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Abstract. Trained support vector machines (SVMs) have a slow run-
time classification speed if the classification problem is noisy and the
sample data set is large. Approximating the SVM by a more sparse func-
tion has been proposed to solve to this problem. In this study, differ-
ent variants of approximation algorithms are empirically compared. It
is shown that gradient descent using the improved Rprop algorithm in-
creases the robustness of the method compared to fixed-point iteration.
Three different heuristics for selecting the support vectors to be used in
the construction of the sparse approximation are proposed. It turns out
that none is superior to random selection. The effect of a finishing gra-
dient descent on all parameters of the sparse approximation is studied.

1 Introduction

Support vector machines (SVMs) show excellent classification performance across
a wide range of applications. Unfortunately, the good classification results often
come along with extremely slow execution times, which scale linearly with the
number of support vectors. As shown in [1], with probability tending to 1 with
increasing training sample size, the fraction of training patterns that become
support vectors is bounded from below by the Bayes optimal classification rate.
That is, for noisy data the run-time complexity of an SVM increases linearly
with the size of the training set. But in many real-world applications classifiers
have to meet strict real-time constraints. For this reason SVMs—although show-
ing superior classification performance—are frequently not considered. One way
to address this problem is to first train an SVM and then to approximate the
obtained solution by a more sparse kernel classifier [2–6]. The new solution is
a weighted combination of a set of vectors mapped to the feature space plus a
bias parameter. The sparse classifier is build incrementally by adding a (support)
vector to the set of vectors, adjusting its position, and recomputing all weighting
coefficients. In this study, we empirically investigate variants of this algorithm.
First, we replace the fixed-point iteration suggested in previous work for plac-
ing the new vectors by the improved Rprop algorithm [7], which is an efficient
and robust first order gradient method. Second, we propose different heuristics
for choosing the new vectors in the incremental procedure and investigate how
these techniques influence the final solution. Third, we look at the performance
improvements achieved by a computationally expensive finishing optimization



of all parameters of the final sparse solution. In our experiments, we monitor
the correlation between the distance measure that serves as the optimization
criterion during approximation and the accuracy of the resulting sparse solution
on test data. Although a high correlation is assumed in the SVM approximation
methods, to the best of our knowledge this has never been validated systemati-
cally.

In the next section, we briefly review the basic principles for approximating
SVMs. In Sect. 3 different variants are proposed. The experiments for evaluating
these approximation algorithms are presented in Sect. 4. Finally, the results are
discussed.

2 Background

We first concisely describe soft margin SVMs and then the approximation tech-
nique proposed in [3–6].

2.1 Support Vector Machines

We consider L1-norm soft margin SVMs for binary classification [8]. Let (xi, yi),
1 ≤ i ≤ ℓ, be consistent training examples, where yi ∈ {−1, 1} is the label asso-
ciated with input pattern xi ∈ X . Support vector machines map input patterns
to a feature space F , in which the transformed data is linearly separated. The
transformation φ : X → F is implicitly done by a positive semi-definite ker-
nel function k : X × X → R computing a scalar product in the feature space
k(xi, xj) = 〈φ(xi), φ(xj)〉. Patterns are classified by the sign of a function f of
the form

f(x) = 〈w, φ(x)〉 + b =

ℓ
∑

i=1

αik(xi, x) + b . (1)

The coefficients αi ∈ R defining the weight vector w =
∑ℓ

i=1 αiφ(xi) and b are
determined by solving the quadratic optimization problem

min
w,b

H [f ] =
ℓ
∑

i=1

[1− yif(xi)]+ +
1

2C
‖w‖2 , (2)

where [z]+ = 0 if z < 0 and [z]+ = z otherwise. The first part penalizes patterns
that are not classified correctly with a particular margin (i.e., distance from the
separating hyperplane in F). The second part regularizes the solution, in the
sense that minimizing the norm of the weight vector corresponds to minimizing
the norm of the function Ψ(x) = 〈w, φ(x)〉 in F . The regularization parameter
C ∈ R

+ controls the trade-off between the two objectives. The xi with αi 6= 0 are
called support vectors (SVs), their number is denoted with #SV. For solving the
dual quadratic optimization problem we use a sequential minimal optimization
approach based on second order information as proposed in [9].



2.2 Approximation of SVMs

For many practical applications the calculation of (1) obtained by SVM learning
is computationally too expensive. This problem is tackled in [3] by approximating

Ψ(·) =
∑ℓ

i=1 αik(xi, ·) by a function Ψ ′(·) =
∑L

i=1 βik(zi, ·) with L≪ #SV and
βi ∈ R. The approximation technique proposed there is based on minimizing the
distance function

ρ2 := ‖Ψ − Ψ ′‖2F . (3)

The reduced set {z1, . . . , zL} of approximating vectors (AVs) can be constructed
by iteratively adding single vectors to a given solution. The following algorithm
implements this idea. The different steps are discussed below.

