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Abstract. The autonomous mobile robot ARNOLD uses information from a stereo camera system for navigating

in an unknown and dynamically changing environment. A method called Inverse Perspective Mapping (IPM) is

used for visual obstacle detection. The performance of this algorithm depends on the quality of the internal camera

model. In this paper we employ an Evolutionary Algorithm (EA) to improve the parameters of this model. We

use a derandomized evolution strategy called (µ/µI , λ)-CMA, which adapts the complete covariance matrix of the

mutation distribution. After descriptions of the IPM and the CMA, we show that the proposed optimization method

leads to better parameter settings than adjustment by an expert.
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1. Introduction. The control of an autonomous mobile robot in an unknown and dy-

namically changing environment using an active stereo vision system requires fast and reli-

able obstacle detection. For this task we employ a method called Inverse Perspective Mapping

(IPM) [16, 3], which has been implemented on our autonomous mobile robot ARNOLD (see

Fig. 1.1) developed in the framework of NEUROS (NEUral RObot Skills) [5]. The IPM pro-

vides information about obstacles in the environment of the robot. This information is used

by dynamical systems for navigating ARNOLD under obstacle avoidance [11, 8]. The field

of application of the IPM is not limited to robotics, e.g., the algorithm is also used for the

detection of walking pedestrians in driver assistance systems [9, 10].

FIGURE 1.1. Robot Arnold

The idea of the IPM is to map the view

of the one camera onto the view of the other.

The mapping relies on a camera model and

the corresponding internal and external pa-

rameters. Therefore the quality of the IPM

depends on these hard to determine system

parameters.

Evolutionary algorithms (EAs), i.e., the

family of algorithms mimicking mecha-

nisms of natural evolution, have proven to

be powerful tools for solving multi-modal,

non-linear and non-differentiable optimiza-

tion tasks [1]. In this article we employ an

elaborated evolution strategy (ES) [18, 19]

for finding the parameters of our camera

model with the required accuracy needed for

the IPM. The algorithm, called covariance

matrix adaption ES, implements the concept

of derandomized self-adaptation of arbitrary

normal mutation distributions [13, 12].

An error function that measures the

quality of camera parameter settings is de-

signed. We experimentally show that the
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evolved results decrease the initial error to 7.5% on average. In comparison, even the expert

who had implemented the IPM could only decrease the error to 50% by tuning the parameters

manually.

In the next section, the IPM is introduced. In §3 we describe the employed EA in detail.

The experimental results are shown in §4. The last section draws a conclusion.

2. Inverse Perspective Mapping.

2.1. Introduction. Visual obstacle detection for mobile robots can be achieved by ob-

serving the floor in front of the robot from two different camera perspectives and comparing

the image contents. A solution of this correspondence problem by image correlation is suit-

able to construct a 3D representation of the scene and thus to detect obstacles. The drawback

of this method is the high computational expense. Since a complete 3D representation is not

required but only a segmentation into free and blocked areas of the floor plane, it is sufficient

to test the hypothesis of a horizontal floor plane in front of the robot. A suitable mathematical

camera model and complete knowledge of all internal and external parameters of the stereo

camera system allows to reconstruct the texture of the floor from the camera image. In the

same way this texture can be mapped back to the camera image by a sequence of image trans-

formations. Therefore, it is possible to predict the contents of the left camera image from the

right camera image, at least for the so called binocular range, i.e., the part of the floor that

is visible in both camera images. A comparison of the predicted content of the left camera

image with an acquired image by simply subtracting the grey-level values shows deviations at

all points where the hypothesis of a free way is violated. Thresholding the difference image

leads to a segmentation of the camera image into obstacles and free space. This technique of

a purposeful change of perspective is called Inverse Perspective Mapping (IPM) [15, 3].

In practice it is crucial to find good values for the required camera parameters that are

needed for the mapping. Especially when the system is stressed mechanically, e.g., by vi-

brations of the moving robot, a regular re-tuning of the parameters is necessary to achieve a

small remaining error in the image mapping. There exist standard methods for estimating the

internal and external camera parameters with reasonable effort [20]. Problems arise if these

methods require a test pattern that is presented close to the cameras: Observing a real scene

requires a different setting of aperture and focus than the test pattern. This slightly affects

the internal camera parameters and leads to insufficient performance of the obstacle detection

scheme. An experienced user is able to improve the mapping by observing the difference

image and by fine tuning several parameters since he qualitatively knows the effect of the dif-

ferent parameters. This work is unsatisfactory and time-consuming. Standard optimization

methods like estimated gradient descent or canonical simulated annealing turned out to be

ineffective or inefficient. This makes an alternative automatic and systematic technique for

finding good parameter settings very attractive.

