
UNCORRECTED P
ROOF

NEUCOM1660
pp: 1-15 (col.fig.: Nil)

PROD. TYPE: COM ED: CH

PAGN: Usha.K -- SCAN: Preethi

ARTICLE IN PRESS

Neurocomputing () –
www.elsevier.com/locate/neucom

1

Operator adaptation in evolutionary computation
and its application to structure optimization of3

neural networks
Christian Igela ;∗, Martin Kreutzb5

aInstitut f�ur Neuroinformatik, Ruhr-Universit�at Bochum, 44780 Bochum, Germany
bZN Vision Technologies AG, 44781 Bochum, Germany7

Received 22 October 2001; accepted 8 March 2002

Abstract9

The problem of /nding a suitable neural network topology for a given task is often solved
by evolutionary computation. In this paper, we show empirically that online adaptation of the11
search strategy can increase the performance of evolutionary structure optimization. After a brief
overview of strategy adaptation in evolutionary computation, we present a general method for13
adjusting the probabilities of applying variation operators. In example problems the adaptation
method leads to faster optimization and better solutions when used in structure optimization15
of neural networks. We observe that during the evolutionary process the operator probabilities
change in an intuitive way depending on the task. c© 2002 Published by Elsevier Science B.V.17

Keywords: Evolutionary algorithms; Feed-forward neural networks; Operator probabilities; Strategy
adaptation; Structure optimization19

1. Introduction

The performance of a neural network (NN) depends crucially on the underlying21
network topology. Finding a suitable topology for a given task constitutes a di;cult
structure optimization problem, which has been tackled successfully with evolutionary23
algorithms (EAs) [59,1]. Various EAs for structure optimization exist, but currently
there is no constructive way of adjusting the parameters of these algorithms for a25
given problem, except some general design heuristics [20,54]. However, the ability of

∗ Corresponding author. Tel.: +49-234-32-25558; fax: +49-234-32-14209.
E-mail addresses: christian.igel@neuroinformatik.ruhr-uni-bochum.de (C. Igel), martin.kreutz@zn-ag.de

(M. Kreutz).

0925-2312/02/$ - see front matter c© 2002 Published by Elsevier Science B.V.
PII: S0925 -2312(02)00628 -8

UNCORRECTED P
ROOF

2 C. Igel, M. Kreutz /Neurocomputing () –

NEUCOM1660

ARTICLE IN PRESS

an evolutionary algorithm to adapt its search strategy during the optimization process1
is an important concept in evolutionary computation, see the overviews [3,51,19]. In
this article, a derandomized algorithm that adapts the probabilities of applying variation3
operators is proposed and evaluated in the context of structure optimization of NNs.
In Section 2, we give a brief survey of strategy adaptation in EAs and discuss strategy5

adaptation within the framework of global random search. In Section 3, a method for
adjusting operator probabilities is described. In Section 4, we compare algorithms with7
adaptive and /xed operator probabilities applied to structure optimization of NNs.

2. Strategy adaptation9

Throughout this article, we denote the setting of an EA (i.e., the choice of the varia-
tion operators and their parameters, the population size, . . .) as its search strategy. The11
variables that parameterize the space of search strategies are called strategy parameters.
Online adaptation of these parameters (i.e., during optimization) is important because13
the best setting of an EA is not known a priori for a given task and the optimal search
strategy is usually not constant during the evolutionary process. The latter point is of15
particular importance in the case of non-static /tness landscapes, as considered in [33].
Evolutionary algorithms can be regarded as a class of global random search algo-17

rithms. Let G denote the search (genotype) space and � : G → R a quality (/tness)
function. The general global random search scheme can be described as follows:

19
1. Choose a joint probability distribution P(t)

G� on G�. Set t := 1.

2. Obtain � points g(t)1 ; : : : ; g(t)� by sampling from the distribution P(t)
G� . Evaluate �21

(perhaps with random noise) at these points.
3. According to a /xed (algorithm dependent) rule construct a new probability distri-23

bution P(t+1)
G� on G�.

4. Check for some appropriate stopping condition; if the algorithm has not terminated,25
substitute t := t + 1 and return to step 2.

In an EA, the search distributions P(t)
G� are de/ned by the population 1 and the search27

operators. 2 Sampling the distribution corresponds to generating oHspring. Constructing
a new probability distribution in step 3 corresponds to selection and the update of the29
search strategy. From this point of view, altering the population and altering the search
operators are of equal importance.31

1 There is a growing interest in (evolutionary) algorithms that adapt search distributions not based on the
concept of populations [11,35,38].

2 In some EAs, the distribution P(t)
G� can be factorized as

P(t)
G� (g1; : : : ; g�) = P(t)

G (g1; �(t)) · · ·P(t)
G (g�; �

(t)): (1)

This means, the oHspring are created independently of each other based on the same distribution. In this
case, the above scheme corresponds to global random search as de/ned in [60]. In general P(t)

G� cannot be
factorized as in (1), e.g., when crossover producing multiple oHspring is employed or each parent generates
exactly one oHspring as in Section 4.1.