Algorithm 1: Approximation of SVMs

initialize Ψ1 := Ψ1

for i = 1, . . . , L do2

determine zi by minimizing ρ2(zi) = ‖Ψi − βiφ(zi)‖
2
F3

calculate optimal β1, . . . , βi4

Ψi+1 ← Ψ −
∑i

j=1 βjφ(zj)5

adjust z1, . . . , zL and β1, . . . , βL by global gradient descent6

determine optimal offset b′7

In [5] the authors note that instead of minimizing ρ2(z) it is possible to
directly minimize the distance between Ψ and its orthogonal projection onto

span(φ(z)), which is given by
∥

∥

∥

(Ψ ·φ(z))
φ(z)·φ(z)φ(z)− Ψ

∥

∥

∥

2

F
= ‖Ψ‖2F −

(Ψ ·φ(z))2

φ(z)·φ(z) , and

it therefore suffices to minimize − (Ψ ·φ(z))2

φ(z)·φ(z) . This expression reduces for kernels

with k(z, z) = 1 for all z (e.g. Gaussian kernels) to

E(z) := −(Ψ · φ(z))2 = −

(

ℓ
∑

i=1

αik(xi, z)

)2

. (4)

Minimization of this distance measure can be realized using gradient methods
or fixed-point iteration [3–5]. For all of these techniques starting points for the
optimization have to be selected.

Fixed-Point Iteration. Determining a single approximation vector z can be
performed by means of fixed-point iteration as proposed in [4]. This method
is based on the observation that for an extremum of (Ψ · φ(z))2 the condition

∇z(Ψ · φ(z))2 = 0 has to be fulfilled, which implies
∑ℓ

i=1 αi∇zk(xi, z) = 0. For
kernels with k(xi, z) = k(‖xi − z‖2), such as Gaussian kernels, this reduces to
∑ℓ

i=1 αik
′(‖xi − z‖2)(xi − z) = 0, which is equivalent to

z =

∑ℓ

i=1 αik
′(‖xi − z‖2)xi

∑ℓ

i=1 αik′(‖xi − z‖2)
. (5)



Based on this equation, the vector z is computed iteratively. For Gaussian kernels
k(xi, z) = exp(−γ‖xi − z‖2) with γ ∈ R

+ the iteration step t + 1 reads

z(t+1) =

∑ℓ

i=1 αi exp(−γ‖xi − z(t)‖2)xi
∑ℓ

i=1 αi exp(−γ‖xi − z(t)‖2)
. (6)

Determining Optimal Coefficients. In each iteration of the approxima-
tion algorithm the coefficients βi have to be determined anew. The optimal
coefficients β = (β1, . . . , βL) for approximating Ψ =

∑ℓ

i=1 αik(xi, ·) by Ψ ′ =
∑L

i=1 βik(zi, ·) for linear independent φ(z1), . . . , φ(zL) can be computed as β =
(Kz)−1Kzxα, where Kz

ij := (φ(zi) · φ(zj)) and Kzx
ij := (φ(zi) · φ(xj)), see [4].

Global Gradient Descent. For further minimizing the distance function ρ2

gradient descent can be applied to all parameters of the sparse solution [5]. The
derivative of ρ2 with respect to a component of an AV is given by

∂ρ2

∂(zi)k

= 4γ





L
∑

j=1

βjβiK
zz
ij ((zj)k − (zi)k)−

ℓ
∑

j=1

αjβiK
zx
ij ((xj)k − (zi)k)



 (7)

and the derivative with respect to a coefficient βi by

∂ρ2

∂βi

= 2

L
∑

j=1

βlK
zz
ij − 2

ℓ
∑

j=1

αjK
zx
ij . (8)

Determining Optimal Offset. The offset b used in the original SVM f(x) =
Ψ(x) + b is not necessarily optimal for the approximation f ′(x) = Ψ ′(x) + b′.

We consider the differences of f(x) and Ψ ′(x): b′(x) =
∑ℓ

i=1 αik(xi, x) + b −
∑L

i=1 βik(zi, x) for all SVs of the original SVM and compute their mean

b′ =
1

#SV

∑

x∈{xi|1≤i≤ℓ∧αi 6=0}

b′(x) . (9)

3 Resilient Approximation of SVMs

In order to increase the performance of the SVM approximation algorithm, we
consider new heuristics for choosing the starting points for determining the vec-
tors in the reduced set. Further, we replace the fixed-point iteration by a more
robust gradient descent technique.