2.2. Calculating the Mapping. The mappings between image coordinates and world

coordinates contain a non-linear part, which models the radial lens distortion, and a linear

part, which models the perspective image transformation assuming a pinhole camera.

The radial lens distortion of typical cameras can be modeled as a radial shift of the image

content as it was projected on the camera target according to the pinhole camera model [20].

This shift from undistorted to distorted target coordinates is given by

xu = xd(1 + k1 |xd|2 + k2 |xd|4 . . . ) , (2.1)

where xu denotes the undistorted target coordinate and xd is the corresponding distorted

coordinate on the CCD-target. In practice it is sufficient to consider only the first term de-
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pending on k1 since this adequately models most off-the-shelf cameras. Moreover, the higher

coefficients are hard to determine with good accuracy by the existing calibration mechanisms.

For this case the distorted image coordinates can be mapped to undistorted ones by

xu = Sdu(xd, k)xd (2.2)

with

Sdu(xd, k) = k|xd|2 + 1 (2.3)

and

|xd| =
√

x2
d,1 + x2

d,2 . (2.4)

The inverse operation requires to solve the reduced form of a cubic polynomial of the

form x3 + px + q = 0. This can be done using Cardano’s formula [21] and shall be given

here by

xd = Sud(xu, k)xu . (2.5)

Please refer to [3] for details. Homogeneous coordinates and transformations are used to

combine all linear transformations by a simple concatenation of matrix multiplications [2].

Subsequently a translation in 3D with (x, y, z)T is given by the 4 × 4-Matrix T(x, y, z), a

rotation around the x-axis with angle α by Rx(α). Scaling the cartesian dimensions with sx,

sy and sz is done by a multiplication with S(sx, sy, sz). The perspective projection is defined

as a mapping of cartesian points onto a plane that is perpendicular to the z-axis with distance

f from the origin. This transformation is given by a multiplication with P(f).
In order to describe points in the world an arbitrarily chosen world coordinate system

(xw, yw, zw)T ∈ IR3 is defined. The 3D camera coordinate system (xc, yc, zc)
T ∈ IR3 is

defined such that the zc-axis and the optical axis are identical and the xc-axis is collinear with

the rows of the CCD (fig. 2.1). World coordinates are transformed into camera coordinates

by applying a translation T(dx, dy, dz) and three rotations Rx(−αx), Ry(−αy), Rz(−αz).
Once the world points have been transformed into the camera coordinate system they can be

projected onto the target using the perspective projection P(f), where f is the camera’s focal

length. Thus the mapping

M1 = T(dx, dy, dz)Rz(−αz)Ry(−αy)Rx(−αx)P(f) (2.6)

transforms a world point (xw, yw, zw)T to undistorted target coordinates (xtu, ytu)
T by

Th = (xw, yw, zw, 1)M1 (2.7)

(xtu, ytu)
T = (Th,1/Th,4, Th,2/Th,4)

T . (2.8)

Applying the radial lens distortion using equation (2.5) to calculate the distorted target coor-

dinates (xtd, ytd)
T gives

(xtd, ytd)
T = Sud((xtu, ytu)

T , k)(xtu, ytu)
T . (2.9)

The last part of the model is the acquisition process of the CCD and the frame-grabber to

transform the target coordinates to pixel positions in the acquired image. The required pa-

rameters are the dimensions of the physical sensor elements dsx and dsy, the horizontal scal-

ing factor sx, and the optical image center (cx, cy)T . Since in analog camera/frame grabber
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FIGURE 2.1. World- and camera coordinate systems for two cameras A and B.

setups the image content of the CCD’s rows are converted into an analog signal and are re-

sampled by the frame grabber the images may be scaled horizontally. Thus the horizontal

scaling factor is the ratio of the camera’s pixel clock frequency and the frame grabber’s scan

frequency. The optical image center denotes the pixel coordinate lying on the optical axis

and which is usually not identical with the geometric image center. Thus the pixel vector

corresponding to the world coordinate (xw , yw, zw)T is

(Ix, Iy)T =

(
xtdsx/dsx + cx

−ytd/dsy + cy

)

. (2.10)

A second mapping transforms pixel vectors into world coordinates. The mapping de-

scribed above does not require any assumption about the scene since it maps arbitrary world

points to the image plane. Such a model of the world is required now as a target for the re-

verse mapping. Here the plane z = 0 of the world coordinate system is taken as the projection

target.