UNCORRECTED P
ROOF

NEUCOM1660

ARTICLE IN PRESS
C. Igel, M. Kreutz /Neurocomputing () – 3

Strategy adaptation methods can be categorized roughly according to three major1
questions [51]:
What is being adapted? In most cases, the parameters of operators are adjusted, e.g.,3

the mutation distribution (in evolution strategies [41,49,42,50,37,25], in evolutionary
programming [23], or in genetic algorithms by adapting the mutation probabilities [8]),5
recombination [48,53] including linkage learning [26], or acceptance levels in the em-
ployed selection operator [46]. Other parameters that have been adapted include the7
probabilities of applying operators [17,18,34,24,16,56,30,33,28,36], the population size
[52,27], the lifetime of individuals [7], and parts of the encoding [47].9
What is the scope of adaptation? Strategy parameters can refer to diHerent levels; they

can aHect the whole population, single individuals, or components of single individuals.11
Adaptation at the level of the individual is reasonable if diHerent regions in the search
space require diHerent search strategies and there is enough diversity in the population13
for diHerent regions to be explored at the same time. Examples of the adaptation at the
component level are the adjustment of individual step-sizes in evolution strategies and15
the control of the mutation probabilities of the components of /nite state machines in
evolutionary programming [5]. The level depends strongly on what is being adapted—17
for instance the population size should be adapted at the population level. However,
the covariance matrix adaptation proposed in [25] adapts at the population level the19
step sizes, which refer to components of individuals.
How are the changes made? This question can be further subdivided into two ques-21

tions: What is the evidence upon which the adaptation is based and how is the change
of the search strategy carried out? The strategy parameters can be altered in a deter-23
ministic or stochastic way. The adaptation process can be determined by an external
/xed schedule or by a heuristic based on information gathered during the evolutionary25
process, see Section 3. An important concept is self-adaptation [9], which is used in
all main paradigms of evolutionary computation [48,23,8,42,50,22,4]: Some strategy27
parameters are part of each individual and are subject to the same selection process
as the individuals. They can be altered either stochastically by means of mutation and29
recombination or in a deterministic manner.
What little theory exists on strategy adaptation in EAs is mostly in the /eld of evo-31

lution strategies, e.g., there are recent investigations of the inKuence of self-adaptation
on the population mean and variance [12] and convergence [45]. It has been shown33
empirically that the combination of diHerent adaptation strategies can be bene/cial
[10]. Recently, the theoretical link between self-adaptation and non-injective genotype–35
phenotype mappings has been established [55].

3. An algorithm for the adaptation of operator probabilities37

If diHerent operators are employed in an EA, the probabilities of their application
(also called operator /tnesses [18] or operator probabilities) can be regarded as strategy39
parameters, which are suitable for online adaptation. The /rst step is to judge the per-
formance of the operators. In most cases, the performance measure is somehow related41
to (recent) /tness improvements produced by the operator [17,18,34,24,30,33,28,36].

UNCORRECTED P
ROOF

4 C. Igel, M. Kreutz /Neurocomputing () –

NEUCOM1660

ARTICLE IN PRESS

However, other heuristics are reasonable, e.g., in [21] it is suggested to increase the1
mutation rate in cases of a loss of diversity in the population.
An adaptation scheme for operator probabilities based on a performance measure3

should ful/ll the following basic requirements: An operator that has performed better
than another for a certain number of generations should have a higher operator /tness;5
equal performance of two operators should lead to equal operator /tness values. There
should be a minimum probability, say pmin, for each operator to be applied, so that7
no operator, which might be useful at a later stage of the optimization process, may
become extinct. Further, random Kuctuations of the probabilities should be damped.9
The algorithm presented in the remainder of this section takes these requirements into
account.11
The goal is to maximize a /tness function �. Let � be the set of variation operators

and let p(t)
o be the probability that o∈� is chosen at generation t. We consider only13

asexual operators (see [33] for a brief discussion of sexual or panmictic operators in
this context) and suppose that each oHspring is generated in the following way: First,15
a parent is reproduced. Then, the number of mutation operators to be applied consecu-
tively to the reproduced individual is determined. This number can be constant or given17
by a random variable. Then the operators to be applied are selected independently from
� at random, where the operator o has the probability p(t)

o .19
Let O

(t)
o contain all oHspring produced at generation t by an application of the

operator o. If an oHspring is produced by applying more than one operator, then there21
is a “credit assignment” problem. We suggest treating this case as if the oHspring has
been generated several times, once by each of the operators involved. For example, if23
individual g has been generated by consecutive application of the operators oi and oj,
then g is added to O

(t)
oi and O

(t)
oj .25

A quality measure for operators can be based on an elemental real-valued function
q that measures the value of a single modi/cation. One possible choice for such a27
measure, which depends only on the /tness values of the generated oHspring g and of
its parent, has been termed bene4t [56] and is given by29

qB(g) :=max{�(g)− �(parent(g)); 0}: (2)

The function parent : G → G returns simply the parent for a given oHspring. This
de/nition, which is used for operator adaptation in [56,28], can be regarded as a31
combination of the probability of improvement and the expected improvement [42,50].
It is important to consider not only the probability of bene/cial steps: An operator33
that rarely generates large improvements should be rated similarly as an operator that
produces small improvements frequently.35
Another performance measure can be de/ned as

qB∗(g) :=max{�(g)− �(gbest); 0}; (3)

where gbest is the best individual in the current parent population. This measure corre-37
sponds to Davis’ local delta or credit [17,18] and the absolute bene4t [33]. It links the
bene/t to evolvability [2] in the sense that the ability to produce better oHspring than39
the best in the population is rewarded. The absolute bene/t has the following major
drawback: If the problem is di;cult for the EA and oHspring that are better than the41

