
Trends and Applications in Constructive Approximation
(Eds.) M.G. de Bruin, D.H. Mache & J. Szabados

International Series of Numerical Mathematics Vol. 1??
c©2005 Birkhäuser Verlag Basel (ISBN 3-7643-7124-2)

Rprop Using the Natural Gradient

Christian Igel Marc Toussaint Wan Weishui

Abstract

Gradient-based optimization algorithms are the standard methods for adapt-
ing the weights of neural networks. The natural gradient gives the steepest
descent direction based on a non-Euclidean, from a theoretical point of view
more appropriate metric in the weight space. While the natural gradient has
already proven to be advantageous for online learning, we explore its bene-
fits for batch learning: We empirically compare Rprop (resilient backprop-
agation), one of the best performing first-order learning algorithms, using
the Euclidean and the non-Euclidean metric, respectively. As batch steepest
descent on the natural gradient is closely related to Levenberg-Marquardt
optimization, we add this method to our comparison.

It turns out that the Rprop algorithm can indeed profit from the nat-
ural gradient: the optimization speed measured in terms of weight updates
can increase significantly compared to the original version. Rprop based on
the non-Euclidean metric shows at least similar performance as Levenberg-
Marquardt optimization on the two benchmark problems considered and
appears to be slightly more robust. However, in Levenberg-Marquardt opti-
mization and Rprop using the natural gradient computing a weight update
requires cubic time and quadratic space. Further, both methods have addi-
tional hyperparameters that are difficult to adjust. In contrast, conventional
Rprop has linear space and time complexity, and its hyperparameters need
no difficult tuning.

1 Introduction

Artificial neural networks such as Multi-Layer Perceptrons (MLPs) have become
standard tools for regression. In essence, an MLP with fixed structure defines
a differentiable mapping from a parameter space

� n to the space of functions.
Although this mapping is typically not surjective, one can prove that in principle
every continuous function can be well approximated (e.g., see [8], the upper bound

1

2 Christian Igel, Marc Toussaint, and Wan Weishui

on the approximation error depends on the network structure). For an MLP with
fixed structure, a regression problem reduces to the adaptation of the parameters,
the weights, of the network given the sample data. This process is usually referred
to as learning.

Since MLPs are differentiable, gradient-based adaptation techniques are typ-
ically applied to adjust the weights. The earliest and most straightforward adap-
tation rule, ordinary gradient descent, adapts weights proportional to the par-
tial derivatives of the error functional [1, 17]. Several improvements of this basic
adaptation rule have been proposed, some of them based on elaborated heuris-
tics, others on theoretical reconsideration of gradient-based learning. Here we
consider three of them, natural gradient descent, resilient backpropagation, and
Levenberg-Marquardt optimization. We combine ideas of all three approaches to
a new method we call natural Rprop.

Resilient backpropagation (Rprop, [10, 15, 16]) is a well-established modifi-
cation of the ordinary gradient descent. The basic idea is to adjust an individual
step size for each parameter to be optimized. These step sizes are not proportional
to the partial derivatives but are themselves adapted based on some heuristics.
Ordinary gradient descent computes the direction of steepest descent by implicitly
assuming a Euclidean metric on the weight space. However, as we are interested in
the function corresponding to a weight configuration, a more appropriate metric
would take distances in the function space into account. Amari [2] proposed to
make use of methods from differential geometry to determine the steepest descent
direction, the negative natural gradient, based on such a non-Euclidean metric.

Our investigation is based on the following idea: If the natural gradient points
in a better descent direction and Rprop improves the ordinary gradient descent,
can a combination of both methods profit from the advantages of the two ap-
proaches? Can we get best of both worlds, the increased robustness of Rprop and
the improved convergence speed due to the decoupling of weight interdependencies
when using the right metric?

In order to asses the performance of the new learning approach, we compare it
to a standard Rprop algorithm and to Levenberg-Marquardt optimization [12, 13].
We choose Levenberg-Marquardt optimization, because in the function regression
scenario that we consider it turns out that natural gradient descent is closely
related to Levenberg-Marquardt optimization. In addition, we borough ideas from
this classical technique to increase the robustness of the calculation of the steepest
descent direction within natural Rprop.

In the next section we give brief but comprehensive descriptions of Rprop,
Levenberg-Marquardt optimization, and the natural gradient. Then we introduce
their combination, the natural Rprop. Section 3 presents experimental results on
two benchmark problems. Since the Levenberg-Marquardt algorithm as well as the
natural Rprop introduce new hyperparameters, we particularly look at the robust-
ness of the algorithms in terms of the choices of these parameters. We conclude
by discussing the results in section 4.