Most of the following calculation steps invert the steps described above. First the pixel

positions are mapped to distorted target coordinates:

(xtd, ytd)
T =

(
(Ix − cx)dsx/sx

−(Iy − cy)dsy

)

(2.11)

Using equation (2.2) the radial lens distortion with

(xtu, ytu)
T = Sdu((xtd, ytd)

T , k)(xtd, ytd)
T (2.12)

is undone. The origin will later be the center of the perspective projection so the camera target

must be shifted along the optical axis for the focal length f by T(0, 0,−f). The camera

target is now rotated such that it is parallel with the plane z = 0 by applying the rotations

Rx(αx), Ry(αy) and Rz(αz). The perspective projection P(−dz) then maps the image

onto the target plane z = 0. Finally, the translation T(−dx,−dy,−dz) shifts the image to

the world coordinate system. The resulting mapping from undistorted target coordinates to
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world coordinates is

M2 = Rx(αx)Ry(αy)Rz(αz)P(−dz)T(−dx,−dy,−dz) (2.13)

with

Wh = (xtu, ytu, 0, 1)M2 (2.14)

and

(xw , yw, zw)T = (Wh,1/Wh,4, Wh,2/Wh,4, Wh,3/Wh,4)
T . (2.15)

To compare two images that were taken from different perspectives with reference to the

floor plane, the mappings described above must be parameterized for the two cameras. This

will be indicated by the additional indices A and B in the following formulas. For instance

(xtu,A, ytu,A)T is the undistorted target vector of the source camera and (xtu,B , ytu,B)T is the

undistorted target vector of the target camera. M2,A is the matrix M2 parameterized for

camera A and M1,B is the matrix M1 parameterized for camera B.

Fig. 2.2 shows the steps to determine the corresponding pixel position (Ix,B , Iy,B)T in

the image of camera B for a given pixel position (Ix,A, Iy,A)T in the image of camera A.

Fig. 2.3 shows an example of an image acquired with camera A and an image the content of

which was mapped from camera B to the perspective of camera A.

To optimize the parameters of the IPM it is crucial to avoid pairs of parameters that are

redundant with respect to the error function chosen. For instance the quality of the mapping is

independent of the camera’s absolute position in the world. Instead of the six spatial coordi-

nates of the cameras we only choose the reference vector from camera A to camera B and the

height of camera A over the floor as candidate parameters for the optimization. Furthermore

we exclude parameters that are known with good accuracy. The 16 parameters that are to be

optimized are

• the pan, tilt and roll angles of both cameras (αx,A, αy,A, αz,A, αx,B, αy,B , αz,B),

• the image center of both cameras in pixel coordinates (cx,A, cy,A, cx,B , cy,B),

• the focal lengths of both cameras (fA, fB),

• the coefficients of radial distortion for both lenses (kA kB),

• and the height and base width of the camera system (dz, dy,A − dy,B).

3. Evolution Strategy with Derandomized Self-Adaptation.

3.1. Evolutionary Algorithms. Evolutionary Algorithms (EAs) are a class of direct

optimization methods inspired by natural evolution. Like artificial neural networks applied

to technical tasks, EAs—and in particular the sophisticated evolution strategy used in this

investigation—only make use of some basic biological concepts and combine them with clas-

sical mathematical and engineering approaches.

A typical EA starts with a parent population of individuals each representing a trial so-

lution of the problem at hand. Each individual is assigned a fitness that is determined by the

quality of the solution it represents. A so called offspring population of new individuals is

generated by stochastically altering individuals from the parent population. Then the quality

of each new solution is determined. A selection mechanism that prefers solutions with better

fitness values chooses the individuals that constitute the next parent population. This (easily

to parallelize) loop of creating new individuals from the parents, fitness evaluation, and selec-

tion is iterated until a termination criterion is fulfilled, e.g., a suitable solution is found or a

certain amount of computation time has been consumed. Each pass through the loop is called

a generation.
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Repeat the following steps for every pixel position in image 1. Create a lookup table

which holds the pixel correspondences that can be evaluated for obstacle detection.