UNCORRECTED P
ROOF

NEUCOM1660

ARTICLE IN PRESS
C. Igel, M. Kreutz /Neurocomputing () – 5

best are rare, then the absolute bene/t is determined by only a few events and the1
empirical evidence for the adaptation may become unreliable.
As an addition to the rhs of Eqs. (2) and (3), the computational eHort of each3

operator in question has to be considered [33,29], i.e., the quality must be normalized
by the computational costs incurred to achieve it (which may be measured in /tness5
evaluations).
In our operator adaptation algorithm, the operator probabilities are updated every7

� generations. We call this period an adaptation cycle. The quality of an operator o
during � generations measured after generation t is given by9

q(t; �)o :=

∑�−1
i=0

∑
g∈O

(t−i)
o

q(g)∑�−1
i=0 |O(t−i)

o |
: (4)

This means, q(t; �)o measures the average performance achieved by the operator o over an
adaptation cycle. It is convenient to de/ne the quality of all employed search operators11
during a time interval �:

q(t; �)all :=
∑
o′∈�

q(t; �)o′ : (5)

Now we can formulate our algorithm for the adaptation of the operator probabilities.13
For t ¿ 0 the probabilities p(t+1)

o can be calculated as follows:

If tmod �= 0 then
for each o∈� do

p̃(t+1)
o :=

{
� · q(t; �)o =q(t; �)all + (1− �) · p̃(t)

o if q(t; �)all ¿ 0

�=|�|+ (1− �) · p̃(t)
o otherwise

for each o∈� do

p(t+1)
o :=pmin + (1− |�| · pmin)

p̃(t+1)
o∑

o′∈� p̃ (t+1)
o′

else
p(t+1)

o :=p(t)
o15

Here, p̃(t+1)
o is some kind of weighted average of the quality of the operator o,

where the inKuence of previous adaptation cycles decreases exponentially. The rate17
of this decay is controlled by �∈ (0; 1], where � = 1 means that all information from
previous adaptation cycles is ignored. The operator /tness p(t+1)

o is computed from the19
weighted average p̃(t+1)

o , such that all operator probabilities sum to one and are not
lower than the bound pmin ¡ 1=|�|. We initialize p̃(0)

o =p(0)
o for all o∈�. If we have21

no a priori information about the operator performance, we set p(0)
o = 1=|�| for all

o∈�. Setting � = 1 and �= 1 yields the update rule proposed in [28].23
The described algorithm has the following desired properties: 3

3 Note that any sequence an+1 = �x+ (1− �)an converges to x as n → ∞ and �∈ (0; 1] regardless of the
initial value of an.

UNCORRECTED P
ROOF

6 C. Igel, M. Kreutz /Neurocomputing () –

NEUCOM1660

ARTICLE IN PRESS

1. For all o∈� and all generations t it holds p(t)
o ¿pmin.1

2. If o; o′ ∈� and for all generations t ¿ t0
�−1∑
i=0

q(t−i)
o ¿

�−1∑
i=0

q(t−i)
o′

then3

lim
t→∞p(t)

o ¿ lim
t→∞p(t)

o′ :

3. If o; o′ ∈� and for all generations t ¿ t0
�−1∑
i=0

q(t−i)
o =

�−1∑
i=0

q(t−i)
o′

then5

lim
t→∞p(t)

o = lim
t→∞p(t)

o′ :

Note that if all operators have performance 0, then the operator /tness values are
adapted such that they approach equal operator /tness 1=|�|. This is in contrast to the7
algorithm suggested by Davis [18], where in this case the operator probabilities would
not be altered.9
The proposed adaptation algorithm itself has free parameters, namely pmin, � and �.

However, in general the number of free parameters is reduced compared to the number11
of parameters that are adapted. Further, the adaptation adds a new quality to the EA
as the operator probabilities can vary over time. Guidelines for the choice of the new13
parameters exist. The value of � determines how often the operator /tness values are
updated. A larger � leads to a better estimate of the operator performance, because15
� · � · p(t)

o gives the expectation of the number of times an operator o is sampled
between updates (here � is the number of oHspring produced at each generation). The17
damping parameter �, which corresponds to the momentum parameter in some gradient
descent algorithms, is used to control Kuctuations; decreasing � can compensate for19
small �. To our experience, the new parameters are very robust.
Here we do not consider dependencies between operators. There might be operators21

that prepare bene/cial variations and operators that work only in conjunction with
other operators. However, in order to estimate higher order relations between operators23
a large sample is needed, i.e., � · � has to be large. Davis [17,18] proposed a method
where the development of each individual is stored and credit can be passed back to25
preceding variations. Such a mechanism could be added to our algorithm.
Our method is similar to the derandomized adaptation of the Gaussian mutation27

distribution in evolution strategies as proposed in [25]. The adaptation takes place
at the population level and is based on eHects of the operators in the /tness space.29
Further, the adaptation is derandomized in the sense that adaptation is deterministic.
The damping eHect of the momentum term can be compared to the evolution path31
considered in [25]. However, there is a major diHerence between the adaptation of
operator probabilities in discrete optimization and adaptation of mutation distributions33
in real-valued ES: In Rn a search direction exists. Most methods in the area of strategy

UNCORRECTED P
ROOF

NEUCOM1660

ARTICLE IN PRESS
C. Igel, M. Kreutz /Neurocomputing () – 7

adaptation—including ours—assume implicitly that something like a search direction1
exists. For example, adding a particular component once to a chemical plant may be
bene/cial. But does this constitute something like a direction, i.e., does this imply that3
adding more of that component is also bene/cial, or that adding the same component to
other structures represented in the current population is advantageous? In the remainder5
of this study, we show that such a “direction” may exist in structure optimization tasks.
As an example, we consider topology optimization of neural networks.7