Rprop Using the Natural Gradient 3

2 Background

We understand a feed-forward MLP with nin inputs and nout outputs as a function
f(· ; w) :

� nin → � nout describing some input-output behavior. The function is
parameterized by a weight vector w ∈ W =

� n as indicated by the notation.
For instance, y = f(x; w) is the output of the network for a given input x and
weights w. To address the components of the weight vector w we use upper indices
(w1, .., wn) to clarify that they are contra-variant and not co-variant (this will
become more apparent and relevant when describing the natural gradient). As an
error measure E(w) to be minimized we assume, in the following, the mean squared
error (MSE) on a batch {(x1, y1), .., (xP , yP)} ∈ (

� nin × � nout)P of sample data
points. For simplicity, we restrict ourselves to nout = 1 and define

E(w) =
1

P

P
∑

p=1

||f(xp; w) − yp||2 .

In the remainder of this section, we describe four methods for gradient-based
minimization of E(w): we review Rprop, natural gradient descent, and Levenberg-
Marquardt optimization, and introduce a new approach, natural Rprop.

2.1 Resilient Backpropagation

The Rprop algorithms are among the best performing first-order batch learning
methods for neural networks with arbitrary topology [9, 10, 15, 16]. They are

- very fast and accurate (e.g., compared to conjugate gradient methods, Quick-
prop etc.),

- very robust in terms of the choices of their hyperparameters,

- first-order methods, therefore time and space complexity scales linearly with
the number of parameters to be optimized,

- only dependent on the sign of the partial derivatives of the objective function
and not on their amount, therefore they are suitable for applications where
the gradient is numerically estimated or the objective function is noisy, and

- easy to implement and not very sensitive to numerical problems.

In the following, we describe the Rprop variant with improved backtracking in-
troduced in [9]. The Rprop algorithms are iterative optimization methods. Let t
denote the current iteration (epoch). In epoch t, each weight is changed according
to

wi(t + 1) = wi(t)− sign

(

∂E(t)

∂wi

)

·∆i(t) .

The direction of the change depends on the sign of the partial derivative, but is
independent of its amount. The individual step sizes ∆i(t) are adapted based on
changes of sign of the partial derivatives of E(w) w.r.t. the corresponding weight:

4 Christian Igel, Marc Toussaint, and Wan Weishui

If ∂E(t−1)
∂wi · ∂E(t)

∂wi > 0 then ∆i(t) is increased by a factor η+ > 1, otherwise ∆i(t)
is decreased by multiplication with η− ∈]0, 1[. Additionally, some Rprop meth-
ods implement weight-backtracking. That is, they partially retract “unfavorable”
previous steps. Whether a weight change was “unfavorable” is decided by a heuris-
tic. We use an improved version of the original algorithm called iRprop+, which
is described in pseudo-code in Table 1. The difference compared to the original
Rprop proposed in [16] is that the weight-backtracking heuristic considers both
the evolution of the partial derivatives and the overall error. For a comparison of
iRprop+ with other Rprop variants and a detailed description of the algorithms
the reader is referred to [10].

for each wi do

if ∂E(t−1)
∂wi · ∂E(t)

∂wi > 0 then

∆i(t) = min
(

∆i(t− 1) · η+, ∆max

)

wi(t + 1) = wi(t)− sign
(

∂E(t)
∂wi

)

·∆i(t)

elseif ∂E(t−1)
∂wi · ∂E(t)

∂wi < 0 then

∆i(t) = max
(

∆i(t− 1) · η−, ∆min

)

if E(t)>E(t− 1) then wi(t + 1) = wi(t− 1)

∂E(t)
∂wi := 0

elseif ∂E(t−1)
∂wi · ∂E(t)

∂wi = 0 then

wi(t + 1) = wi(t)− sign
(

∂E(t)
∂wi

)

·∆i(t)

fi

od

Table 1: The iRprop+ algorithm with improved weight-backtracking scheme as
proposed in [10].

2.2 Levenberg-Marquardt Optimization

Levenberg-Marquardt optimization [6, 12, 13] is based on the idea that, to mini-
mize the error functional E(w), one should find weights such that the derivatives
∂E(w)

∂wi vanish. This search can be realized with a Newton step on an approxima-
tion of the error functional as follows. Consider the linear approximation of f(x; w)

Rprop Using the Natural Gradient 5

around w(t),

f̂(x; w) = f(x; w(t)) +
n

∑

j=1

[wj − wj(t)]
∂f(x; w(t))

∂wj
.