1. Map the pixel coordinates of image A to distorted coordinates on the CCD

target of camera A:

(xtd,A, ytd,A)T =

(
(Ix,A − cx,A)dsx,A/sx,A

−(Iy,A − cy,A)dsy,A

)

(2.16)

2. Undistort the image on the CCD’s target plane:

(xtu,A, ytu,A)T = Sdu((xtd,A, ytd,A)T , kA)(xtd,A, ytd,A)T (2.17)

3. Map the undistorted target coordinates from the target of camera A to

undistorted target coordinates on the CCD of camera B using homoge-

neous coordinates:

Th = (xtu,A, ytu,A, 0, 1)M2,AM1,B (2.18)

4. Calculate the corresponding cartesian coordinates:

(xtu,B , ytu,B)T = (Th,1/Th,4, Th,2/Th,4)
T (2.19)

5. Map the undistorted coordinates to distorted ones on the target plane of

camera 2:

(xtd,B , ytd,B)T = Sud((xtu,B , ytu,B)T , kB)(xtu,B , ytu,B). (2.20)

6. Calculate the resulting pixel position in the image of camera 2:

(Ix,B , Iy,B)T =

(
xtd,Bsx,B/dsx,B + cx,B

−ytd,B/dsy,B + cy,B

)

. (2.21)

FIGURE 2.2. Calculation of pixel correspondences with respect to the floor plane.

FIGURE 2.3. Image taken from camera A and mapped image, the content of which was mapped from camera

B to the perspective of camera A. The box was distorted by the mapping since its surface violates the assumption

of a flat surface in front of the cameras.
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3.2. Derandomized Evolution Strategy. A variety of EAs for parameter optimization

exists [1], in our application an evolution strategy (ES) is employed [18, 19]. Let µ and λ
denote the parent and offspring population size, respectively. Each offspring l at generation

g represents a real-valued vector x
(g)
l , here the n parameters of the camera model. These

so called object variables are altered by recombination and mutation. Intermediate recombi-

nation is used, i.e., the recombined individual is the center of mass of the parent population

denoted by 〈x〉(g)
µ , see [7] for an analysis of this recombination scheme. Mutation is realized

by adding a normally distributed random vector with zero mean. Thus, for l = 1, . . . , λ we

have

x
(g+1)
l = 〈x〉(g)

µ + Nl

(

0, C(g)
)

. (3.1)

The covariance matrix C of the mutation vectors is adapted to improve the search process,

similar to the adaptation of mutation rates in biological evolution. The employed algorithm

can produce arbitrary normal mutation distributions, so for n object variables n(n + 1)/2
parameters are needed to describe the covariance matrix. These so called strategy param-

eters, which determine the mutation distribution, are updated online using a self-adaptation

method called covariance matrix adaptation (CMA) [13, 12]. Apart from the initialization of

the population and the initial strategy parameters, this algorithm is invariant towards linear

transformations of the object parameter space, e.g., the scaling of the parameters. The CMA

implements important concepts for strategy (and object) parameter adjustment [17, 13], e.g.,

the notion of derandomization. The change of the strategy parameters is based on the same

realization of random variables as the mutations of object variables that have created fit off-

spring; the mutation distribution is changed in a way that the probability to reproduce steps

in the search space that have led to the actual population is increased. Another important

concept is cumulation. In order to use the information from previous generations more ef-

ficiently, not only single mutation steps are considered in the self-adaptation of the strategy

parameters, but the whole search path the population has taken over a number of generations,

the so called evolution path, is taken into account. This cumulation of history information

is similar to momentum terms in gradient based optimization of artificial neural networks.

Rank-based (µ, λ)-selection is used. This means, the new parent population consists of the µ
best of the λ offspring.

These principles are not all inspired by biological evolution, but they allow an efficient

use of the information gathered during the search process. Therefore, µ and λ can be chosen

very small, whereas natural evolution reaches similar effects by comparatively huge popula-

tions.

3.3. Details of the algorithm.

3.3.1. The CMA-ES. The employed evolution strategy, termed a (µ/µI, λ)-CMA-ES,

is described in detail in [13, 12, 14]. There are different ways to specify the algorithm, here

we use equations that are close to our implementation. This description should not be a

substitute for reading the original work. The ES can be outlined as follows:

1. An initial parent population of µ equal individuals is randomly created.

2. From the parent population λ feasible offspring are created by applying intermediate

recombination and afterwards mutation.