4. Experimental evaluation

4.1. Structure optimization of neural networks9

In this investigation, we concentrate on feed-forward neural networks (NNs). Con-
sider a network N with d external inputs and m external outputs consisting of n11
neurons v1; : : : ; vn. Additionally, there is an extra unit v0 with constant output for the
implementation of bias (threshold) parameters. The topology of the network can be13
described by a graph GN = (VN; EN) with vertices VN = {v0; : : : ; vn}. There is an
edge (vj; vi)∈EN iH the neuron vi gets input from neuron vj. A graph representing a15
NN is regarded as valid iH each hidden node (i.e, neither external input nor output)
lies on a path from an external input unit to an external output unit and there are no17
cycles.
In our exemplary topology optimization algorithm, valid networks are encoded using19

a direct encoding, i.e., each connection in the NN is represented explicitly in the
genotype together with the corresponding weights.21
There are three classes of elemental operators (similar to the algorithm proposed in

[6]). First, there are node-altering operators:23

addNode. A new node is added, which gets two inputs and one output connection
obeying the layer restrictions (i.e., a maximum number of layers).25

deleteNode. A hidden node, say va, and all connections to or from va are deleted. If
va was the only input to a hidden node, this node is connected with one27
of the former inputs to va, which is chosen randomly. If after the deletion
a hidden node has no output connection, this node is connected with one29
of the former outputs of va.

Second, connection-altering operators are used:31

addConnection. A forward connection is added obeying the layer restrictions.
deleteConnection. A connection that is not necessary for the network to be valid is33

deleted.

Third, there is an operator that alters only the weights:35

jogWeights. For each weight, a random value is drawn from a Gaussian distribution
with zero mean and variance �2 = 0:1 and added to the weight.37

In every generation, each parent produces one oHspring. Elemental operators are chosen
randomly and are applied to the oHspring. The process of choosing and applying an39

UNCORRECTED P
ROOF

8 C. Igel, M. Kreutz /Neurocomputing () –

NEUCOM1660

ARTICLE IN PRESS

operator is repeated 1 + x times, where x is the realization of a Poisson distributed1
random number with mean �. This procedure inspired by [15] allows for “correlated”
mutations and ensures detection of the optimal structure with probability one assuming3
a /nite structure space [44]. In all our experiments, setting � = 1 yielded signi/cantly
better results than �=0. Hence, in the following only the results for �=1 are reported.5
After mutation, each individual is trained by gradient-based optimization. This learn-

ing phase is stopped either after 100 cycles or when the training progress as de/ned7
in [40] measured after a training strip of length 5 dropped below 0:01 (an algorithm
to adapt the number of training cycles during structure optimization is presented in9
[29]). An improved version of the Rprop algorithm is used for training [43,31,32]. We
use Lamarckian evolution, i.e., inheritance of acquired characteristics [14]: after the11
learning process the weights are stored in the genotype.
The number of hidden layers is restricted to two, i.e., the maximum length of a (di-13

rected) path from an external input to an external output is three. EP-style tournament
selection with /ve opponents is applied to determine the parents for the next generation15
[22].
We would like to emphasize that our investigation focuses on the operator adaptation.17

Rather than being as e;cient as possible, the described algorithm is intended to be
instructive. In particular, we preferred to keep the elemental mutation operators simple19
and to not consider generalization explicitly in our evaluations.

4.2. Test problems21

We use two real-world test problems from the PROBEN1 benchmark collection [39],
namely the diabetes1 and cancer1 data sets. These are binary classi/cation tasks; a23
1-of-2 encoding is used for the output. In the diabetes1 classi/cation problem there are
8 inputs. The training set consists of 384 patterns, where some of the patterns contain25
meaningless zero entries. The cancer1 problem has 9 inputs and the data set consists
of 350 patterns.27
The overall error that determines the /tness of a network N is computed as

E(N) = !Eclass(N) + |EN|+ Emse(N): (6)

Here, Eclass is the classi/cation error after learning has stopped, i.e., the percentage29
of wrongly classi/ed patterns, and Emse is the mean-squared error. The term |EN|
counts the degrees of freedom (DOF) of the network, i.e., the number of weights and31
bias parameters. The weighting factor ! is set to 106 in our experiments, so normally
!Eclass(N)�|EN|�Emse(N). This /tness function is not arbitrary; there are several33
reasons to prefer the smaller of two networks with equal classi/cation error. For exam-
ple, smaller networks can be (re)trained and evaluated faster on sequential hardware,35
may be easier to analyze, and the costs of their hardware implementation may be lower.
Further, there are arguments that smaller networks show better generalization behavior37
(see [13, Chapters 9,10] for references).
We run the structure optimization algorithm for the test problems without operator39

adaptation, with adaptation using the bene/t, and with adaptation using the absolute
bene/t. For each setup 64 independent trials are performed using the same 64 initial-41

