
Neuroevolution for Reinforcement Learning Using Evolution Strategies
Christian Igel

Institut für Neuroinformatik
Ruhr-Universität Bochum
44780 Bochum, Germany

christian.igel@neuroinformatik.rub.de

Abstract- We apply the CMA-ES, an evolution strat-
egy which efficiently adapts the covariance matrix of the
mutation distribution, to the optimization of the weights
of neural networks for solving reinforcement learning
problems. It turns out that the topology of the networks
considerably influences the time to find a suitable con-
trol strategy. Still, our results with fixed network topolo-
gies are significantly better than those reported for the
best evolutionary method so far, which adapts both the
weights and the structure of the networks.

1 Introduction

In this paper, we apply an evolution strategy (ES) to the
adaptation of the weights of neural networks (NNs) for
reinforcement learning (RL) tasks. In supervised learn-
ing, gradient-based optimization of NN parameters usually
turns out to be considerably faster than sole evolutionary
optimization (Stagge, 2001; Igel et al., 2001; Mandischer,
2002), although it might be more prone to getting stuck in
local minima. In RL, however, where feedback about the ac-
tions of the agent to be optimized is sparse and / or delayed
and standard supervised learning methods cannot be applied
directly, evolutionary algorithms have proven to be power-
ful and competitive approaches (Moriarty et al., 1999). The
recent success of evolved NNs in game playing (Chellapilla
and Fogel, 1999) underlines the potential of the combina-
tion of NNs and evolutionary computation for RL and arti-
ficial intelligence.

When using an NN for representing directly the policy of
an agent, e.g., a control strategy, the NN weights parame-
terize the space of policies the network can realize. This pa-
rameterization is usually complex, there are strong correla-
tions, i.e., the optimization problem is far from being sepa-
rable. Hence, the ability of an optimization algorithm to de-
tect dependencies between network parameters seems to be
crucial for its performance. We propose to use the CMA-ES
(Hansen and Ostermeier, 2001) for evolving the weights of
NNs for RL tasks. The CMA-ES efficiently adapts the co-
variance matrix of the mutation distribution and can thereby
account for correlations between the parameters.

In the next section, we briefly give some background in-
formation about RL and direct search methods, describe the
pole balancing benchmark problems used to evaluate our

approach, and summarize related work. Then, in section 3,
the CMA-ES and the network structures used in our study
are introduced. Section 4 is devoted to the experiments and
their results. The article ends with a discussion.

2 Evolving Neural Controllers

2.1 Reinforcement Learning and Direct Search

In the standard reinforcement learning (RL) scenario, an
agent interacts with its environment at discrete time steps
t. It perceives the environment to be in state st ∈ S and
chooses a behavior at from the set of actions A according
to its policy π : S → A. After the execution of action at,
the environment makes a possibly stochastic transition to a
perceived state st+1 and thereby emits a possibly stochastic
numerical reward rt+1 ∈

�
. The objective of the agent is

to adapt its policy such that the expected cumulative future
reward is maximized.

There are basically two distinct (model-free) approaches
to solve RL problems, namely, methods that search in the
space of policies (Moriarty et al., 1999) and methods that
search in the space of value functions (Sutton and Barto,
1998). In the latter, which is exemplified by temporal-
difference learning algorithms, a state-value function V :
S →

�
or a state-action-value function Q : S ×A →

�
for

judging states or state-action pairs, respectively, is learned.
The policy π is then defined on top of this function. When
S or A is too large or generalization from experiences to
new states and actions is desired, function approximators
like neural networks (NNs) are used to model Q, V , or π.

“Although not often thought of in this way, genetic algo-
rithms are, in a sense, inherently a reinforcement technique”
(Whitley et al., 1993). The potential advantages of direct
search methods like evolutionary algorithms compared to
standard RL methods are that they (1) allow for direct search
in the policy space, whereas most RL methods are restricted
to optimizing the policy “indirectly” by adapting state-value
or state-action-value functions, (2) are often easier to apply
and are more robust with respect to the tuning of the meta-
parameters (e.g., we found choosing the right learning rates
etc. for temporal-difference learning harder than adjusting
the CMA-ES), (3) can be applied if the function approx-
imators are non-differentiable, whereas standard methods
involve gradient-based optimization steps, and (4) can also

���
���
���
���

���
���
���
���PSfrag replacements F

x

θ1 θ2

Figure 1: Double pole balancing problem. The parameters x, θ1,
and θ2 are the offset of the cart from the center of the track and the
angles from the vertical of the long and short pole, respectively.

optimize the underlying structure of the function approxi-
mators (e.g., the topology of NNs, see Yao, 1999).

