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Abstract— Predicting the three-dimensional structure of a
protein from its amino acid sequence is an important problem
in bioinformatics and a challenging task for machine learning
algorithms. We describe an application of feed-forward neural
networks to the classification of the protein fold class given
the primary sequence of a protein. Different feature spaces for
primary sequences are investigated, a tailored early-stopping
heuristic for sparse data is introduced, and the achieved pre-
diction results are compared to those of various other machine
learning methods.

I. INTRODUCTION

Resolving the biological function of proteins is an important
task in bioinformatics. All proteins are made up of linear
chains of amino acids. The sequence of amino acids—the pri-
mary sequence / structure—dictates the way in which the linear
chain folds into a complex three-dimensional spatial structure,
which determines the function of the molecule. Knowing the
spatial structure of a protein is therefore necessary for the
understanding of cellular function, evolutionary studies, drug
design, artificial synthesis of proteins with desired proper-
ties in general, etc. While genome sequencing provides data
about primary protein sequences, there is no practical way to
compute the tertiary (spatial) structure from these sequences.
However, some protein structures have been experimentally
resolved and can function as templates for other sequence-
structure examinations, e.g., by using them as training samples
for machine learning algorithms. Starting from the work of [1],
neural networks (NNs) have frequently been applied to protein
structure prediction. Early studies concentrated on classifying
the secondary protein structure using NNs [1], [2], [3], [4],
[5], [6], [7]. Then NNs and other machine learning methods
were also applied to determine the fold class of proteins [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17]. A fold class
contains proteins that have tertiary structures with similar
backbones. Recent publications propose to use Support Vector
Machines (SVMs) for fold class prediction as they showed
superior performance compared to NNs [11], [15]. However,
in most of the experiments using NNs for protein structure
classification little care was taken to build well generalizing
models, e.g., by using an appropriate regularization method.

In the following, we apply standard feed-forward NNs to
assign primary sequences of proteins to one out of 42 fold
classes. No additional information about associated physio-
chemical properties are considered, although this would lead
to an increase of classification accuracy (e.g., see [11]).
We use early-stopping for implicit regularization to improve
the generalization properties of the NNs [18]. In section II,
we describe the representation of amino acid sequences by
dipeptide-frequencies and present a new, lower dimensional
encoding. Then we propose an early-stopping variant in the
case of sparse training data. In section IV, we empirically
evaluate our NN approach and the new encoding. The results
are compared to those reported in the literature.

II. EMBEDDING OF SEQUENCE DATA

We consider the problem of assigning a primary sequence
of a protein to one out of 42 fold classes [12], [15], i.e., classes
of tertiary structures with similar backbones. Let Pk with

Pk = (sk
1 , . . . , sk

qk
) with sk

i ∈ {A1, . . . , A20} ∪ {∗} , (1)

be the primary sequence of a protein k with length qk, where
A1, . . . , A20 denote the 20 amino acids and “∗” stands for an
incorrect or misclassified amino acid.

The primary sequences of the proteins have different
lengths, but for the processing with most machine learning
algorithms an embedding in a fixed-dimensional input space,
the feature space, is necessary. Common, length-invariant—
but also (almost) position-invariant—encodings are based on
n-gram methods [13], where the occurrences of patterns of n

consecutive residues in a sequence string are counted. Typi-
cally, each sequence k is represented by its relative dipeptide-
frequency [8], [19], a 400-dimensional real-valued vector with
components
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for i, j ∈ {1, . . . , 20}. That is, hk
ij corresponds to the relative

frequency of how often Ai is followed by Aj in Pk. In order
to reduce the dimensionality of the feature space, in [12]



a principal component analysis is applied and the input is
restricted to the first 74 principal components.

We propose an alternative, low-dimensional representation
by a 210-dimensional real-valued vector with components
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for i, j ∈ {1, . . . , 20} and i ≤ j. In this embedding, the order
of the amino acids within the dipeptides is neglected, i.e.,
h̃k

ij corresponds to the relative frequency of how often Ai is
followed by Aj or Aj is followed by Ai in Pk.

III. EARLY-STOPPING AND SPARSE DATA

The goal of NN training is not to learn the training patterns
by heart, but to find a statistical model for the underlying
relationship between input and output data. Such a model will
generalize well, that is, will make good predictions for cases
other than the training patterns (e.g., will classify unknown
primary sequences correctly). A critical issue is therefore to
avoid overfitting during the learning process: the NN should
just fit the signal and not the noise [20]. This is usually done
by restricting the effective complexity of the network, for
example by regularization of the learning process. A common
implicit regularization method is early-stopping [21], [18].
Early-stopping prevents overfitting in the following way: The
data Dtrain available for training is split into two sets Dlearn

and Dvalidate. Training of the NN is done by minimizing an
appropriate error measure on Dlearn. During optimization, the
error on the independent data set Dvalidate is monitored. For
the final model those parameters (i.e., weights) are selected
that have yielded minimum error on Dvalidate (e.g., see [21]).