UNCORRECTED P
ROOF

NEUCOM1660

ARTICLE IN PRESS
C. Igel, M. Kreutz /Neurocomputing () – 9

izations for the three diHerent algorithms. We assume that there is no prior knowledge1
about how to choose the operator /tness (usually, node-altering operators would be ap-
plied less often than connection-altering ones) and start each trial with equal operator3
probabilities, p(0)

o = 1=|�| for all o∈�.
In the case of the diabetes task, there are 4–6 hidden neurons in the NNs that form5

the initial population. In contrast, the initial populations for the cancer problem contain
networks with 10–20 hidden neurons. The reason for the diHerent initializations is7
that we want to observe diHerent adaptation dynamics; the diHerent initial conditions
have been assigned arbitrarily to the problems. In all the trials with variable operator9
probabilities, we use the same parameters for the adaptation algorithm, where the ad
hoc values � = 4, pmin = 0:1 and � = 0:3 have not been tuned. The population size is11
set to 20.
To get an idea about the magnitude of the overall error, network topologies that13

gave good results in previous investigations (an 8–2–2–2 and a 9–4–2–2 feed-forward
NN with all shortcut connections for diabetes1 and cancer1, respectively [39]) have15
been trained 100 times for 1000 cycles. After every training cycle, we calculated the
overall error Eq. (6). The best result achieved was 143 296 for the diabetes and 581417
for the cancer task. However, the training aimed only at reducing the mean-squared
error and not at optimizing Eq. (6). Therefore, a comparison with the overall error of19
the evolved networks has a bias.

4.3. Results21

The /tness trajectories in Fig. 1 show that the adaptive EAs outperform the static
ones. The medians of the /nal errors of the evolved NNs are much smaller than the23
best results achieved with the standard architectures. Adaptation based on the bene/t,
Eq. (2), tends to be better than adaptation using the absolute bene/t, Eq. (3). How-25
ever, the diHerences are not statistically signi/cant (e.g., Wilcoxon rank sum test 4 in
generation 250, p¿ 0:1). In the case of the diabetes task, the EA using the bene/t27
performs statistically better than the static method (e.g., generation 250, p¡ 0:005).
The other adaptive algorithm also gives better results than the static one (e.g., genera-29
tion 250, p¡ 0:05). In the cancer task, the diHerences between the adaptive EA using
the bene/t and the method using /xed operator probabilities are statistically signi/cant31
(e.g., generation 250, p¡ 0:05).
Looking at the trajectories of the operator probabilities averaged over the 64 trials,33

Figs. 2 and 3, it can be found that the operator /tness values adapt in an intuitive
and task-dependent manner and that their ranking changes during the evolutionary35
process. In the diabetes task, where the initial networks only have few weights, it is
bene/cial to add new nodes and connections to make it easier for the NNs to classify37
more patterns correctly. Fig. 2 shows the diHerent adaptation dynamics dependent on
whether the bene/t or the absolute bene/t is used. When using the bene/t (upper39
plot) the operators’ probabilities stay rather constant after the initial 75 generations. In

4 We prefer the median to visualize the error trajectories because of its higher robustness. The results are
not normally distributed, so the non-parametric Wilcoxon test is used [58].

UNCORRECTED P
ROOF

10 C. Igel, M. Kreutz /Neurocomputing () –

NEUCOM1660

ARTICLE IN PRESS

Fig. 1. Medians of the best individual’s /tness, based on 64 trials per algorithm. The upper /gure corresponds
to the diabetes classi/cation task, the lower to the cancer problem.

contrast, when the absolute bene/t is used, the operator probabilities approach 1=|�|.1
This is because individuals that are /tter than the best individual are generated rarely
in the later stages of evolution and therefore all operators are rated similarly.3
As the initial populations in the cancer task consisted of comparatively large net-

works, there is only a small period of about 20 generations in the beginning during5
which the operators that add DOF are superior. After that, the strategy changes com-
pletely and the operators that reduce the complexity perform better and therefore get7
higher probabilities of application. First, the more drastic deleteNode performs best,
but after about 75 generations, when the average number of nodes of the NNs in the9
population has been adapted and smaller changes of the structures are needed, delete-
Connection becomes more important. This demonstrates the known fact that operators11
may play diHerent roles at diHerent stages of evolution.

UNCORRECTED P
ROOF

NEUCOM1660

ARTICLE IN PRESS
C. Igel, M. Kreutz /Neurocomputing () – 11

Fig. 2. Operator probabilities for the diabetes task averaged over 64 trials. The upper plot shows adaptation
based on the bene/t, the lower one based on the absolute bene/t.

5. Discussion1

In this study, a population level adaptation scheme for operator probabilities is pre-
sented, which combines ideas that have been developed in [18,56,25]. The adaptation3
is deterministic and is based on the /tness improvement induced by the operators.
The algorithm has proven to be bene/cial when used in structure optimization of neu-5
ral networks. Our main /ndings are: structure optimization with operator adaptation
performs statistically signi/cantly better than optimization without operator adaptation.7
The operator probabilities change in an intuitive way during evolution depending on
the task and the initialization of the algorithm. Measuring the /tness improvement over9
the parent tends to give better results than measuring the /tness improvement over the
best individual in the population. A nearly optimal static parameter schedule can be11

UNCORRECTED P
ROOF

12 C. Igel, M. Kreutz /Neurocomputing () –

NEUCOM1660

ARTICLE IN PRESS

Fig. 3. Operator probabilities based on the bene/t for the cancer task averaged over 64 trials.

expected to perform better than any adaptive method, since adaptation takes time to1
gather the information needed for adjusting the strategy. However, the optimal setup of
an EA, which in general changes during the evolutionary process, is usually unknown.3
Although /tness improvement measures only “microscopic” behavior, which may

have no implication on the “macroscopic” behavior of the EA [57], and the concept5
of a “search direction” is di;cult to apply to structure optimization, our experiments
presented here and in earlier work [33] show that the rule of thumb that recent bene-7
/cial modi/cations are likely to be also bene/cial for the population in the following
generations may still be successful in structure optimization scenarios.9

Acknowledgements

We thank Bernhard SendhoH for his comments on the manuscript. We acknowledge
support by the BMBF under grant LOKI, number 01 IB 001C. Christian Igel acknowl-
edges additional support by the DFG under grant Solesys SE 251=41-1. We thank the
John von Neumann Institute for Computing (NIC) in JSulich for the access to their
parallel computer system that made the experiments possible.