3. The offspring are evaluated.

4. The µ best of the λ offspring are selected to form the new parent population.

5. The strategy parameters are adapted.

6. If the termination criterion is not fulfilled go to step 2.



8 T. Bergener, C. Bruckhoff and C. Igel

In the remainder of this section we explain steps 2 and 5 in more detail.

Each individual corresponds to an n-dimensional object variable vector. The offspring

vectors at generation g are denoted x
(g+1)
l , l = 1, . . . , λ. Let x

(g)
i:λ be the ith best individual

in the offspring population at generation g; thus under (µ, λ)-selection the individuals x
(g)
i:λ ,

i = 1, . . . , µ, are the parent population at generation g + 1.

Intermediate recombination means calculating the center of mass of the parent population

(see [7] for an analysis):

〈x〉(g)
µ :=

1

µ

µ
∑

i=1

x
(g)
i:λ . (3.2)

The offspring object variable vectors x
(g+1)
l , l = 1, . . . , λ, are generated according to

x
(g+1)
l = 〈x〉(g)

µ + Nl

(

0, C(g)
)

= 〈x〉(g)
µ + σ(g)B(g)D(g)z

(g+1)
l , (3.3)

where

σ(g) ∈ IR+, global step size in generation g, initialized to σ(0) = 0.01 in our

experiments.

B(g) n × n matrix which reorients the axis parallel mutation distribution D(g)z
(g+1)
l .

Columns of B(g) are normalized eigenvectors of the covariance matrix. B is or-

thogonal, i.e., B−1 = BT .

D(g) n × n diagonal matrix where the diagonal elements are the square roots of eigen-

values of the matrix C ′(g)
= C(g)/(σ(g))2. The ith column of B(g) is the corre-

sponding eigenvector to the squared ith diagonal element.

z
(g+1)
l ∈ IRn, for l = 1, . . . , λ an independent realization of a normally distributed random

vector with zero mean and unity matrix as covariance matrix.

This means the covariance matrix is decomposed into

C(g) =

squared
global step size
︷ ︸︸ ︷
(

σ(g)
)2

·

normalized
rotation matrix

︷︸︸︷

B(g)

diagonal
step size matrix

︷︸︸︷

D(g)
(

B(g)D(g)
)T

︸ ︷︷ ︸

C ′(g)

(3.4)

The mutation (hyper)ellipsoids, i.e., the surfaces of equal probability density to place an

offspring, of the random vector D(g)z
(g+1)
l are oriented along the coordinate axes and rotated

by B(g) yielding an arbitrarily oriented normally distributed random vector, see Fig. 3.1. The

matrices D(g) and B(g) are determined by the matrix C ′(g)
. The factorization of the matrix

C ′(g)
into an orthogonal and a diagonal matrix is needed for the adaptation of the global step

size, see Eqs. (3.7) and (3.8).

Then the strategy parameters are updated:

s(g+1) = (1 − c) · s(g) + cu ·
√

µ B(g)D(g) 〈z〉(g+1)
µ

︸ ︷︷ ︸
√

µ

σ
(g) (〈x〉(g+1)

µ
−〈x〉(g)

µ )

(3.5)
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FIGURE 3.1. The solid lines in the plots exemplarily show the mutation (hyper)ellipsoids, i.e., the surfaces of

equal probability density to place an offspring, of the random vectors after the different transformations. Evolution

strategies that adapt only one global step size can only produce mutation ellipsoids as shown in the left plot. Algo-

rithms that adapt n different step sizes, one for each object variable, can produce mutation ellipsoids like the one

in the center plot. Only if the complete covariance matrix is adapted, arbitrary normal distributions can be realized

as shown in the right picture. The dashed lines schematically visualize an error surface, where each line represents

points of equal fitness and the × symbol indicates the optimum. This example shows the benefits of an adapted

covariance matrix that tends to produce offspring in the direction of the optimum with higher probability.

C ′(g+1)
= (1 − ccov) · C′(g)

+ ccov · s(g+1)
(

s(g+1)
)T

, (3.6)

where

s(g+1) ∈ IRn, cumulated evolution path, sum of weighted differences of population cen-

ters, initialized to s(0) = 0.

c ∈ ]0, 1], determines the cumulation time for s (roughly 1/c). In our experiments,

c is set to c := 1/
√

n

cu :=
√

c(2 − c), normalizes the variance of s, because 12 = (1 − c)2 + c2
u .

