Approximation of Gaussian Process Regression M odels
after Training

Thorsten Suttorp and Christian Igel

Institut fur Neuroinformatik, Ruhr-Universitat Bochyi@ermany
{thorsten.suttorp, christian.ige®neuroinformatik.rub.de

Abstract. The evaluation of a standard Gaussian process regressioel hakes

time linear in the number of training data points. In this gapghe models are
approximated in the feature space after training. It is eicgdly shown that the

time required for evaluation can be drastically reducetheuit considerable loss in
performance.

1 Introduction

The training time of a standard Gaussian process modelysipolial and its execution
time (i.e., the time required to evaluate the model for a miveut after training) is
linear in the number of training samples. This scaling bahrdimits the applicability
of standard Gaussian processes for large scale machin@igaroblems. In this paper,
we assume that training is done offline and training time is(yet) a problem, but
execution time is crucial. This is a rather special situgtlut a scenario we are indeed
facing in practice, for example in the domain of real-timevelr assistance systems or
biometric applications.

Most papers on generating sparse Gaussian process mogeidydaddress com-
plexity reduction during training. In most instances ttigealized by incorporating
approximations in the (Bayesian) derivation of Gaussiacesses, e.g., [1, 2, 3]. A
good overview of approximation methods for Gaussian pseEes given in [4]. Here
we consider a two-stage process. The idea is to first genanaés good as possible
solution by our favorite (large-scale) training algorittamd to reduce the complexity
of the result by a general, robust approximation algorittng]. While in general
more time consuming, this process may have the potentia@nergte better solutions
than combining learning and approximation in one step bezéhe learning algorithm
can make the best possible use of the available informagéord the solution is care-
fully approximated. Anyway, this conceptual clear segarabetween training and
approximation has the practical advantage that complesdyction can be performed
independent of the way the initial model has been obtaingg, (@sing freely available
software:shar k- pr oj ect . sour cef or ge. net).

2 Gaussian Process Regression

In the following, we derive Gaussian regression models ftioenviewpoint of regular-
ization networks. Our goal is to learn a real-valued funttfo: X — IR based on
sample dat& = {(z1,t1),..., 2, t0)} € (X x R)*, whereX denotes the input space.
We consider linear regression in some feature sfaeadowed with a dot product

f(x) = (o(z),w) .

The feature map : X — F maps input elements to a reproducing kernel Hilbert space
F such that¢(z), ¢(z)) = k(z, z) for a positive definite kernel functiohn: X x X —
R. The vectorw € F is chosen such that the regularized empirical risk

Y4

R(w, 8,0) = (t: — f(z:))* + A fI%
=1
is minimized. This is achieved by expressing@sw = Zle a;¢(z;) and computing
o = (K+X)""t, wheret = (t1,...,t)7, K € R is the kernel matrix with
[K]U = k(l‘i,l'j), anda €]Ré.

These regression models are called regularization nes\@rk8] and can also be
derived in a Bayesian framework as special Gaussian presegs Gaussian process
is a collection of random variables, any finite number of WHiave a joint Gaussian
distribution. Here, these random variables are the outfluty given the inputs;;. We
assume that the observations of the outputs are subjectitddaussian noise with zero
mean and varianck (i.e., ti = f(z;) + ¢; ande; ~ N(0, /\)). If we set the covariance
matrix of the Gaussian process to the kernel matrix and trenrt@zero, therf (z) is
the maximum a posteriori estimate of an observation giveimput 2. For a detailed
introduction to Gaussian processes we refer to recentdek#9, 10].

3 Resilient Approximation of Gaussian Process Models

For many practical applications the calculationfgf) = Zle a;k(z;,) obtained
by Gaussian process regression is computationally toonskge This expression is
well known from classification with support vector machinasd a number of authors
address its approximation [11, 12, 6]. Almost all work instlgirea is based on an
idea presented in [11], where it is suggested to approxi|f1:;1-@te§:f:1 a;k(z;,-) by a
function f/ = Zle Bik(zi,-) with z; € X, 3; € R, andL < ¢ such that the distance
functionp? := || f — f'[|% is minimized.

The reduced sefz1, ..., z1,} of approximating vectorgAVs) can be constructed
by iteratively adding single vectors to a given solutioneTallowing algorithm imple-
ments this idea. The different steps are discussed below.

Algorithm: Approximation of Gaussian Process Models
1 initialize f, := f

2fori=1,...,Ldo

3 | determinez; by minimizingp?(z;) = || fi — Bi¢(2i) %
4

5

calculate optimaby, ..., 3;

firr e f =225 Bio(z)
6 adjustzy,...,zp andpfy, ..., B by global gradient descent
7 determine optimal offséf

In [5] the authors note that for the case that the approxonatonsists of a single
term (i.e.,f’ = B¢(z)) itis not necessary to directly minimiz&, but it is instead possi-
ble to minimize the distance betweg¢rand its orthogonal projection ongpan(¢(z)),

which is given byH(fZ;% fH = |IflI% - %. We obtain the dis-
tance measure

2
By e 0RO __ SG)
(6(2),0(2)) k(z,2)
which can be minimized using gradient methods. Thereftwe derivatives off(z)
with respect to all components of a single vect@re needed:

f2le) 1
8Zk(z,z) O k2(z,2)

: (3Zf2(z) k(2 2) — f2(2) - k(2 z)) .