References11

[1] J.T. Alander, An indexed bibliography of genetic algorithms and neural networks, Technical Report
94-1-NN, Department of Information Technology and Production Economics, University of Vaasa, 6510113
Vaasa, Finland, 2001.

[2] L. Altenberg, The evolution of evolvability in genetic programming, in: K.E. Kinnear Jr. (Ed.), Advances15
in Genetic Programming, Chapter 3, MIT Press, Cambridge, MA, 1994, pp. 47–74.

[3] P.J. Angeline, Adaptive and self-adaptive evolutionary computations, in: M. Palaniswami,17
Y. Attikiouzel, R. Marks, D.B. Fogel, T. Fukuda (Eds.), Computational Intelligence: A Dynamic Systems
Perspective, IEEE Press, New York, 1995, pp. 152–163.19

UNCORRECTED P
ROOF

NEUCOM1660

ARTICLE IN PRESS
C. Igel, M. Kreutz /Neurocomputing () – 13

[4] P.J. Angeline, Two self-adaptive crossover operations for genetic programming, in: P. Angeline,1
K. Kinnear (Eds.), Advances in Genetic Programming, Vol. 2, MIT Press, Cambridge, MA, 1996.

[5] P.J. Angeline, D.B. Fogel, L.J. Fogel, A comparison of self-adaptation methods for /nite state machines3
in dynamic environments, in: J. Fogel, P.J. Angeline, T. BSack (Eds.), Evolutionary Programming V:
Proceedings of the Fifth Annual Conference on Evolutionary Programming, MIT Press, Cambridge,5
MA, 1996, pp. 441–449.

[6] P.J. Angeline, G.M. Saunders, J.B. Pollack, An evolutionary algorithm that constructs recurrent neural7
networks, IEEE Trans. Neural Networks 5 (1) (1994) 54–65.

[7] J. Arabas, Z. Michalewicz, J. Mulawka, GAVAPS—a genetic algorithm with varying population size,9
in: Proceedings of the First IEEE International Conference on Evolutionary Computation, IEEE Press,
New York, 1994, pp. 73–78.11

[8] T. BSack, Self-adaptation in genetic algorithms, in: F.J. Varela, P. Bourgine (Eds.), Towards a Practice
of Autonomous Systems: Proceedings of the First European Conference on Arti/cial Life, MIT Press,13
Cambridge, MA, 1992, pp. 263–271.

[9] T. BSack, An overview of parameter control methods by self-adaptation in evolutionary algorithms, Fund.15
Inform. 35 (1–4) (1998) 51–66.

[10] T. BSack, A.E. Eiben, N.A.L. van der Vaart, An empirical study on GAs “without parameters”, in:17
M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J.J. Merelo, H.-P. Schwefer (Eds.), Parallel
Problem Solving from Nature—PPSN VI, Lecture Notes in Computer Science, Vol. 1917, Springer,19
Berlin, 2000.

[11] S. Baluja, S. Davies, Using optimal dependency-trees for combinatorial optimization: Learning the21
structure of the search space, in: Proceedings of the Fourteenth International Conference on Machine
Learning (ICML’97), 1997, pp. 30–38.23

[12] H.-G. Beyer, K. Deb, On self-adaptive features in real-parameter evolutionary algorithms, IEEE Trans.
Evol. Comput. 5 (3) (2001) 250–270.25

[13] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, Oxford, 1995.
[14] P.J. Bowler, Lamarckism, in: E.F. Keller, E.A. Lloyd (Eds.), Keywords in Evolutionary Biology, Havard27

University Press, Cambridge, MA, 1992, pp. 188–193.
[15] K. Chellapilla, Evolving computer programs without subtree crossover, IEEE Trans. Evol. Comput. 129

(3) (1998) 209–216.
[16] K. Chellapilla, D.B. Fogel, Exploring self-adaptive methods to improve the e;ciency of31

generating approximate solutions to traveling salesman problems using evolutionary programming, in:
P.J. Angeline, R.G. Reynolds, J.R. McDonnell, R. Eberhart (Eds.), Evolutionary Programming33
VI: Proceedings of the Sixth International Conference on Evolutionary Programming (EP’97), Lecture
Notes in Computer Science, Vol. 1213, Springer, Berlin, 1997, pp. 361–371.35

[17] L. Davis, Adapting operator probabilities in genetic algorithms, in: J.D. SchaHer (Ed.), Proceedings of
the Third International Conference on Genetic Algorithms, Morgan Kaufmann, Los Altos, CA, 1989,37
pp. 61–69.

[18] L. Davis, Hand book of Genetic Algorithms, Chapter 7, Van Nostrad Reinhold, New York, 1991.39
[19] A.E. Eiben, R. Hinterding, Z. Michalewicz, Parameter control in evolutionary algorithms, IEEE Trans.