3.1 Techniques for Choosing Initial Vectors

Constructing a reduced set of AVs relies on the successive addition of single
vectors. The choice of initial vectors for gradient descent or fixed-point iteration
is crucial for the quality of the final solution. Here, three different techniques for
choosing initial vectors from the set of SVs of the original SVM are proposed.
The techniques random selection and kernel-clustering ensure that the fraction
of positive and negative SVs of the original SVM (i.e., xi with yi = 1 and
yi = −1, respectively) equals the fraction of positive and negative SVs chosen
for the incremental update of the approximation. Let npos denote the number of
positive SVs and nneg the number of negative SVs of the original SVM. Then,
the number of initial vectors to be chosen from the positive SVs is given by
Lpos := max{1, ⌊

npos

#SV · L⌋} and the number from the negative ones by Lneg :=
L− Lpos.

Random Selection. The starting points are selected uniformly at random from
the original SVs. No particular assumptions about the order of drawing are
made.

α-proportional Selection. The α-proportional selection has its origin in stochas-
tic universal sampling, which is known from evolutionary algorithms [10]. A
weighted roulette wheel containing all original SVs is simulated. The slots are
sized according to the corresponding |αi|, and L equally spaced markers are
placed along the outside of the wheel. The wheel is spun once and the slots that
are hit by the markers define the L initial vectors. This heuristic is based on the
idea that vectors with big |αi| are more important than those with small ones.

Kernel-Clustering. Approximated SVMs realize qualitatively different solutions
compared to their original SVMs (see below). The AVs tend to lie rather in
the center of the training examples than on the boundaries. This inspires us
to choose initial vectors for incrementally updating the approximation by the
means of clustering.

The well-known K-means-algorithm generates K initial centers at the be-
ginning and then iterates the following procedure until convergence: All vectors
are assigned to their closest center, and the new center of each cluster is set
to the mean of the vectors assigned to it. In this process it can happen that
one cluster remains empty during the iterations. There are some techniques for
dealing with this situation. We choose the vector that has the greatest distance
from its cluster center to start a new cluster.

The K-means-algorithm can be transferred from clustering data in input
space to clustering data in kernel-induced feature space [11]. The kernel function
determines the distance of the vectors to the cluster centers. The preimage of the
centers cannot be calculated in general. Therefore, the algorithm finally provides
pseudo centers, which are given by the input vectors that are closest to the real
centers in the feature space. For approximating an SVM, positive and negative
SVs are clustered independently into the predetermined number of clusters (Lpos

and Lneg). In [12] the efficient clustering of a large sample set is considered.



3.2 Resilient Minimization of the Distance Function

Although fixed-point iteration has been favored, the optimization of E(z) can
also be done using a general gradient descent algorithm [2]. The partial deriva-
tives of E(z) are given by

∂E(z)

∂zk

= −2

ℓ
∑

i=1

αik(xi, z) ·

ℓ
∑

i=1

αi

∂k(xi, z)

∂zk

. (10)

We employ the efficient Rprop (resilient backpropagation) algorithm for gradient-
based optimization [7,13]. It considers only the signs of the partial derivatives of
the error function E to be optimized and not their amount. In each iteration t

of Rprop, each objective parameter z
(t)
k is increased or decreased depending on

whether the sign of the partial derivative ∂E(z(t))/∂z
(t)
k of the objective function

with respect to the parameter is positive or negative. The amount of the update

is equal to the adaptive individual step size ∆
(t)
k , that is, we have

z
(t+1)
k = z

(t)
k − sign

(

∂E(z(t))/∂z
(t)
k

)

·∆
(t)
k . (11)

Prior to this update, the step size is adjusted based on changes of sign of the
partial derivative in consecutive iterations. If the partial derivative changes its
sign, indicating that a local minimum has been overstepped, then the step size

is multiplicatively decreased; otherwise, it is increased: if ∂E(z(t−1))/∂z
(t−1)
k ·

∂E(z(t))/∂z
(t)
k is positive then ∆

(t)
k = η+∆

(t−1)
k , if the expression is negative then

∆
(t)
k = η−∆

(t−1)
k , where η+ > 1 and η− ∈]0, 1[. The iRprop+ algorithm used in

this study implements weight backtracking. It partially retracts “unfavorable”
previous steps. Whether a parameter change was “unfavorable” is decided based
on the evolution of the partial derivatives and the overall error [7]. The standard
parameters η+ = 1.2 and η− = 0.5 reliably give good results and the initial
step sizes ∆k can be chosen small, so that no parameter-tuning is required when
applying resilient backpropagation.

4 Experiments

Experimental Setup. We applied the algorithms to the banana data set
[14], which is ideal for visualizing the sparse SVM solutions. Optimal param-
eters (C, γ) for SVM learning were determined by grid search and 5-fold cross-
validation on the training data. Second, we used the spam-database data set
available from UCI repository [15] having 1,813 positive examples (spam) and
2,788 negative ones. We transformed every feature to zero mean and unit vari-
ance. Third, we considered the MNIST handwritten digit database [16], which
was split into two classes containing the digits {0,1,2,3,4} and {5,6,7,8,9}, respec-
tively. Forth, we used the connect-4 opening database containing 67,557 game
states [15]. For binary classification the “draw” examples were removed result-
ing in 61,108 data points. The data were split roughly into two halves making



up training and test data. Parameters (C, γ) for the problems spam-database,
MNIST and connect-4 were taken from [9].