The parameteL is usually chosen as large as possible given the time camistcf
the application. In general, the accuracies on the traioir{gven better) on an external
test set achieved by the original and approximated modegjaate the choice of.

Choosing Initial Vectors. For applying the iterative technique described above-start
ing points for the optimization oF(z) have to be selected. We suggest to use
proportional selectionwhich has its origin in stochastic universal sampling know
from evolutionary algorithms [13]. A weighted roulette veheontaining all inputs:;

is simulated. The slots are sized according to the correpgi;|, and L equally
spaced markers are placed along the outside of the wheelviieéel is spun once, and
the slots that are hit by the markers define thimitial vectors. This heuristic is based
on the idea that vectors that received a Joi during Gaussian process regression are
more important than those with small ones.

Determining the Optimal Coefficientsln each iteration of the approximation algo-
rithm the coefficientss = (04,...,0.) have to be determined anew. The optimal
coefficients for approximating = S'_, aik(xi,-) by f/ = 25, Bik(z;,-) for
linear independens(z1), ..., #(zz) can be computed 38 = (K?)~!K**«a, where
K= k(zi, ;) andKfj”” = k(z;,x;), see [12].

Global Gradient Descent. For further minimizing the distance functigi? gradient
descent can be applied to all parameters of the sparseaolfit[5]. The derivatives
of p? with respect to all components of an AV are given by

3 L
0.0° = =2 ;B0 K5 +2) 3;B:0-, K7
j=1

j=1

and the derivatives with respect to the coefficientby

D, p* = —22%1(” + 22@1{“ .

Computing the Optimal Offset.In our experiments we found that the approximatién
could be improved when an additional offset was incorpatatéerefore, we consider
the differences of andf’: v'(x) = Zle aik(x;, x) —Zle Bik(z;, x) for all training
inputs and compute their mean

4
1
b/ = Z Zb’(xz) .
i=1

The resulting regression function that is used throughaststudy is given b)f(a:) =
fl(z)+ 0.

Resilient Minimization of the Distance FunctionApproximating the regression func-
tion of a Gaussian process is basically the same as apprim@tlae decision function
of a support vector machine. In [6] we employed the efficieptdp (resilient back-
propagation) algorithm [14, 15] for the resilient approzgiiion of SVMs. Because we
found this algorithm to provide reliably good results, wepose to apply it also to the
problem of Gaussian process approximation.

The Rprop algorithm is an efficient and robust first order gnaidmethod that con-
siders only the signs of the partial derivatives of the efuaiction E to be optimized
and not their amount. The iRpropalgorithm used in this study implements weight
backtracking. It partially retracts “unfavorable” preumsteps. Whether a parameter
change was “unfavorable” is decided based on the evolutidheopartial derivatives
and the overall error [15]. The standard parameters givahiglgood results, and the
initial step sizes used in the algorithm can be chosen ssmthat no parameter-tuning
is required when applying resilient backpropagation.

4 Experiments

Setup. We applied the proposed algorithm to thbalone data set, where the ages
of abalone are predicted from easily obtainable physicalsuements. Second, we
considered thBoston data set. Here, housing values in suburbs of Boston aregbeeldi
Both data sets are available from the UCI machine learnipggiéory [16] and are
frequently used real word data sets for regression.

We adopted the experimental setup from [17]. For each dataesperformed the
following preprocessing: We transformed each continu@asufre to zero mean and
unit variance. The gender encoding (male/female/infafitt)@abalone was mapped to
{(1,0,0),(0,1,0),(0,0,1)}. TheBoston (Abalone) data set was randomly partitioned
into 100 (10) splits with 481 (3000) examples for trainingl@b (1177) examples for
testing. In the experiments we used Gaussian kei@lsz) = exp(—|z — z|/?),
and for every partition we trained a Gaussian process with peeforming hyperpa-
rameters{ = 10~ 1>, A = 10~ 1> andy = 10~ "2, A\ = 10~ 2 for Abalone andBoston
respectively). The resulting Gaussian process models agyeoximated for different
predefined numbers of AVs usimgsilient approximatiorfwith and without final gradi-
ent descent) as described in Section 3, and in each case #resgeared error (MSE)
on the test data was observed.

5.2r

—&— NPD
—— w/o gradient descent
5 O —— with gradient descept
48 [}
5 8 o o
L 461 o
(%)) a o a o o
= 441 _
N 6 o ——a
v v A4 A4
420 o " a o o o o
ol o
O & o4 o Py
¢ v v °
38)
0 50 100 150 200 250 300 350
#AV
301
—&— NPD

—e— w/o gradient descent
—@— with gradient descet

25

20r

0 Sb 160 150 260

#AV
Fig. 1: Results for the approximation of Gaussian procagession models. Averages
of the mean squared errors with the standard deviationsegietdd. Top plot: results
for Abalone. Bottom plot: results foBoston.