Evol. Comput. 3 (2) (1999) 124–141.41
[20] M. Emmerich, M. GrSotzner, M. SchSutz, Design of evolutionary algorithms: a case study for chemical

process networks Evol. Comput. 9 (3) (2001) 329–354.43
[21] L.J. Eshelman, J.D. SchaHer, Preventing premature convergence in genetic algorithms by preventing

incest, in: R.K. Belew, L.B. Booker (Eds.), Proceedings of the Fourth International Conference on45
Genetic Algorithms (ICGA’91), Morgan Kaufmann, Los Altos, CA, 1991, pp. 10–19.

[22] D.B. Fogel, Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, IEEE Press,47
New York, 1995.

[23] D.B. Fogel, L.J. Fogel, J.W. Atmar, Meta-Evolutionary Programming, in: R.R. Chen (Ed.), Proceedings49
of 25th Asilomar Conference on Signals, Systems and Computers, Paci/c Grove, CA, 1991,
pp. 540–545.51

[24] D.B. Fogel, A. Ghozeil, Using /tness distributions to design more e;cient evolutionary computations,
in: Proceedings of 1996 IEEE Conference on Evolutionary Computation, Nagoya, IEEE Press,53
New York, 1996, pp. 11–19.

UNCORRECTED P
ROOF

14 C. Igel, M. Kreutz /Neurocomputing () –

NEUCOM1660

ARTICLE IN PRESS

[25] N. Hansen, A. Ostermeier, Completely derandomized self-adaptation in evolution strategies, Evol.1
Comput. 9 (2) (2001) 159–195.

[26] G.R. Harik, D. Goldberg, Learning linkage, in: R.K. Belew, M.D. Vose (Eds.), Foundations of Genetic3
Algorithms 4 (FOGA 4), Morgan Kaufmann, Los Altos, CA, 1997, pp. 247–262.

[27] R. Hinterding, Z. Michalewicz, T. Peachey, Self adaptive genetic algorithm for numeric functions,5
in: H.-M. Voigt, W. Ebeling, I. Rechenberg, H.-P. Schwefel (Eds.), Parallel Problem Solving
from Nature–PPSN IV, Lecture Notes in Computer Science, Vol. 1141, Springer, Berlin, 1996,7
pp. 420–429.

[28] T.-P. Hong, H.-S. Wang, W.-C. Chen, Simultaneously applying multiple mutation operators in genetic9
algorithms, J. Heurist. 6 (4) (2000) 439–455.

[29] M. HSusken, C. Igel, Balancing learning and evolution, in: Genetic and Evolutionary Computation11
Conference (GECCO’02). Morgan Kaufmann, Los Atlos, CA, 2002.

[30] C. Igel, K. Chellapilla, Fitness distributions: Tools for designing e;cient evolutionary computations, in:13
L. Spector, W.B. Langdon, U.-M. O’Reilly, P.J. Angeline (Eds.), Advances in Genetic Programming,
Vol. 3, Chapter 9, MIT Press, Cambridge, MA, 1999, pp. 191–216.15

[31] C. Igel, M. HSusken, Improving the Rprop learning algorithm, in: H. Bothe, R. Rojas (Eds.), Proceedings
of the Second International Symposium on Neural Computation (NC2000), ICSC Academic Press, New17
York, 2000, pp. 115–121.

[32] C. Igel, M. HSusken, Empirical evaluation of the improved Rprop learning algorithm, Neurocomputing,19
2002, in press.

[33] C. Igel, M. Kreutz, Using /tness distributions to improve the evolution of learning structures, in:21
Congress on Evolutionary Computation (CEC’99), Vol. 3, IEEE Press, New York, 1999, pp. 1902–
1909.23

[34] B.A. Julstrom, What have you done for me lately? adapting operator probabilities in a steady-state
genetic algorithm, in: L.J. Eshelman (Ed.), Proceedings of the Sixth International Conference on Genetic25
Algorithms (ICGA’95), Morgan Kaufmann, Los Atlos, CA, 1995, pp. 81–87.

[35] H. MSuhlenbein, T. Mahnig, A.O. Rodriguez, Schemata, distributions and graphical models in27
evolutionary optimization, J. Heurist. 5 (2) (1999) 215–247.

[36] J. Niehaus, W. Banzhaf, Adaption of operator probabilities in genetic programming, in: J.F. Miller,29
M. Tomassini, P.L. Lanzi, C. Ryan, A.G.B. Tettamanzi, W.B. Langdon (Eds.), Genetic Programming,
Proceedings of EuroGP’2001, Lecture Notes in Computer Science, Vol. 2038, Springer, Berlin, 2001,31
pp. 325–336.

[37] A. Ostermeier, A. Gawelczyk, N. Hansen, A derandomized approach to self-adaptation of evolution33
strategies, Evol. Comput. 2 (4) (1995) 369–380.

[38] M. Pelikan, D.E. Goldberg, E. CantXu-Paz, Linkage problem, distribution estimation, and Bayesian35
networks, Evol. Comput. 9 (2000) 311–340.

[39] L. Prechelt, PROBEN1—A set of benchmarks and benchmarking rules for neural network training37
algorithms, Technical Report 21=94, FakultSat fSur Informatik, UniversitSat Karlsruhe, 1994.

[40] L. Prechelt, Automatic early stopping using cross validation: quantifying the criteria, Neural Networks39
11 (4) (1998) 761–767.

