Evolution strategies, Scholarpedia 2 (8) (2007) 1965.
[8] H.-G. Beyer, H.-P. Schwefel, Evolution strategies: A comprehensive introduction, Nat. Comput. 1 (1) (2002) 3–52.
[9] K. Chellapilla, D.B. Fogel, Evolution neural networks, games, and intelligence, Proc. IEEE 87 (9) (1999) 1471–1496.

[10] I.R. Fiete, M.S. Fee, H.S. Seung, Model of birdsong learning based on gradient estimation by dynamic perturbation of neural conductances, J. Neuro-
physiology 98 (4) (2007) 2038.

[11] D. Floreano, P. Dürr, C. Mattiussi, Neuroevolution: From architectures to learning, Evol. Intelligence 1 (1) (2008) 47–62.
[12] F. Gomez, R. Miikkulainen, Solving non-markovian tasks with neuroevolution, in: T. Dean (Ed.), Proceeding of the Sixteenth International Joint Confer-

ence on Artificial Intelligence (IJCAI), Morgan Kaufmann, 1999, pp. 1356–1361.
[13] F. Gomez, J. Schmidhuber, R. Miikkulainen, Efficient non-linear control through neuroevolution, in: Proc. European Conference on Machine Learning

(ECML 2006), in: Lecture Notes in Comput. Sci., vol. 4212, Springer-Verlag, 2006, pp. 654–662.
[14] F. Gomez, J. Schmidhuber, R. Miikkulainen, Accelerated neural evolution through cooperatively coevolved synapses, J. Mach. Learn. Res. 9 (2008) 937–

965.
[15] F. Gruau, D. Whitley, L. Pyeatt, A comparison between cellular encoding and direct encoding for genetic neural networks, in: J.R. Koza, D.E. Goldberg,

D.B. Fogel, R.L. Riol (Eds.), Genetic Programming 1996: Proceedings of the First Annual Conference, MIT Press, 1996, pp. 81–89.
[16] N. Hansen, http://www.bionik.tu-berlin.de/user/niko/cec2005.html, 2006.
[17] N. Hansen, The CMA evolution strategy: A comparing review, in: J.A. Lozano, P. Larranaga, I. Inza, E. Bengoetxea (Eds.), Towards a New Evolutionary

Computation. Advances on Estimation of Distribution Algorithms, Springer-Verlag, 2006, pp. 75–102.
[18] N. Hansen, S.D. Müller, P. Koumoutsakos, Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation

(CMA-ES), Evol. Comput. 11 (1) (2003) 1–18.
[19] N. Hansen, A. Ostermeier, Completely derandomized self-adaptation in evolution strategies, Evol. Comput. 9 (2) (2001) 159–195.
[20] V. Heidrich-Meisner, C. Igel, Learning behavioral policies using extrinsic perturbations on the level of synapses, in: Frontiers in Computational Neuro-

science, Conference Abstract: Bernstein Symposium 2008, doi:10.3389/conf.neuro.10.2008.01.060.
[21] V. Heidrich-Meisner, C. Igel, Evolution strategies for direct policy search, in: G. Rudolph (Ed.), Parallel Problem Solving from Nature (PPSN X), in:

Lecture Notes in Comput. Sci., vol. 5199, Springer-Verlag, 2008, pp. 428–437.
[22] V. Heidrich-Meisner, C. Igel, Similarities and differences between policy gradient methods and evolution strategies, in: M. Verleysen (Ed.), 16th Euro-

pean Symposium on Artificial Neural Networks (ESANN), D-Side Publications, Evere, Belgium, 2008, pp. 149–154.
[23] V. Heidrich-Meisner, C. Igel, Variable metric reinforcement learning methods applied to the noisy mountain car problem, in: S. Girgin, et al. (Eds.),

European Workshop on Reinforcement Learning (EWRL 2008), in: Lecture Notes in Artificial Intelligence, vol. 5323, Springer-Verlag, 2008, pp. 136–150.
[24] C. Igel, Neuroevolution for reinforcement learning using evolution strategies, in: Congress on Evolutionary Computation (CEC 2003), vol. 4, IEEE Press,

2003, pp. 2588–2595.
[25] C. Igel, T. Glasmachers, V. Heidrich-Meisner, Shark, J. Mach. Learn. Res. 9 (2008) 993–996.
[26] C. Igel, W. Erlhagen, D. Jancke, Optimization of dynamic neural field, Neurocomputing 36 (1–4) (2001) 225–233.
[27] J. Jägersküpper, How the (1 + 1) ES using isotropic mutations minimizes positive definite quadratic forms, Theoret. Comput. Sci. 36 (1) (2006) 38–56.
[28] S. Kakade, A natural policy gradient, in: T.G. Dietterich, S. Becker, Z. Ghahramani (Eds.), Advances in Neural Information Processing Systems (NIPS14),

MIT Press, 2002.
[29] M. Mandischer, A comparison of evolution strategies and backpropagation for neural network training, Neurocomputing 42 (1–4) (2002) 87–117.
[30] D. Michie, R.A. Chambers, BOXES: An experiment in adaptive control, in: Ella Dale, Donald Michi (Eds.), Machine Intelligence 2, Oliver & Boyd, 1968,

pp. 137–152 (chap. 9).

http://www.bionik.tu-berlin.de/user/niko/cec2005.html
http://dx.doi.org/10.3389/conf.neuro.10.2008.01.060