2.2 Pole Balancing Problems

Pole balancing problems (also known as inverted pendu-
lum problems) are standard benchmark tasks for the design
of controllers for unstable systems, see Wieland (1991) for
early and Stanley and Miikkulainen (2002) for recent refer-
ences. In particular, they have become a standard for the
evaluation of evolutionary algorithms that adapt NNs for
control.

The task is to balance one or several poles hinged on a
wheeled cart, which can move on a finite length track, by
exerting forces either left or right on the cart. The move-
ments of the cart and the poles are constrained within the
vertical plane. A balancing attempt fails if either the an-
gle from the vertical of any pole exceeds a certain thresh-
old or the cart leaves the track. Control of carts with more
than one pole becomes possible when the poles have differ-
ent lengths. Figure 1 illustrates the task and, for complete-
ness, the corresponding equations of motion are given in
appendix A. The problem of designing a controller for the
cart can be viewed as a RL task, where the actions are the
applied forces and the perceived state corresponds to the in-
formation about the system provided to the controller. The
only evaluative feedback the controller receives is a negative
reinforcement signal when balancing fails.

In this article, we consider three basically different pole
balancing scenarios. First, the simple single pole task,
where only one pole is hinged to the cart and the controller
gets as inputs the offset x of the cart from the middle of the
track, the velocity ẋ of the cart, the angle θ1 of the pole, and
the angular velocity θ̇1. Second, the more difficult double

pole task with two poles and two additional inputs, namely
the angle θ2 and the angular velocity θ̇2 of the second pole.
Both tasks are Markov decision processes in the sense that
the controller perceives the complete information to predict
the system, i.e., the whole real system state. The third sce-
nario lacks the Markov property: Again, two poles have to
be balanced but this time without velocity information. In
this double pole without velocities task, the controller gets
only x, θ1, and θ2 as inputs. In order to distinguish between
system states, e.g., whether a pole is moving up or down,
the controller needs the capability to exploit history infor-
mation. This can be achieved by recurrent NNs.

2.3 Previous Work

We give a brief overview of evolutionary methods applied
to the optimization of NNs for inverted pendulum problems.
In the described studies there are often small differences re-
garding the formulation of the task. For example, some-
times the control signal is continuous between -10 N and
10 N and sometimes only two actions, the full forces -10 N
and 10 N, are possible. Usually the search spaces, i.e., the
possible NN architectures, differ. This weakens the com-
parison.

Wieland (1991) considered the evolutionary optimiza-
tion of recurrent NNs for different pole balancing problems.
He adapted the weights of fully recurrent networks by a ge-
netic algorithm with crossover and mutation, where each
network parameter was encoded by eight bits and the out-
put was interpreted as a control signal between -10 N and
10 N. We abbreviate this method by NE for conventional
neuroevolution (Stanley and Miikkulainen, 2002).

GENITOR for the optimization of NN parameters as
described by Whitley et al. (1993) is a steady-state, real-
coded genetic algorithm. An offspring is created either by
crossover or mutation, where the crossover probability is
adaptive. In this article, we refer to the GENITOR exper-
iments conducted by Moriarty and Miikulainen (1996), in
which the weights of fully-connected feedforward NNs with
five hidden units and shortcut connections were adapted.
The single output in the range [0, 1] was interpreted as the
parameter of a Bernoulli distribution having two outcomes,
full-push left or right. The action was chosen randomly ac-
cording to this distribution.

When using cellular encoding (CE, Gruau et al., 1996),
both the weights and the structure are subject to evolution.
Each individual corresponds to an expression of a formal
language. These expressions describe growth processes for
NNs, i.e., the NNs are encoded indirectly. The parse trees of
the expressions undergo mutation and crossover in the style
of genetic programming. When applied to pole balancing,
Gruau et al. (1996) used continuous control signals.

Saravanan and Fogel (1995) applied evolutionary pro-
gramming (EP) to parameter optimization of feedforward
NNs for the double pole balancing task. The networks had
10 hidden units and the control signal was continuous.