However, this method is problematic when Dtrain is too
small and one cannot afford to leave out samples for training
because subsets of Dtrain would not accurately enough charac-
terize the underlying data distribution. In this case, we propose
a two stage training process: First, the network is trained on
Dtrain until the classification error on Dlearn vanishes (or falls
below some predefined threshold). Then training is continued
on Dlearn until generalization loss (i.e., an error increase) is
observed on Dvalidate. The weight configuration yielding the
smallest error on Dvalidate is taken as the final outcome of the
training process.

IV. EXPERIMENTAL EVALUATION

A. Performance Comparison

For comparison of our NN approach to results in the
literature, we used the same data and basically the same per-
formance measures as in [12], [15]. The 268 sample patterns of
primary sequences with corresponding fold classes are taken
from the database for expected fold classes (DEF, [8], [19]).

Two measures for assessing the performance of different
machine learning methods for fold class prediction have been
used in [12], [15]. First, the available data are split as described
in [12] into a set Dtrain of patterns available for training and
a disjoint test set Dtest, consisting of 143 and 125 patterns,

respectively. Only Dtrain is used for building the statistical
model (e.g., adapt the weights of a NN), whose prediction
performance is measured on Dtest afterwards. In our experi-
ments, training and test set are exactly the same as in [15].

Second, the 10-fold cross-validation error, 10-CV, is com-
puted. That is, the available data are split into 10 disjoint
subsets. For each subset i, the other 9 subsets are used for
building a statistical model which is then tested on subset i.
The final 10-CV error is the average classification error over
these 10 test errors. When computing the 10-CV error for
NNs that are trained using early-stopping for regularization as
described above we have two nested validation criteria. Note
that our partitioning of the data into ten subsets need not be
the same as in [12], [15]—this weakens the comparison.

B. Neural Network Architectures and Training

Standard NNs with a single hidden layer and shortcut
connections (i.e., connections from the inputs directly to the
outputs) were employed for classification [21]. We used a 1-
of-42 output encoding and set ad hoc the number of hidden
neurons to 10. Depending on the feature space, this yields
a 400-10-42 or a 210-10-42 architecture. This means, the
network has by far more weights than training patterns are
available. However, the generalization performance of NNs is
surprisingly insensitive to excess capacity, see [22] and [23]
for theoretical and empirical studies, when combined with an
appropriate regularization method. For example, early stopping
in conjunction with a suitable learning algorithm starting from
small initial weights can ”be used to stop training large nets
when they have learned models similar to those learned by
smaller nets of optimal size” [22]. Here, an improved version
of the Rprop learning algorithm was used for training [24],
[25]. The weights are optimized with respect to the mean
squared error (MSE), however, in the following all results refer
to classification errors when not indicated otherwise.

For early-stopping as described in section III, we split
Dtrain randomly (but ensuring an as equal distribution of the
classes as possible) into Dlearn and Dvalidate with 97 and 50
patterns, respectively. As we have only 143 training patterns
for discriminating 42 classes, it is problematic to restrict the
complete training process to a subset of Dtrain, i.e., early
stopping can not be applied in the standard way. Thus, we
used the two-stage training process as described above. The
weight configuration with the smallest MSE on Dvalidate among
those with the smallest classification error on Dtrain is selected
as the outcome of the training process.

For the 10-fold cross-validation, where more data points are
available for each training process, there was no need to apply
the two stage training procedure. In addition, the classification
error could not be reduced to zero for every training sample
and hence an additional threshold parameter for switching
between the two stages would have become necessary. Hence,
standard early-stopping was used for regularization when
determining the 10-CV results.



C. Results

In [12], 11 different classification methods were applied to
the described data including linear and quadratic discriminant
analysis, and k nearest neighbor classification. Support Vector
Machines (SVMs, see [26], [27]) with different kernels were
used in [15]. An SVM with radial basis function (RBF) kernel
gave the best classification results in the two data sets scenario,
an SVM with polynomial kernel yielded the lowest 10-CV
error.