Results. The results of the approximation trials are depicted in Eigln each case,
the number of AVs is plotted against the MSE on the test datadtlition to the mean
the standard deviation is depicted. The light gray horiablities give the MSE and the
corresponding standard deviation of our original Gausgiacess model.

Resilient approximation (with and without final gradiensdent) led to regression
functions that achieved the performance of the original<S&un process at a fraction
of its computational costs.

The performance of our approximation algorithm was comgpé&oehe results pre-
sented in [17], which are obtained by applying nonlineaupseliscriminants (NPDs).
Because of the different quality of the approaches and filglukifferent kernel widths,
resilient approximation and NPD are not directly compagablevertheless, the results
provide an indication of the quality of our approach. Theeaxkpents gave a clear
ranking of the algorithms and showed that resilient appnation with final gradient
descent performed best.

5

Conclusions

The approximation of Gaussian process models can be usétHio a regression func-
tion for real-world applications requiring fast decisiorir both real world data sets
that were considered in this study the performance of thecaqapation achieved the
performance of the original Gaussian process model at &dreof its computational

costs. The final gradient descent improved the quality ofgroximations. Adding

an offset parameter in the sparse model improved the peafocen

References

(1]

[2]

(3]

(5]

(6]

(8]

9]
[10]

[11]

[12]

(23]
[14]
[15]
[16]

[17]

A. J. Smola and P. L. Bartlett. Sparse greedy Gaussianegsoregression. In T. K. Leen, T. G.
Dietterich, and V. Tresp, editors\dvances in Neural Information Processing Systewadume 13,
pages 619-625. MIT Press, 2001.

M. Seeger, C. K. I. Williams, and N. Lawrence. Fast ford/iaelection to speed up sparse Gaussian pro-
cess regression. In C. M. Bishop and B. J. Frey, edifersceedings of the 9th International Workshop
on Artificial Intelligence and StatisticSociety for Artificial Intelligence and Statistics, 2003.

E. Snelson and Z. Ghahramani. Sparse Gaussian processes pseudo-inputs. In Y. Weiss,
B. Scholkopf, and J. Platt, editor8dvances in Neural Information Processing Systevotume 18.
MIT Press, 2006.

J. Quifionero-Candela, C. E. Rasmussen, and C. K. liaifi8. Approximation methods for Gaussian
process regression. In L. Bottou, O. Chapelle, D. DeCosigt JaWeston, editoré,arge-Scale Kernel
Machines pages 203-223. MIT Press, 2007.

B. Scholkopf, S. Mika, C. J. C. Burges, P. Knirsch, K.NRiller, G. Ratsch, and A. J. Smola. Input space
versus feature space in kernel-based meth¢dHEE Transactions on Neural Networks0(5):1000—
1017, 1999.

T. Suttorp and C. Igel. Resilient simplification of ketmtassifiers. In J. Marques de Sa et al., editors,
Proceedings of the 17th International Conference on Adifideural Networks (ICANN 2007yolume
4668 of LNCS pages 139-148. Springer-Verlag, 2007.

T. Evgeniou, M. Pontil, and T. Poggio. Regularizatiorivagrks and support vector machinésivances

in Computational Mathematic4.3(1):1-50, 2000.

T. Poggio and S. Smale. The mathematics of learning: iDgatith data. Notices of the American
Mathematical Society (AMS0(5):537-544, 2003.

C. M. Bishop. Pattern Recognition and Machine Learnin§pringer-Verlag, 2006.

C. E. Rasmussen and C. K. |. Willam&aussian Processes for Machine Learnirpringer-Verlag,
2006.

C. J. C. Burges. Simplified support vector decision sulén Proceedings of the 13th International
Conference on Machine Learning (ICML 199fages 71-77, 1996.

B. Scholkopf, P. Knirsch, A. J. Smola, and C. J. C. Bsrgéast approximation of support vector kernel
expansions, and an interpretation of clustering as apmation in feature space. In P. Levi, R.-J.
Ahlers, F. May, and M. Schanz, editoBBAGM-Symposiunpages 124-132. Springer-Verlag, 1998.

J. E. Baker. Reducing bias and inefficiency in the s@acalgorithm. In J. J. Grefenstette, editor,
Proceedings of the Second International Conference on tizefilgorithms pages 14-21, 1987.

M. Riedmiller. Advanced supervised learning in mudtyer perceptrons — From backpropagation to
adaptive learning algorithm&£omputer Standards and Interfacd$(5):265-278, 1994.

C. Igel and M. Hiusken. Empirical evaluation of the irmped Rprop learning algorithnNeurocomput-
ing, 50(C):105-123, 2003.

D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. U&Hasitory of machine learning databases,
1998. http://www.ics.uci.ede/mlearn/MLRepository.html.

E. Andelic, M. Schaffoner, M. Katz, S. E. Kriiger, aAd Wendemuth. Kernel least-squares models
using updates of the pseudoinverdieural Computation18:2928-2935, 2006.