168 V. Heidrich-Meisner, C. Igel / J. Algorithms 64 (2009) 152–168
[31] D.E. Moriarty, R. Miikkulainen, Efficient reinforcement learning through symbiotic evolution, Mach. Learn. 22 (1996) 11–32.
[32] D.E. Moriarty, A.C. Schultz, J.J. Grefenstette, Evolutionary algorithms for reinforcement learning, J. Artificial Intelligence Res. 11 (1999) 199–229.
[33] A. Pellecchia, C. Igel, J. Edelbrunner, G. Schöner, Making driver modeling attractive, IEEE Intell. Syst. 20 (2) (2005) 8–12.
[34] J. Peters, S. Schaal, Natural actor-critic, Neurocomputing 71 (7–9) (2008) 1180–1190.
[35] I. Rechenberg, Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien der Biologischen Evolution, Frommann-Holzboog, 1973.
[36] M. Riedmiller, J. Peters, S. Schaal, Evaluation of policy gradient methods and variants on the cart–pole benchmark, in: Proc. IEEE Int’l Symposium on

Approximate Dynamic Programming and Reinforcement Learning (ADPRL 2007), 2007, pp. 254–261.
[37] J.C. Santamaria, R.S. Sutton, A. Ram, Experiments with reinforcement learning in problems with continuous state and action spaces, Adapt. Behav. 6 (2)

(1997) 163.
[38] N. Saravanan, D.B. Fogel, Evolving neural control systems, IEEE Expert 10 (3) (1995) 23–27.
[39] J. Schmidhuber, S. Hochreiter, Guessing can outperform many long time lag algorithms, Technical Report IDSIA-19-96, Istituto Dalle Molle Di Studi Sull

Intelligenza Artificiale (IDSIA), 1996.
[40] H.-P. Schwefel, Evolution and Optimum Seeking, Sixth-Generation Comput. Tech. Ser., John Wiley & Sons, 1995.
[41] Nils T. Siebel, Gerald Sommer, Evolutionary reinforcement learning of artificial neural networks, Internat. J. Hybrid Intell. Syst. 4 (3) (2007) 171–183.
[42] P. Stagge, Strukturoptimierung rückgekoppelter neuronaler Netze. Konzepte neuronaler Informationsverarbeitung, ibidem-Verlag, Stuttgart, 2001.
[43] K.O. Stanley, R. Miikkulainen, Evolving neural networks through augmenting topologies, Evol. Comput. 10 (2) (2002) 99–127.
[44] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, MIT Press, 1998.
[45] R.S. Sutton, D. McAllester, S. Singh, Y. Mansour, Policy gradient methods for reinforcement learning with function approximation, in: Adv. Neural Inf.

Process. Syst., vol. 12, MIT Press, 2000, pp. 1057–1063.
[46] T. Suttorp, N. Hansen, C. Igel, Efficient covariance matrix update for variable metric evolution strategies, Mach. Learn. 75 (2) (2009) 167–197.
[47] J. Togelius, F. Gomez, J. Schmidhuber, Learning what to ignore: Memetic climbing in topology and weight space, in: Proceedings of the IEEE World

Congress on Computational Intelligence (WCCI 2008), IEEE Press, 2008.
[48] J. Togelius, T. Schaul, J. Schmidhuber, F. Gomez, Countering poisonous inputs with memetic neuroevolution, in: G. Rudolph (Ed.), Parallel Problem

Solving from Nature (PPSN X), in: Lecture Notes in Comput. Sci., vol. 5199, Springer-Verlag, 2008, pp. 610–619.
[49] C.J.C.H. Watkins, P. Dayan, Q-learning, Mach. Learn. 8 (1992) 279–292.
[50] S. Whiteson, P. Stone, Evolutionary function approximation for reinforcement learning, J. Mach. Learn. Res. 7 (2006) 877–917.
[51] D. Whitley, S. Dominic, R. Das, C.W. Anderson, Genetic reinforcement learning for neurocontrol problems, Mach. Learn. 13 (2–3) (1993) 259–284.
[52] A. Wieland, Evolving controls for unstable systems, in: Proceedings of the International Joint Conference on Neural Networks, vol. 2, IEEE Press, 1991,

pp. 667–673.
[53] D. Wierstra, A. Foerster, J. Peters, J. Schmidhuber, Solving deep memory POMDPs with recurrent policy gradients, in: International Conference on

Artificial Neural Networks (ICANN 2007), in: Lecture Notes in Comput. Sci., vol. 4668, Springer-Verlag, 2007, p. 697.
[54] X. Yao, Evolving artificial neural networks, Proc. IEEE 87 (9) (1999) 1423–1447.

	Neuroevolution strategies for episodic reinforcement learning
	Introduction
	Variable-metric NeuroES for reinforcement learning
	Covariance matrix adaptation evolution strategy
	CMA-ES and neuroevolution
	NeuroES and policy gradient methods

	Experimental evaluation on pole balancing problems
	Pole balancing problems
	Setup of the CMA-NeuroES
	Previous work

	Results
	Fully observable tasks
	Partially observable tasks
	Ensuring ongoing exploration
	Influence of network structure
	Most successful configurations

	Discussion
	Performance of the CMA-NeuroES
	CMA-NeuroES and structure optimization
	Pole balancing problems

	Conclusions
	Acknowledgments
	Equations of motion
	Detailed results
	References