TABLE I

RESULTS GIVEN IN [12], [15] FOR SUPPORT VECTOR MACHINES (SVMS)

WITH A RADIAL BASIS FUNCTION (RBF) KERNEL AND POLYNOMIAL

KERNELS OF DEGREES 1, 2, AND 3 (POLY1, POLY2, POLY3), k NEAREST

NEIGHBOR (kNN) CLASSIFICATION, AND LINEAR AND QUADRATIC

DISCRIMINANT ANALYSIS (LDA, QDA). GIVEN ARE THE APPARENT

PREDICTION ERROR (APE) ON DTRAIN , THE TEST PREDICTION ERROR

(TPE) ON DTEST , AND THE 10-FOLD CROSS-VALIDATION CLASSIFICATION

ERROR (10-CV).

error (%) kNN LDA QDA SVM
RBF Poly1 Poly2 Poly3

APE (Dtrain) 0.0 0.0 0.0 0.0 0.0 4.2 1.4
TPE (Dtest) 33.6 34.4 83.2 23.2 28.8 32.0 32.8
10-CV 34.0 30.2 38.4 30.2 29.1 35.0 34.2

TABLE II

RESULTS FOR THE TWO FEATURE SPACES ACHIEVED BY THE NEURAL

NETWORKS IN OUR STUDY. GIVEN ARE THE MEAN ± STANDARD

DEVIATION AND THE MEDIAN OF THE APPARENT PREDICTION ERROR

(APE) ON DTRAIN , THE TEST PREDICTION ERROR (TPE) ON DTEST , AND

THE 10-FOLD CROSS-VALIDATION CLASSIFICATION ERROR (10-CV). ALL

RESULTS ARE BASED ON 20 TRIALS.

error (%) NN
dimension 400 dimension 210

average ± sd. median average ± sd. median
APE (Dtrain) 0.0 0.0 5.1 ± 15.9 0.0
TPE (Dtest) 23.2 ± 1.7 22.4 26.8 ± 12.6 22.8
10-CV 27.2 ± 0.7 27.3 26.8 ± 1.0 26.7

For each feature space (400 and 210 inputs) and each
performance measure (single test and training data set as well
as 10-fold cross-validation) NNs starting from 20 independent,
small random weight initializations were trained for 80 iter-
ations. The outcomes of our experiments are shown in table
II and figure 1, selected results from [12], [15] in table I.
As obvious from figure 1 and confirmed by statistical tests,
the results cannot be assumed to be normally distributed in
most of the scenarios; many ties make the application of
standard rank-sum-tests problematic. Hence, we decided not to
present results from common statistical tests (although t-tests
supported our conclusions).

Let us first consider the classification errors on a single
test set Dtest (the test prediction errors, TPEs). For both input
dimensions most of the NN trials (including the one with the
lowest MSE, i.e., the statistical model one would pick from
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Fig. 1. Histograms of the results achieved by the neural networks in our
study, see caption of table II.



the 20 possible) yielded a better classification error on the test
set than the SVMs. The best TPEs of the NNs are 20.8 %
and 22.4 % for input dimension 210 and 400, respectively,
compared to 23.2 % reported for the best SVM in [15].

For input dimension 400, all trials classified the complete
training set correctly (i.e., the apparent prediction errors,
APEs, vanished). When the input dimension was reduced, two
trials did not reach zero classification error. These two trials
led to models with extremely bad classification rate on the test
set (58.4 % and 68.0 %, respectively). They are responsible for
the bad average result and large difference between median
and average for input dimension 210. We conclude that one
does not get worse NN classifiers with the reduced dimension,
but the training process becomes less robust. This is also
reflected by the standard deviations of the results, see table
II.

The 10-CV results of the NNs are superior to those reported
for other machine learning methods so far. The performance
of the networks appears to be slightly better when neglecting
the order of the amino acids. The 10-CV errors of the best
NNs are 25.8 % and 24.7 % for input dimension 400 and 210,
respectively, the medians are 27.3 % and 26.7 %. The best
SVM in [15] achieved a 10-CV error of 29.1 %.

V. DISCUSSION & CONCLUSIONS

Our experiments showed that standard feed-forward neural
networks combined with an appropriate regularization scheme
can classify the fold class of a protein given solely its primary
sequence at least as good as other machine learning methods
that have been applied to this problem [12], [15]. They clearly
outperformed standard statistical approaches (like the nearest
neighbor method etc. [12]) and did not perform worse than
Support Vector Machines (SVMs). In particular, our 10-fold
cross-validation results are better than those reported for SVMs
in [15]. Note that it is sufficient to train a single NN for a few
generations to get these results, whereas 42 SVMs have to
be built for the one-against-all multiple-class discrimination
approach in [15].

We proposed a two stage learning process when using early-
stopping in the case of sparse training data, where first the
training patterns are used completely for gradient calculation
and are then split into a training and validation data set. This
general heuristic led to good generalizing neural networks and
is promising for other bioinformatics applications where the
available training data are sparse.

We compared two embeddings of the primary sequences of
the proteins, namely the relative dipeptide-frequency with and
without considering the order of the amino acids within the
dipeptides. Surprisingly, the reduction of the input dimension
(i.e., throwing away all information about positions) did not
lead to worse prediction results. Thus it appears that the
order of the amino acids when computing relative dipeptide-
frequencies does not contain information about the fold class
that can be exploited by neural networks. This may carry over
to other machine learning approaches and therefore the new

embedding could be an appropriate way to reduce the input
dimension for other methods applied to this task.
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