〈z〉(g+1)
µ := 1

µ

µ∑

i=1

z
(g+1)
i:λ , where i : λ is the index of the ith best offspring x

(g+1)
i:λ . 〈z〉(g+1)

µ

is the average of the random variable realizations that lead to the new parent

population.

ccov ∈ [0, 1[, change rate of the matrix C ′(g)
. We use ccov = 2/(n2 + n).

C ′(g)
positive definite symmetrical n × n matrix that determines B(g) and D(g), ini-

tialized to the unity matrix.

In Eq. (3.6) the covariance matrix of the mutation distribution (apart from the global step size)

is adapted in a way that the step s(g+1) becomes more likely. The vector s(g+1) represents

not only the last evolutionary step of the (center of mass of the) population, but it additionally

considers (accumulates) information about previous steps. This so called evolution path is

updated in Eq. (3.5). The parameter c controls the influence of the previous steps compared

to the actual step.

The adaptation of the additional global step size σ takes place on a shorter time scale. A

second evolution path sσ is calculated, where the scaling with D is omitted:

s(g+1)
σ = (1 − cσ) · s(g)

σ + cuσ
· √µ B(g) 〈z〉(g+1)

µ
︸ ︷︷ ︸

B
(g)(D

(g))
−1

(B
(g))

−1
√

µ

σ
(g) (〈x〉(g+1)

µ
−〈x〉(g)

µ )

(3.7)
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σ(g+1) = σ(g) · exp

(

‖s(g+1)
σ ‖ − χ̂n

dχ̂n

)

, (3.8)

where

χ̂n expectation of the length of a standard normally distributed random vector of di-

mension n, can be approximated by χ̂n :≈ √
n
(
1 − 1

4n
+ 1

21n2

)
.

d ≥ 1, damping parameter for the change rate of the global step size. We set d :=
1/

√
n.

s
(g+1)
σ ∈ IRn, evolution path not scaled by D, initialized to s

(0)
σ = 0.

cσ ∈ ]0, 1], determines the cumulation time for sσ. We have used cσ := c.

cuσ
:=
√

cσ(2 − cσ), normalizes the variance of sσ.

The vector s
(g+1)
σ is a weighted sum of rotated standard normally distributed random vec-

tors. The coefficient cuσ
ensures that this sum also results in a standard normally distributed,

rotated random vector, cf. [12]. The expectation of the length of such a random vector is

given by χ̂n. This means, that the step size σ(g+1) in Eq. (3.8) is increased if the cumulated

evolution path s
(g+1)
σ is larger than expected, if s

(g+1)
σ is shorter than expected, σ(g+1) is

decreased.

3.3.2. Constraint handling. Constraint handling is not a problem in our application

of the algorithm. There exist sensible upper and lower bounds for the region Minit where

we can expect good camera parameters, as well as boundaries for valid camera settings that

define the search space Mfeasible. The center of mass of the population is initialized within

Minit ⊂ Mfeasible ⊂ IRn. If an offspring is created that is not regarded as feasible, it is

discarded and a new one is generated. This does not happen very often (only a few times in

the early explorative stage of the ES), so a sophisticated constraint handling technique is not

necessary.

4. Experiments.

4.1. Experimental setup. The experiments are based on the camera setup of the au-

tonomous service robot ARNOLD [4]. The sensor head is shown in detail on Fig. 4.1.

PSfrag replacements
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FIGURE 4.1. Sensor head of the autonomous robot ARNOLD
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The internal camera parameters were determined using an implementation of the calibration

algorithm described in [20]. Knowing the internal parameters we could mechanically adjust

the cameras on the head with simple calibration patterns making the nodal lines and image

rows parallel for a vergence angle of zero. This gives a good estimation of the three external

camera parameters pan, tilt and yaw. Since we map the image of one camera to the perspective

of the other, we have to optimize the parameters of both cameras. We have chosen the 7 most

important parameters for optimization, which are the radial lense distortion, the focal length,

the image center and the three external rotation parameters of the cameras, pan, tilt and yaw.

Furthermore, we optimize two more parameters, the distance between both cameras (base

length) and the height of the cameras. Altogether we optimize 16 parameters. The initial

values of the parameter set are calculated by the calibration scheme described above.