Substituting f̂ for f in the MSE gives a new error function Ê(w) with gradient

∂Ê(w)

∂wi
=

2

P

P
∑

p=1

[f̂(xp; w) − yp]
∂f̂(xp; w)

∂wi

=
∂E(w(t))

∂wi
+

∑

j

Aij(w(t)) [wj − wj(t)] . (1)

Here the n× n matrix Aij(w) has the entries

Aij(w) =
2

P

P
∑

p=1

∂f(xp; w)

∂wi

∂f(xp; w)

∂wj
.

Setting (1) to zero (i.e., doing a Newton step on Ê) leads to the weight update

wi(t + 1) = wi(t)−
n

∑

j=1

Aij(w(t))
∂E(w(t))

∂wj
. (2)

Here Aij is the inverse matrix of Aij . This weight update would lead to an optimum

if Ê(w) = E(w). This is in general not the case and the weight update rule (2) is
only reasonable close to a minimum. Therefore, the idea is to automatically blend
between (2) and standard steepest descent:

wi(t + 1) = wi(t)−
n

∑

j=1

[Aij + λIij]
−1 ∂E(w(t))

∂wj
,

where the parameter λ > 0 allows soft switching between the two strategies. A large
λ corresponds to simple gradient descent. There are several heuristics to adapt λ.
We use the most common one to decrease λ by multiplication with λ− ∈]0, 1[if
the error decreased, and to increase it by multiplication with λ+ > 1 (usually
λ− = λ−1

+), otherwise. A drawback of Levenberg-Marquardt optimization is that
the choice of λ0 (the initial value for λ), λ−, and λ+ is crucial for the performance
of the algorithm.

2.3 Natural Gradient Descent

Basically, natural gradient descent is steepest descent with a non-Euclidean metric
on the parameter space. Two simple facts motivate the natural gradient: First, the

6 Christian Igel, Marc Toussaint, and Wan Weishui

b)a)
E(x, y)=−x

x

�
n

Gij

F
G̃

GMSE

MLP

y

G̃Euclid

Figure 1: a) The steepest descent direction of a functional E(x, y) depends on the
metric: The ellipses mark the set of vectors of unit length for the Euclidean metric

(dashed circle) and the metric G =

(

3/4

1/4

1/4

3/4

)

(ellipse). For the ellipse, the unit

length vector that decreases E(x, y) = −x the most is not pointing directly to the
right, it is generally given by equation (3). b) An MLP establishes a differentiable
relation between the weight space W =

� n and the manifold of functions F. A
canonical distance measure GMSE on the function space induces a non-Euclidean
metric Gij on the weight space w.r.t. which steepest descent should be performed.

In contrast, if a Euclidean metric G̃Euclid is presumed on the weight space, this
generally leads to a “non-diagonal” metric G̃ on the function space. Typically,
a non-diagonal metric on the function space is undesirable because this leads to
negative inference and cross-talk; e.g., during online learning, if one functional
components is trained, others are untrained according to the off-diagonal entries
of the metric [18]. Using the natural gradient avoids this effect of catastrophic
forgetting during online learning.

steepest descent direction generally depends on the choice of metric on the param-
eter space—this is very often neglected in standard textbooks describing gradient
descent. See figure 1a) for an illustration. Second, there are good arguments to
assume a non-Euclidean metric on the parameter space: Generally, there exists
no a priori reason why the Euclidean metric on the parameter space should be a
preferential distance measure between solutions. In fact, in the case of function
regression, one typically assumes a canonical distance measures on the function
space, like the mean squared error, or a likelihood measure on the space of distribu-
tions, which translate to non-trivial metrics on the parameter space, see figure 1b).
Amari [2, 5, 4] was the first to realize the implications of these facts in the case of
gradient-based adaptation of MLPs. In the following, we give a simple derivation
of the natural gradient.

An MLP represents a differentiable mapping f from the parameter space
W =

� n to the manifold F of functions. We write f : w ∈W 7→ f(· ; w) ∈ F. Let
d be a distance measure on F. Here we assume that d(f, h) is the mean squared

Rprop Using the Natural Gradient 7

distance on a batch {x1, .., xP } of data points between two functions f and h,

d(f, h) =
1

P

P
∑

p=1

[f(xp)− h(xp)]
2 .