In Symbiotic, Adaptive Neuro-Evolution (SANE), single
neurons (and sometimes additionally “blueprints” for net-
work topologies) are subject to evolution, not complete net-
works (Moriarty and Miikulainen, 1996). In each genera-
tion, a fixed number of hidden neurons, which carry infor-
mation about the existence and strength of connections to
the input (where the bias is interpreted as a connection to
an input unit with constant activation, i.e., it can be pruned)
or output units, are randomly chosen out of a neuron popu-
lation to form networks. These NNs are evaluated on the
given task. The fitness of an individual neuron is deter-
mined based on how well on average the networks that used
this neuron performed. When applied to pole-balancing, the
evolved networks had two outputs, one for pushing left and
one for pushing right. The output with the higher activa-
tion determined the action, either a force of -10 N or 10 N.
For a comparison of SANE with reinforcement learning ap-
proaches on pole balancing tasks the reader is referred to
Moriarty and Miikulainen (1996).

The Enforced Sub-Population (ESP) approach is based
on SANE, but instead of one population of neurons there is
a sup-population for each non-input unit of the NN struc-
ture created for fitness evaluation. The application of ESP
to double pole balancing with and without velocities is de-
scribed by Gomez and Miikulainen (1999). For the tasks
with complete state information, a fixed network topology
with 10 hidden units was used, whereas for evolving con-
trollers without velocity information the appropriate num-
ber of hidden units was determined by a restart strategy.

NeuroEvolution of Augmenting Topologies (NEAT, Stan-
ley and Miikkulainen, 2002) is a sophisticated evolutionary
algorithm that evolves both the structure and the weights of
NNs using crossover and mutation. The algorithm keeps
track of the history of genetic information (“innovations”).
This history record is exploited by a tailored crossover op-
erator. In NEAT, niching (or speciation) is achieved by ex-
plicit fitness sharing in order to protect structural innova-
tions. The algorithm has several parameters (Stanley and
Miikkulainen, 2002, section 4.1). However, as it evolves
the structure of the NNs starting from small initial topolo-
gies, there is no need for expert knowledge for choosing a
suitable NN architecture.

Selected results of the studies described above, in partic-
ular the average number of balancing attempts (evaluations)
needed to find a suitable control strategy, are shown in Ta-
bles 1, 2, and 3.

It is important to note that in all of these and our exper-
iments (1) no discretization of the state and action spaces
is used (except in the experiments where there are only two

actions), as opposed, e.g., to the solutions of pole balanc-
ing problems in the seminal papers of Michie and Cham-
bers (1968) and Barto et al. (1983), and (2) the function
approximators considered here are not linear in the parame-
ters (weights), because otherwise the evolutionary approach
would have to be compared to fast temporal-difference
learning methods for linear models, see, e.g., Xu et al.
(2002) for an application of least-squares methods to sin-
gle pole balancing.

method evaluations
centered random

GENITOR 1846 2578
SANE 535 1691

Table 1: Number of attempts to find an appropriate control strategy
for the single pole balancing task starting with all state values zero
and from a random initial state, respectively, averaged of 50 trials
(taken from Moriarty and Miikulainen, 1996).

3 Neuroevolution Using an Evolution Strategy

In this section, we describe the two ingredients of our ap-
proach to solving the inverted pendulum problems: the
CMA-ES and the NN architectures.

3.1 CMA Evolution Strategy

We use an elaborated evolution strategy (ES, see Beyer and
Schwefel, 2002, for an introduction), namely the (µ/µ, λ)-
CMA-ES (Hansen and Ostermeier 1997, 2001), which has
proven to perform efficient optimization with small popu-
lation sizes. Each individual represents an n-dimensional
real-valued object variable vector. These variables are al-
tered by recombination and mutation. We use global in-
termediate recombination, which corresponds to comput-
ing the center of mass of the µ individuals in the parent
population. Mutation is realized by adding a normally dis-
tributed random vector with zero mean, where the complete
covariance matrix is adapted during evolution to improve
the search strategy. More formally, the object parameters
x

(g+1)
k of offspring k = 1, . . . , λ created in generation g

are given by

x
(g+1)
k = 〈x〉

(g)
+ N

(g)
k

(

0, σ(g)2
C

(g)
)

,

where 〈x〉
(g) denotes the center of mass of the popula-

tion in generation g and the N
(g)
k

(

0, σ(g)2
C

(g)
)

are in-

dependent realizations of an n-dimensional normally dis-
tributed random vector with zero mean and covariance ma-
trix σ(g)2

C
(g). The strategy parameters, both the matrix

C
(g) and the so called global step-size σ(g), are updated on-

line using the covariance matrix adaptation (CMA) method.