(a) Image of the left camera (b) Image of the right camera

FIGURE 4.2. Structured horizontal plane to generate an error measure

To generate an error measure needed by the EA, we put sheets of paper on the floor to get

a structured horizontal plane z = 0 in the world coordinate system (see Fig. 4.2). After

calculating the mapping, the number of pixels exceeding the threshold should be close to

zero, since the assumption of an obstacle free plane is fulfilled. We compute the number of

pixels exceeding the threshold for six different pairs of stereo images. The average of these

values serves as the error measure which equals the fitness, where lower fitness values are

considered to be better than higher fitness values, i.e., we perform a minimization task. We

would like to stress that the error cannot vanish, because the pinhole-camera model, although

enhanced by the radial lense distortion [20], can only approximate real cameras up to a certain

extend. Furthermore not all parameters of the system are optimized.

We performed 10 independent trials of the evolution strategy described in the previous

section. We used a parent population size of µ = 2 and the number of offsprings in each

generation was set to λ = 10. The evolutionary process was stopped after 1000 generations.

4.2. Results. After calibration, the initial error was 15282.5 averaged over the six test

cases. This parameter setting can be tuned manually by an expert. By this time consuming

procedure the initial parameters can be improved by roughly 50 %.

The error trajectories of the evolutionary optimization are depicted in Fig. 4.3. The final

error of the best individual of the best trial was 373.3, i.e., less than 2.5 % of the initial value.

On average, the evolutionary adaptation of the parameters reduced the error to 1158.72 in

the final generation, this is 7.5 % of the initial error. Even the worst optimization process
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FIGURE 4.3. For each generation, this plot shows the fitness values of the best individual for the best and

worst out of 10 evolutionary optimization trials, as well as the average over the best individuals of the 10 trials. As

a reference, the fitness, i.e., the average error measured in pixels per test picture, is plotted. Note the logarithmic

scaling of the ordinate.

reached a fitness of 2071.67, still a reduction to 13.6 % of the initial error. This indicates the

robustness of the proposed optimization method.

The experiments show that it is not necessary to wait 1000 generations to get a satis-

factory solution. All trials had almost completely converged after 800 iterations, and 500

generations appear to be sufficient for evolving good solutions, see Fig. 4.3.

(a) Initial mapping error (b) Mapping error after optimization

FIGURE 4.4. Result of the evolutionary optimization of the parameters. The white pixels indicate mismatches.

Fig. (a) show the initial error and Fig. (b) the error after optimization.
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Figure 4.4 demonstrates the results of the parameter optimization. The left image shows the

results of IPM with the initial parameter set applied to the test images shown in Fig. 4.2. The

right image shows the error after optimization, which is decreased to about 2.5 % of the initial

value.

The obtained results are considerably better than the ones presented by us before [6].

This has two reasons. First, we optimize more parameters of the camera model, so a higher

accuracy can be achieved. Second, we use a different evolutionary algorithm improving both

convergence speed and quality of the obtained solutions. This was verified be employing the

CMA-ES to the same optimization task as described in [6]. Although the dimension of the

problem has increased, the improved ES converges faster, i.e., needs less fitness evaluations to

achieve a desirable result, than the algorithm employed in [6]. Please note that the CMA-ES

needs more generations but has a much smaller population size, and that the results cannot be

compared quantitatively because different test pictures were used.

5. Conclusion. Evolutionary optimization is suitable for optimizing the parameters of

camera models used for visual obstacle detection. It can be successfully employed for au-

tomating the setting of the parameters for the IPM, which is used to control the mobile robot

ARNOLD in an unknown and dynamically changing environment [11, 8]. After optimization

the obstacle detection leads to a better performance, enabling the robot to move faster and

more reliably.

The results shown here were on average by far superior to the settings suggested by an

expert. The best solution found produces only 2.5 % of the errors in relation to the initial cal-

ibration. Compared to previous work [6], the proposed algorithm shows better performance

both in terms of convergence speed and accuracy of the obtained solutions. This is due to

the increased number of parameters optimized and the improved optimization algorithm. The

CMA-ES [14] implementing completely derandomized self-adaptation of arbitrary normal

mutation distributions has proven to be a powerful tool for solving real-world problems and

should be regarded as the first choice of evolutionary computation methods for real-valued

parameter optimization.
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