The pull-back of this metric onto the parameter space is, by definition,

Gij(w) =
1

P

P
∑

p=1

∂f(xp; w)

∂wi

∂f(xp; w)

∂wj
.

The meaning of this metric Gij on W is: if we measure distances in W using Gij ,
then these distances are guaranteed to be equal to the mean squared distance when
measured on the function space F.1 Further, if we determine the steepest descent
direction in W using the metric Gij we can be sure to find the direction in which
the mean squared error on F decreases fastest—which is generally not true when
using the Euclidean metric!

The steepest descent direction of a functional E(w) over W is given as the
vector δ with components

δj =

n
∑

i=1

Gij(w)
∂E(w)

∂wi
. (3)

Here Gij is the inverse matrix of Gij . (Upper indices denote so-called contra-
variant components.) Thus, in summary, natural gradient descent with learning
rate η > 0 reads

wi(t + 1) = wi(t)− η

n
∑

j=1

Gij(w(t))
∂E(w(t))

∂wj
. (4)

There exists an online version of the natural gradient [5] that approximates the
inverse natural metric Gij on the fly and reduces the negative effects of co-inference
during online learning (cf. figure 1b).

Comparing Levenberg-Marquardt adaptation (2) with batch natural gradient
(4) descent we find that for λ = 0 they are equivalent since Aij = Gij (in the case
of the mean squared distance d(f, h) on F). This fact has previously been observed
by [3, 7, 11]. A small difference is the robustness term for λ 6= 0. Note that for
different distance measures on F, generally Aij = Gij does not hold.

2.4 Natural Rprop

Rprop is a batch gradient-based learning algorithm that overcomes the problems
of standard gradient descent by automatically adjusting individual step sizes. The

1More precisely, if we measure the distance between w1 and w2 in W by the length of the
geodesic w.r.t. Gij(w), then this distance is guaranteed to be equal to the mean squared distance
d(f1, f2) between the two corresponding functions f1 = f(· ; w1) and f2 = f(· ; w2) in � .

8 Christian Igel, Marc Toussaint, and Wan Weishui

space time
iRprop+ O(n) O(n)
Levenberg-Marquardt optimization O(n2) O(n3)
natural gradient descent / natural iRprop+

O(n2) O(n3)

Table 2: The complexity of the three algorithms w.r.t. space and time. The number
of weights in the MLP is denoted by n.

natural gradient points in a direction that is more appropriate for steepest descent
optimization. Now, the question arises whether it can be beneficial to combine
natural gradient descent with the heuristics of Rprop. Recall that one of the main
features of Rprop is that the update step sizes depend only on the signs of the
gradient. Since the metric G and also its inverse G−1 are always positive definite,
a vector transformed by G changes its direction by up to 90◦. The angle between
ordinary and natural gradient descent directions can also be up to 90◦ (which
also becomes apparent from figure 1a). Thus, the signs can generally change when
replacing the ordinary gradient by the natural gradient in the Rprop algorithm
and, therefore, adaptation behavior changes.

We hence propose to combine iRprop+, the natural gradient, and the robust-
ness term λIij of Levenberg-Marquardt simply by replacing the ordinary gradient
∂E(w)

∂wi by the robust natural gradient

[

Gij + λ trace(Gij) Iij

]−1 ∂E(w)

∂wi

within the iRprop+algorithm. As in Levenberg-Marquardt optimization, the pa-
rameter λ ∈ � + blends between the natural gradient and the ordinary gradient by
adding a weighted unity matrix Iij . Additionally, we weight the term proportional
to the trace of G such that the blending becomes relative w.r.t. the orders of the
Eigenvalues of G. We use the same update rule as before, λ is reduced by multi-
plication with λ− ∈]0, 1[if the error decreased and is set to λ← λ · λ+, otherwise
(usually λ− = λ−1

+). We call this new algorithm natural Rprop.

Table 2 displays the complexity of iRprop+, the Levenberg-Marquardt algo-
rithm, and natural gradient descent / natural Rprop w.r.t. space and time. Both,
Levenberg-Marquardt and the natural gradient require the storage and inversion of
a n×n-matrix, with n being the number of weights, and this dominates the cost of
these algorithms leading to cubic time complexity and quadratic space complexity.
In contrast, iRprop+needs only linear time and space to update weight by weight
separately and to store the weights and the step size for each weight.