method evaluations population size
NE (Wieland, 1991) ≈ 307200 2048
EP (Saravanan and Fogel, 1995) ≈ 80000 100
SANE (Moriarty and Miikulainen, 1996) 12600 200
ESP (Gomez and Miikulainen, 1999) 3800 200
NEAT (Stanley and Miikkulainen, 2002) 3600 150

Table 2: Average number of balancing attempts needed for solving the double pole balancing task with velocities. Additionally, the
population sizes used in the different neuroevolution methods are given.

method evaluations generalization population size
CE (Gruau et al., 1996) 840000 300 16384
ESP (Gomez and Miikulainen, 1999) 169466 289 1000
NEAT (Stanley and Miikkulainen, 2002) 33184 286 1000

Table 3: Average number of required balancing attempts and population sizes for the double pole balancing task without velocities. The
generalization refers to the number of successful balancing attempts starting from 625 different initial positions, see section 4 for details.

Sometimes it may become necessary to enforce a lower
bound σmin on the variance of the CMA-ES. In our imple-
mentation, we ensure that σ(g) ·λ

(g)
min ≥ σmin, where λ

(g)
min is

the smallest eigenvalue of C
(g), i.e., a minimum variance of

the shortest principal axis of the mutation ellipsoid can be
guaranteed. When not reported otherwise, we set σ(0) = 1,
σmin = 0, and C

(0) = diag(1, . . . , 1).
The CMA implements important concepts for strategy

parameter adaptation, in particular derandomization: the
mutation distribution is altered in a deterministic way such
that the probability to reproduce steps in the search space
that have led to the actual population is increased. Thereby,
the algorithm detects correlations between object variables
and becomes invariant under orthogonal transformations of
the search space (apart from the initialization). Another im-
portant concept is cumulation: in order to use the informa-
tion from previous generations more efficiently, the search
path of the population over a number of past generations is
taken into account.

In the CMA-ES, rank-based (µ, λ)-selection is used, i.e.,
the µ best of the λ offspring form the next parent population.
The population sizes are chosen according to the heuristic
λ = 4 + b3 lnnc and µ = bλ/4c given by Hansen and
Ostermeier (2001).

A detailed description of the CMA-ES is beyond the
scope of this article, the reader is referred to Hansen and
Ostermeier (2001).

3.2 Network Structures

For the Markovian tasks, standard feedforward NNs with a
single hidden layer and no shortcut connections were used.
As the inverted pendulum problem is somehow symmetric,
we tried architectures with and without bias (threshold) pa-
rameters. It turned out that the use of bias parameters had a

considerably negative effect on the performance, see section
4.2. Hence, there were no bias parameters in most experi-
ments.

Recurrent neural networks (RNNs) were used in the dou-
ble pole balancing problem without velocity information.
In this task, the environment is only partially observable.
However, RNNs store history information which can be
fused with the actual input signals to represent belief states
on which the policy can be defined.

We tried different classes of recurrent networks, the best
results gave the following simple family of architectures.
Let xi(t) for 0 < i ≤ ninputs be the activation of the ninputs

input units of a network with nneurons neurons at time step t.
The activation of the other neurons is given by

xi(t) = f

(

ninputs
∑

j=1

wijxj(t) +

nneurons
∑

j=ninputs+1

wijxj(t − 1)

)

for ninputs < i ≤ nneurons, where wij are the weights and
f(a) = a/(|a| + 1) is a sigmoidal transfer function.

All NNs have a single output neuron and the input sig-
nals provided to the networks are appropriately scaled.

4 Experimental Evaluation

4.1 Experiments

The experiments have been designed in order to be compa-
rable to the results reported by Moriarty and Miikulainen
(1996), Gomez and Miikulainen (1999), and Stanley and
Miikkulainen (2002). For the equations of the dynamical
system that describe the inverted pendulum problems see
appendix A.

Single pole. In our single pole experiments, full state in-
formation (x, ẋ, θ1, θ̇1) is provided. The goal is to evolve a

controller that can balance the pole for 105 time steps start-
ing either from a random position with −0.2 rad < θ1 <
0.2 rad, −2.4 m < x < 2.4 m, −1 m/s < ẋ < 1 m/s, and
−1.5 rad/s < θ̇1 < 1.5 rad/s or with all state variables set
to zero (see Moriarty and Miikulainen, 1996). Each discrete
time step corresponds to 0.02 s. When the angle exceeds
±12◦ the balancing attempt is regarded as a failure. Net-
works with 8 hidden neurons and without bias parameters
are used. The continuous output is probabilistically mapped
to either -10 N or 10 N, see the description of the the GEN-
ITOR algorithm in section 2.3.