[41] I. Rechenberg, Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien der Biologischen41
Evolution, Werkstatt Bionik und Evolutionstechnik, Frommann-Holzboog, Stuttgart, 1973.

[42] I. Rechenberg, Evolutionsstrategie ’94, Werkstatt Bionik und Evolutionstechnik, Frommann-Holzboog,43
Stuttgart, 1994.

[43] M. Riedmiller, H. Braun, A direct adaptive method for faster backpropagation learning: the RPROP45
algorithm, in: Proceedings of the IEEE International Conference on Neural Networks, IEEE Press,
New York, 1993, pp. 586–591.47

[44] G. Rudolph, Convergence Properties of Evolutionary Algorithms, KovaYc, Hamburg, 1997.
[45] G. Rudolph, Self-adaptive mutations may lead to premature convergence, IEEE Trans. Evol. Comput.49

5 (4) (2001) 410–414.
[46] G. Rudolph, J. Sprave, A cellular genetic algorithm with self-adjusting acceptance threshold, in:51

Proceedings of the First IEE=IEEE International Conference on Genetic Algorithms in Engineering:
Innovations and Applications, IEE, New York, 1995, pp. 365–372.53

UNCORRECTED P
ROOF

NEUCOM1660

ARTICLE IN PRESS
C. Igel, M. Kreutz /Neurocomputing () – 15

[47] C.G. Schaefer, The ARGOT strategy: Adaptive representation genetic optimizer technique, in: J.J.1
Grefenstette (Ed.), Proceedings of the Second International Conference on Genetic Algorithms and
Their Applications (ICGA’87), Lawrence Erlbaum Associates, 1987, pp. 50–55.3

[48] J.D. SchaHer, A. Morishima, An adaptive crossover distribution mechanism for genetic algorithms,
in: J.J. Grefenstette (Ed.), Proceedings of the Second International Conference on Genetic Algorithms5
(ICGA’87), Lawrence Erlbaum Associates, 1987, pp. 36–40.

[49] H.P. Schwefel, Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie,7
Interdisciplinary Systems Research, Vol. 26, BirkhSauser Verlag, Basel, 1977.

[50] H.-P. Schwefel, Evolution and Optimum Seeking, Wiley, Inc., New York, 1995.9
[51] J.E. Smith, T.C. Fogarty, Operator and parameter adaptation in genetic algorithms, Soft Comput. 1 (2)

(1997) 81–87.11
[52] R.E. Smith, E. Smuda, Adaptively resizing populations: Algorithm, analysis and /rst results Complex

Systems 9 (1) (1995) 47–72.13
[53] W.M. Spears, Adapting crossover in evolutionary algorithms, in: J.R. Mc-Donnell, R. Reynolds, D.B.

Fogel (Eds.), Proceedings of the Fourth Annual Conference on Evolutionary Programming, MIT Press,15
Cambridge, MA, 1995, pp. 367–384.

[54] P. Stagge, C. Igel, Neural network structures and isomorphisms: Random walk characteristics of the17
search space, in: X. Yao, D.B. Fogel (Eds.), IEEE Symposium on Combinations of Evolutionary
Computation and Neural Networks (ECNN 2000), IEEE Press, New York, 2000, pp. 82–90.19

[55] M. Toussaint, C. Igel, Neutrality: a necessity for self-adaptation, in: IEEE Congress on Evolutionary
Computation 2002 (CEC 2002), IEEE Press, New York, 2002.21

[56] A. Tuson, P. Ross, Adapting operator settings in genetic algorithms, Evol. Comput. 6 (2) (1998) 161–
184.23

[57] I. Wegener, On the design and analysis of evolutionary algorithms, in: Workshop on Algorithm
Engineering as a New Paradigm, Kyoto University, Japan, 2000, Research Institute for Mathematical25
Science, 2000, pp. 36–47.

[58] F. Wilcoxon, Individual comparison by ranking methods, Biometr. Bull. 1 (1945) 80–83.27
[59] X. Yao, Evolving arti/cial neural networks, Proc. IEEE 87 (9) (1999) 1423–1447.
[60] A.A. Zhigljavsky, Theory of Global Random Search, Kluwer, Dordrecht, 1991.29

Christian Igel received the diploma degree in computer science from the University
of Dortmund, Germany, in 1997. He is currently a research staH member with31
the Institut fSur Neuroinformatik, Ruhr-UniversitSat Bochum, Germany. His research
focuses on biological and technical aspects of neural and evolutionary information33
processing.

Martin Kreutz was born in Hannover, Germany, on 28 January 1968. He graduated35
with a diploma in computer Science from the University of Dortmund, Germany,
in 1994. In September 1999 he received his doctoral degree in computer science37
from the University of Dortmund, Germany. From 1994 to 1999 he worked as a
research staH member at the Institut fSur Neuroinformatik, Ruhr-UniversitSat Bochum,39
Germany. He joined the ZN Vision Technologies AG, Germany, in April 1999 and
is currently involved in the development of advanced diagnostic tools for medical41
applications. His current research interests are in the areas of computer vision,
statistics, and evolutionary optimization.43

	Operator adaptation in evolutionary computation and its application to structure optimization of neural networks
	Introduction
	Strategy adaptation
	An algorithm for the adaptation of operator probabilities
	Experimental evaluation
	Structure optimization of neural networks
	Test problems
	Results

	Discussion
	Acknowledgements
	References