Rprop Using the Natural Gradient 9

PSfrag replacements

0

1

2

3

4

5

6

C0

C1

x1

x2

year

a
v
er

a
g
e

n
u
m

b
er

o
f
su

n
sp

o
ts

1750 1800 1850 1900 1950
0

20

40

60

80

100

120

140

160

180

200

Figure 2: Time series of average number of sunspots observed per year.

3 Experiments

First, the two benchmark problems, sunspot prediction and extended XOR, are
introduced. Then we describe the experimental setup. Finally, the empirical results
are presented.

3.1 Benchmark Problems

The goal of the sunspot prediction task is to reproduce the time series of the
average number of sunspots observed per year, see figure 2. The data are available
from http://sidc.oma.be. The average number of spots from the years t − 1,
t − 2, t − 4, and t − 8 are given to predict the value for the year t. The training
set contains 289 patterns. The first year to predict is 1708. The input values are
normalized between 0.2 and 0.8.

The extended XOR task, see figure 3, is an artificial classification benchmark
[14]. The 1800 training patterns (x, c) ∈ � 2 × {0, 1} are sampled from

p(x, c) =
1

|C0|+ |C1|
∑

µ∈Cc

1√
2πσ

e−(x−µ)2/(2σ2) ,

with C0 = {(1, 5), (5, 5), (3, 3), (1, 1), (5, 1)}, C1 = {(3, 5), (1, 3), (5, 3), (3, 1)}, and
variance σ2 = 0.2.

We want to evaluate the optimization speed of different learning algorithms.
Thus, in both benchmark problems we just consider the task of learning the sample
data and do not consider the import issue of generalization.

10 Christian Igel, Marc Toussaint, and Wan Weishui

PSfrag replacements

0

0

1

1

2

2

3

3

4

4

5

5

6

6 C0

C1

x1

x
2

Figure 3: The extended XOR problem.

3.2 Experiments

We compare the standard iRprop+, natural iRprop+ (i.e., iRprop+ using the
natural gradient), and LevenbergMarquardt optimization on the two benchmark
problems. The Rprop parameters are set to default values η+ = 1.2, η− = 0.5,
∆min = 0, ∆max = 50, and ∆0 = 0.01. For natural iRprop+ and Levenberg-
Marquardt optimization, we test all combinations of λ0 ∈ {0.01, 0.1, 1, 10} and
λ−1

+ = λ− ∈ {0.5, 0.6, . . . , 0.9}. For every optimization method and parameter set-
ting 20 trials starting from random initializations of the weights are performed;
the 20 different initializations are the same for every algorithm and parameter
combination. That is, a total of 840 NNs are trained. The number of iterations
(learning epochs) is set to 5000.

For the sunspot prediction problem, a 4-10-1 NN architecture without short-
cut connections is chosen. The 10 hidden neurons have sigmoidal transfer functions,
the logistic /Fermi function f(x) = 1/(1 + e−x), and the output neuron is linear.
For the extended XOR, we use a 2-12-1 architecture without shortcut connections
and only sigmoidal transfer functions. These architectures have not been tailored
to the problems (and hence the absolute results are far from being optimal).

3.3 Results

The results are summarized in figures 4 and 5: Shown are the error trajecto-
ries for the 20 parameter combinations averaged over the 20 trials for Leven-

Rprop Using the Natural Gradient 11

berg-Marquardt optimization and natural iRprop+, respectively. The parameter
settings yielding the lowest final error on average on the extended XOR problem
were λ0 = 0.01 and λ− = 0.5 for Levenberg-Marquardt optimization and λ0 = 0.1
and λ− = 0.8 for natural iRprop+. On the the sunspot prediction task, the best
results were obtained for λ0 = 10, λ− = 0.9 and λ0 = 0.01, λ− = 0.8, respectively.
The results corresponding to these parameter settings are compared to the stan-
dard Rprop in the lowest plots in figures 4 and 5. The differences between the
error values of those three curves in the final iteration are pairwise statistically
significant (Wilcoxon rank sum test, p < .001). The results show:

• The performance of natural iRprop+ and LevenbergMarquardt optimization
strongly depends on the choice of λ0 and λ−. The “best” values for λ0 and λ−

are task-dependent. However, natural iRprop+ appears to be more robust.

• For an appropriate parameter setting, Levenberg-Marquardt optimization
and natural iRprop+ clearly outperform the standard iRprop+. However, the
latter has lower computational complexity and does not depend on critical
parameters such as λ0 and λ−.