Double pole with velocities. The double pole experi-
ments are based on the descriptions by Gomez and Miiku-
lainen (1999) and Stanley and Miikkulainen (2002). Full
state information (x, ẋ, θ1, θ̇1, θ2, θ̇2) is provided, the initial
state of the long pole is θ1 = 1◦. We varied the number of
hidden neurons nhidden ∈ {4, 6, 8, . . . , 16} and tested each
architecture with and without bias parameters. The angles
of the poles have to be in the range [−36◦, 36◦] for 105 time
steps, where each step corresponds to 0.02 s.

Double pole without velocities. In this problem, only x,
θ1, and θ2 are given as inputs, i.e., the system state is only
partially observable. A very special fitness function com-
bined with an additional termination criterion defines the
goal of the task, which was introduced by Gruau et al.
(1996) and was also used by Gomez and Miikulainen (1999)
and Stanley and Miikkulainen (2002).

The fitness function is the weighted sum of two compo-
nents 0.1f1 +0.9f2 defined over 1000 time steps (each time
step corresponding to 0.02 s), given by

f1 = t/1000 ,

f2 =

{

0 if t < 100
0.75

∑
t

t′=t−99
(|x|+|ẋ|+|θ̇1|+|θ̇2|)

otherwise .

Here t denotes the number of steps the controller is able to
balance the poles starting from a fixed initial position (all
states zero except θ1 = 4.5◦, angles θ1, θ2 ∈ [−36◦, 36◦]
are feasible). The first addend rewards successful balancing.
The component f2 penalizes oscillations. The idea behind
this second term is to exclude the control strategy to balance
the poles by just moving the cart quickly back and forth
from the set of solutions (see Gruau et al., 1996; Gomez
and Miikulainen, 1999; Stanley and Miikkulainen, 2002).

A trial is stopped and regarded as successful when the
fittest individual in the population passes two tests. First,
it has to balance the poles from the 4.5◦ initialization for
105 time steps. Second, it has to control the poles for
1000 steps starting from at least 200 out of 625 differ-
ent initial positions, namely for all (x, ẋ, θ1, θ̇1, θ2, θ̇2) ∈

{(k1 · 4.32 m − 2.16 m, k2 · 2.70 m/s − 1.35 m/s, k3 ·
7.2◦ − 3.6◦, k4 · 17.2◦/s − 8.6◦/s, 0◦, 0◦/s) | k1, k2, k3, k4 ∈
{0.05, 0.25, 0.5, 0.75, 0.95}}. Note that there is no selec-
tion pressure towards evolving a solution that passes this
second test apart from f1 and f2.

As generally the weights of RNNs are more “sensitive”
to changes compared to feedforward architectures, we set
the initial global step-size σ(0) = 0.1 in this task.

4.2 Results

For each scenario, 50 independent trials were conducted.
If after 105 evaluations no successful control strategy was
found, a trial was regarded as a failure. In such a case, the
number of evaluations was set to 105 when computing the
average number of pole balancing attempts. In the follow-
ing, all statistical test results refer to t-tests.

Single pole. Starting from the upright position, on average
283 (sd = 138) balancing attempts were sufficient to find a
control strategy. Starting from random initializations, 967
(sd = 1148) attempts were needed. These results are highly
significantly better (p < 0.001) than the best ones so far
reported by Moriarty and Miikulainen (1996), see Table 1.

Double pole with velocities. The results for the Marko-
vian double pole balancing are given in Table 4. The best
results, only 895 evaluations on average, were achieved with
NNs having 6 hidden neurons and no biases. This is more
than four times better than the best result so far, see Table 2.

It is striking that the architectures without bias parame-
ters clearly outperform those with bias parameters and the
same number of hidden neurons. This is not simply due to
the increase of the degrees of freedom when adding thresh-
olds, because larger NNs without biases gave better results
than smaller ones with biases. A reason for these differ-
ences in performance may be the inherent symmetry of the
inverted pendulum task, which is broken by bias terms.

On the other hand, the ES approach is quite robust
against the choice of the number of hidden neurons nhidden,
as long as there are not too few of them. For nhidden ∈
{8, . . . , 16} the averages were in the ranges 967–1119 and
2146–2494 for NNs without and with thresholds, respec-
tively. For 4 and 6 hidden neurons, the NNs with thresholds
can get stuck in local minima and a few trials fail. This
was also observed one time for an architecture with 4 hid-
den units without bias parameters. We repeated the three
sets of experiments where failures occurred with a lower
bound σmin = σ(0)/2 = 0.5 on the variance of the muta-
tion distribution in order to ensure a minimum exploration
and thereby prevent the ES from premature “convergence”.
As shown in Table 4, this led to better results, in particular
in all trials a solution was found.