For each benchmark problem, an SVM was trained and then a predefined
number of approximation trials was conducted for different numbers of AVs. All
three techniques for selecting initial vectors in combination with iRprop+ and
fixed-point iteration were considered. A final gradient descent was performed for
the two “small” problems banana and spam-database.

Results. We compared different SVM approximation techniques, which differ
in the method used for minimizing the distance function and the method for
choosing the initial vectors. Surprisingly, all techniques for selecting initial vec-
tors in combination with iRprop+ showed almost the same behavior. Because
no significant difference could be observed we confine ourselves to discussing the
results with random selection only. Fixed-point iteration performed badly on
spam-database, MNIST, and connect-4 in that way that the algorithm was not
able to reach the target number of approximation vectors without getting stuck.
The repeated choice of different initial vectors did not help.

The 2-dimensional banana data set provided insight into the characteristics of
the resulting SVM approximation. Compared to the original SVM qualitatively
different solutions (see Fig. 1) were realized. The vectors of the sparse solution
lay rather in the center of the training examples than on the boundaries.

Fig. 1. Approximation of an SVM on the banana data set. The shading codes for the
answer of the classifier. The colors white and black correspond to positive and negative
examples, respectively. The big points mark the SVs and AVs, respectively. Left image:
all training data and the 160 support vectors of the original SVM. Right image: typical
approximated SVM with 25 AVs.

The results of the SVM approximation are depicted in Figs. 2-5. In the left
and middle pictures the number of AVs is plotted against ρ2 and the accuracy
on the test data, respectively. In addition to the median selected quantiles are
given. The fraction of the number of AVs to the number of SVs of the original
SVM is reported in brackets. The horizontal line in the middle plots gives the



accuracy of the original SVM on the test data. The plots on the right show ρ2

against the accuracy on the training data. The clusters that can be recognized
correspond to solutions with the same number of AVs.

On the banana data set sparse solutions with 20 AVs (e.g., 1/8 of the original
amount of SVs) were obtained that performed better on the test data than the
original SVM. On spam-database, MNIST and connect-4 data the performance of
the original SVM was not fully achieved, but only a small fraction of the number
of original SVs led to competitive results (Figs. 3-5).

The final gradient descent on all parameters, which was only tested on ba-

nana and spam-database, improved the quality of the approximation. Further,
the gradient descent decreased the variance of the solutions in both objectives,
distance and accuracy on the test data. As expected, the distance measure ρ2

was clearly correlated to the accuracy of the approximated SVM on the test
data.
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Fig. 2. Approximation results on banana (100 trials); median, 10% and 90% quantiles
are given. The fraction of AVs to SVs is reported in brackets.
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Fig. 3. Approximation results on spam-database (25 trials); median, 10% and 90%
quantiles are given.

5 Discussion

The approximation of kernel classifiers allows for the use of SVM training to
build classifiers for real-world applications requiring fast decisions. The perfor-
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Fig. 4. Approximation results on MNIST (10 trials); median, 20% and 80% quantiles
are given.
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Fig. 5. Approximation results on connect-4 (10 trials); median, 20% and 80% quantiles
are given.

mance of the sparse solution may stay behind the original classifier, but the
computational complexity is drastically reduced. We found that the SVM ap-
proximation provides qualitative different solutions compared to the original
SVM. The sparse classifiers are not built on vectors at the decision boundary.
The SVM strategy to consider the training patterns at the boundary fails to
produce sparse classifiers if the problem is noisy. The newly proposed variant
that utilizes the improved Rprop algorithm extends the applicability of SVM
approximation compared to fixed-point iteration. The latter technique totally
failed on some benchmark problems.

We considered different techniques for choosing initial vectors for the itera-
tions. It turned out that the choice of the selection method for initial vectors did
not affect the quality of the final solution. We further analyzed the correlation of
the distance function and the classification rates on the test data sets. These two
variables were correlated justifying the distance function used for minimization.
In accordance to the results in [5], in our experiments a final optimization of
all parameters of the sparse models increased the performance. Additionally, we
found that the variance of the results produced by the approximation algorithms
is reduced.

Thus, we recommend the improved Rprop algorithm for resilient minimiza-
tion of the distance function in combination with random selection of initial
vectors. This algorithm combines simplicity and reliability on all problems con-
sidered in this paper. Wherever applicable, a finishing gradient descent on the
final solution is recommended to improve the results of the final classifier.
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