CMA-ES nhidden bias nweights evaluations failures
(3/3, 13) 4 no 28 884 / 3142 0 / 1
(3/3, 13) 4 yes 33 2929 / 25853 0 / 12
(3/3, 13) 6 no 42 895 0
(3/3, 13) 6 yes 49 2672 / 13464 0 / 5
(4/4, 16) 8 no 56 1119 0
(4/4, 16) 8 yes 65 2493 0
(4/4, 16) 10 no 70 1003 0
(4/4, 16) 10 yes 81 2494 0
(4/4, 16) 12 no 84 1143 0
(4/4, 16) 12 yes 97 2216 0
(4/4, 16) 14 no 98 1021 0
(4/4, 16) 14 yes 113 2391 0
(4/4, 16) 16 no 112 967 0
(4/4, 16) 16 yes 129 2146 0

Table 4: Results for the double pole balancing task with velocity information. Given are the population sizes, the number nhidden of hidden
neurons, whether bias parameters were used or not, the degrees of freedom nweights, the average number of pole balancing attempts to
find an appropriate control strategy, and the number of times no such control strategy was found after 105 attempts. The results refer to
σmin = 0; when two values are given the first one refers to σmin = σ(0)/2 = 0.5 and the second to σmin = 0.

In order to judge the statistical significance of our results,
we compared the performance of the architectures with 10
hidden nodes including bias (mean = 2494, sd = 1515)
to the best result reported by Stanley and Miikkulainen
(mean = 3600, sd = 2704). Even this moderate CMA-
ES result is a significant improvement (p < 0.05), al-
though SANE, ESP, and NEAT can in principle switch of
the threshold parameters during evolution.

Double pole without velocities. In the evolution of the
recurrent networks, our pilot experiments showed a high
rate of failures, i.e., trials where no network was found
that passed both tests. Closer examination of these trials
revealed the reason: In most cases, the CMA-ES found
networks that could balance the poles starting from the
θ1 = 4.5◦ position for 105 time steps, but failed the final
generalization test. This is due to a “feature” of the CMA-
ES: After the fitness function has been minimized, i.e., the
poles can be balanced with few oscillations for 1000 time
steps starting from θ1 = 4.5◦, there is no selection pres-
sure towards better generalizing RNNs and therefore the
CMA-ES reduces its global step-size in order to stabilize
the evolved solution. This is exemplarily shown in Figure 2.

Hence, we ensured ongoing exploration by introducing
a minimum variance by setting σmin = σ(0)/2 = 0.05.
The corresponding results for the CMA are shown in Ta-
ble 5. For 3, 5, and 7 hidden neurons, the average number
of balancing attempts needed to find an appropriate control
strategy was 6061 (sd = 4025), 8786 (sd = 6150), and
7801 (sd = 5841), respectively. That is, the differences in
the number of evaluations between NEAT and the CMA-

ES are highly statistically significant (p < 0.001). With 3
hidden units without biases, our method is more than five
times faster than NEAT. Nevertheless, changes of the topol-
ogy of the RNNs considerably influence the performance:
the RNNs with 3 hidden units are about 25 % faster than the
networks with 5 hidden neurons.

For 9 and 11 hidden neurons, some trials still do not find
solutions. However, even for nhidden = 9 (sd = 26516, p <
0.1) the results are significantly better compared to NEAT;
for nhidden = 11 (sd = 31946, p > 0.1) the improvement is
not significant.

The average number of successful generalization trials
is smaller in the CMA experiments compared to the other
methods, see Table 3. However, this measure is not directly
related to the evolutionary process, because there is no di-
rect selection pressure—apart from the 200 trials threshold
that determines the end of a trial—towards solutions that
pass many generalization tests.

5 Discussion

Using standard neural network architectures and the CMA
evolution strategy for adapting the weights led to better re-
sults for solving pole balancing reinforcement tasks than re-
ported so far. The efficient adaptation of the search strategy
implemented in the CMA-ES does not only enable faster
optimization by detecting correlations between object vari-
ables, it also allows for small population sizes.

In the inverted pendulum problems, bias parameters
seem to have a negative effect on the adaptation of the neu-
ral network, most likely because of the symmetry of the
tasks. Further, fine tuning of the weights seems to be not

PSfrag replacements

su
cc

es
sf

ul
ge

ne
ra

liz
at

io
n

tr
ia

ls

successful generalization trials

global step-size σ(g)

gl
ob

al
st

ep
-s

iz
e

σ
(g

)

evaluations (g · λ)

0.07

0.06

0.05

0.04

0.03

0.02

0.01

000
20000 40000 60000 80000 100000

20

40

60

80

100

120

140

160

180

Figure 2: Trajectories of the generalization performance and of the global step-size for a typical unsuccessful trial in the double pole
balancing task without velocities and σmin = 0. For every generation where the best individual in the population can balance the poles
for 105 steps starting from the initial 4.5◦ position, the corresponding number of successful generalization trials and the global step-size
σ(g) are shown. The global step-size decreases over the generations. It takes about 9000 evaluations until a network can balance for 105

time steps. Then some kind of random walk starts, where networks with different generalization performance are explored, but the 105

steps criterion is not met in all generations. Finally, the algorithm searches only locally around some badly generalizing networks, which
do not pass the final test. However, these networks can balance for 105 time steps starting from the 4.5◦ position—with respect to the
main fitness function, the ES has “stabilized”.

CMA-ES nhidden nweights evaluations generalization first hit failures
(3/3, 13) 3 28 6061 250 3521 0
(3/3, 13) 5 54 8786 243 4856 0
(4/4, 16) 7 88 7801 248 5029 0
(4/4, 16) 9 130 21556 227 6597 3
(4/4, 19) 11 180 25254 226 7290 7

Table 5: Results for the double pole balancing task without velocities, generalization refers to the average number of successful balancing
attempts of the final NN starting from 625 initial positions and the first hit refers to the average number of balancing attempts needed to
find a controller that can balance the poles for 1000 time steps starting from θ1 = 4.5◦.

very important—this may be typical for many reinforce-
ment tasks (e.g., compared to standard regression tasks)—
and therefore a lower bound on the variance of the mutation
distribution of the CMA-ES appears to have no negative ef-
fect. Quite the contrary, in some scenarios—in particular
when ongoing exploration is needed in the absence of se-
lection pressure—bounding the variance was necessary to
achieve good results.

When evolving the weights of NNs with a fixed number
of hidden neurons, our experiments show that sophisticated
neuroevolution algorithms like ESP or SANE are not neces-
sary for good results on pole balancing tasks.

Still, the network structure really matters, which be-
comes obvious from the differences between structures
with and without bias parameters and between architec-
tures with different numbers of hidden neurons. Hence, in-
deed methods are required that evolve both the structure and

the weights of neural networks for reinforcement tasks—
although for nearly all initializations our approach outper-
formed the existing algorithms that additionally adapt the
topology. However, the standard CMA-ES is limited to a
fixed number of object parameters and it is left to future re-
search to find a method that combines (not just trivially by
nesting) the power of the CMA for adapting the real valued
weights with structure optimization.

Acknowledgments

The implementation of the benchmark problems is directly
based on the freely available source code by Richard S. Sut-
ton and Charles W. Anderson for the single pole task and
by Faustino Gomez, Kenneth O. Stanley, and Risto Miiku-
lainen for the double pole tasks.

A Equations of Motion

A system with N poles is governed by

ẍ =
F − µc sgn(ẋ) +

∑N

i=1 F̃i

mc +
∑N

i=1 m̃i

θ̈i = −
3

4 li

(

ẍ cos θi + g sin θi +
µi θ̇i

mi li

)

F̃i = mi li θ̇2
i sin θi +

3

4
mi cos θi

(

µi θ̇i

mi li
+ g sin θi

)

m̃i = mi

(

1 −
3

4
cos2 θi

)

for i = 1, . . . , N , see Wieland (1991). Here, x is the dis-
tance of the cart from the center of the track, F is the force
applied to the cart, and g = 9.8 m/sec2 is the acceleration
due to gravity. The mass and the coefficient of friction of the
cart are denoted by mc and µc, respectively. The variables
mi, li, θi, and µi stand for the mass, the half of the length,
the angle from the vertical, and the coefficient of friction of
the ith pole, respectively. The effective force from pole i on
the cart is given by F̃i and its effective mass by m̃i. The
signum function sgn “inherits” the unit of measurement of
its argument.

In our benchmark experiments, we use the most com-
mon choices for the parameters of the systems and the most
frequently used numerical solution method, which both de-
pend on the task. In all experiments, mc = 1 kg, m1 =
0.1 kg, l1 = 0.5 m, and the width of the track is 4.8 m. In
the double pole experiments, l2 = 0.1l1, m2 = 0.1m1,
µc = 5 · 10−4 Ns/m and µ1 = µ2 = 2 · 10−6 Nms. The
dynamical system is numerically solved using fourth-order
Runge-Kutta integration with step size τ = 0.01 s. In the
single pole balancing experiments, the equations of motion
are simplified, no friction is considered (e.g., see Whitley
et al., 1993) and the dynamical system is numerically solved
using Euler’s method with time step τ = 0.02 s.

Bibliography

Barto, A. G., R. S. Sutton, and C. W. Anderson (1983). Neuronlike
elements that can solve difficult learning control problems.
IEEE Transactions on Systems, Man, and Cybernetics 13(5),
835–846.

Beyer, H.-G. and H.-P. Schwefel (2002). Evolution strategies: A
comprehensive introduction. Natural Computing 1(1), 3–52.

Chellapilla, K. and D. B. Fogel (1999). Evolution, neu-
ral networks, games, and intelligence. Proceedings of the
IEEE 87(9), 1471–1496.

Gomez, F. J. and R. Miikulainen (1999). Solving non-markovian
tasks with neuroevolution. In T. Dean (Ed.), Proceeding of the

Sixteenth International Joint Conference on Artificial Intelli-
gence (IJCAI), Stockholm, Sweden, pp. 1356–1361. Morgan
Kaufmann.

Gruau, F., D. Whitley, and L. Pyeatt (1996). A comparison be-
tween cellular encoding and direct encoding for genetic neural
networks. In J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L.
Riolo (Eds.), Genetic Programming 1996: Proceedings of the
First Annual Conference, Stanford University, CA, USA, pp.
81–89. MIT Press.

Hansen, N. and A. Ostermeier (1997). Convergence properties of
evolution strategies with the derandomized covariance ma-
trix adaptation: The (µ/µ, λ)-CMA-ES. In 5th European
Congress on Intelligent Techniques and Soft Computing (EU-
FIT’97), pp. 650–654. Aachen, Germany: Verlag Mainz, Wis-
senschaftsverlag.

Hansen, N. and A. Ostermeier (2001). Completely derandomized
self-adaptation in evolution strategies. Evolutionary Computa-
tion 9(2), 159–195.

Igel, C., W. Erlhagen, and D. Jancke (2001). Optimization of dy-
namic neural fields. Neurocomputing 36(1-4), 225–233.

Mandischer, M. (2002). A comparison of evolution strategies and
backpropagation for neural network training. Neurocomput-
ing 42(1–4), 87–117.

Michie, D. and R. A. Chambers (1968). BOXES: An experiment
in adaptive control. In E. Dale and D. Michie (Eds.), Machine
Intelligence 2, Chapter 9, pp. 137–152. Edinburgh, UK: Oliver
& Boyd.

Moriarty, D. E. and R. Miikulainen (1996). Efficient reinforcement
learning through symbiotic evolution. Machine Learning 22,
11–32.

Moriarty, D. E., A. C. Schultz, and J. J. Grefenstette (1999). Evo-
lutionary Algorithms for Reinforcement Learning. Journal of
Artificial Intelligence Research 11, 199–229.

Saravanan, N. and D. B. Fogel (1995). Evolving neural control
systems. IEEE Expert 10(3), 23–27.

Stagge, P. (2001). Strukturoptimierung rückgekoppelter neuro-
naler Netze. Konzepte neuronaler Informationsverarbeitung.
Stuttgart: ibidem-Verlag.

Stanley, K. O. and R. Miikkulainen (2002). Evolving neural net-
works through augmenting topologies. Evolutionary Compu-
tation 10(2), 99–127.

Sutton, R. S. and A. G. Barto (1998). Reinforcement Learning: An
Introduction. MIT Press.

Whitley, D., S. Dominic, R. Das, and C. W. Anderson (1993). Ge-
netic reinforcement learning for neurocontrol problems. Ma-
chine Learning 13(2–3), 259–284.

Wieland, A. (1991). Evolving controls for unstable systems. In
Proceedings of the International Joint Conference on Neural
Networks, Volume II, Seattle, WA, USA, pp. 667–673. IEEE
Press.

Xu, X., H. He, and D. Hu (2002). Efficient reinforcement learning
using recursive least-squares methods. Journal of Artificial In-
telligence Research 16, 259–292.

Yao, X. (1999). Evolving artificial neural networks. Proceedings
of the IEEE 87(9), 1423–1447.