• For one task, the Levenberg-Marquardt method yielded the best final so-
lutions (averaged over 20 trials), for the other iRprop+ using the natural
gradient. In both problems, the iRprop+ combined with the natural gradi-
ent seems to be slightly faster in the early iterations.

4 Conclusions

In this study, we compared Levenberg-Marquardt optimization (which can be re-
garded as some kind of batch natural gradient learning in our scenario), iRprop+,
and iRprop+ using the natural gradient (natural iRprop+) for optimizing the
weights of feed-forward neural networks. It turned out that the Rprop algorithm
can indeed profit from using the natural gradient, although the updates done
by Rprop are not collinear with the (natural) gradient direction. Natural iRprop+

shows similar performance as Levenberg-Marquardt optimization on two test prob-
lems. The results indicate that natural iRprop+ is a little bit faster in the early
stages of optimization and more robust in terms of the choices of the parameters
λ0, λ−, and λ+. However, a more extensive empirical investigation is needed to
substantiate these findings. The standard iRprop+ algorithm is slower than the
other methods with appropriate parameters for λ0, λ−. Still, these parameters are
problem dependent, they considerably influence the performance of the methods,
and they are not easy to adjust. Further, the computational costs of each opti-
mization step grow from linear to cubic when replacing Rprop with one of the
other two methods. Hence, we conclude that some Rprop algorithm is still the
batch-learning method of choice.

12 Christian Igel, Marc Toussaint, and Wan Weishui

Acknowledgments

This work was supported by the DFG, grant Solesys-II SCHO 336/5-2.

References

[1] S. Amari. A theory of adaptive pattern classifiers. IEEE Transactions on
Electronic Computers, 16(3):299–307, 1967.

[2] S. Amari. Natural gradient works efficiently in learning. Neural Computation,
10:251–276, 1998.

[3] S. Amari and S. C. Douglas. Why natural gradient? In Proceedings of the 1998
IEEE International Conference Acoustics, Speech, Signal Processing (ICASSP
1998), volume II, pages 1213–1216, 1998.

[4] S. Amari and H. Nagaoka. Methods of Information Geometry. Number 191 in
Translations of Mathematical Monographs. American Mathematical Society
and Oxford University Press, 2000.

[5] S. Amari, H. Park, and K. Fukumizu. Adaptive method of realizing natural
gradient learning for multilayer perceptrons. Neural Computation, 12:1399–
1409, 2000.

[6] M. T. Hagan and M. B. Menhaj. Training feedforward networks with the
marquardt algorithm. IEEE Transactions on Neural Networks, 5(6):989–993,
1994.

[7] T. Heskes. On ”natural” learning and pruning in multi-layered perceptrons.
Neural Computation, 12(4):881–901, 2000.

[8] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks
are universal approximators. Neural Networks, 2(5):359–366, 1989.

[9] C. Igel and M. Hüsken. Improving the Rprop learning algorithm. In H. Bothe
and R. Rojas, editors, Proceedings of the Second International ICSC Sym-
posium on Neural Computation (NC 2000), pages 115–121. ICSC Academic
Press, 2000.

[10] C. Igel and M. Hüsken. Empirical evaluation of the improved Rprop learning
algorithm. Neurocomputing, 50(C):105–123, 2003.

[11] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient backprop. In
G. B. Orr and K.-R. Müller, editors, Neural Networks: Tricks of the Trade,
number 1524 in LNCS, chapter 1, pages 9–50. Springer-Verlag, 1998.

[12] K. Levenberg. A method for the solution of certain non-linear problems in
least squares. Quarterly Journal of Applied Mathematics, 2(2):164–168, 1944.

Rprop Using the Natural Gradient 13

[13] D. Marquardt. An algorithm for least-squares estimation of nonlinear pa-
rameters. Journal of the Society for Industrial and Applied Mathematics,
11(2):431–441, 1963.

[14] H. Park, S. Amari, and K. Fukumizu. Adaptive natural gradient learning
algorithms for various stochastic models. Neural Networks, 13(7):755–764,
2000.

[15] M. Riedmiller. Advanced supervised learning in multi-layer perceptrons –
From backpropagation to adaptive learning algorithms. Computer Standards
and Interfaces, 16(5):265–278, 1994.

[16] M. Riedmiller and H. Braun. A direct adaptive method for faster backpropa-
gation learning: The RPROP algorithm. In E. H. Ruspini, editor, Proceedings
of the IEEE International Conference on Neural Networks, pages 586–591.
IEEE Press, 1993.

[17] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal repre-
sentations by error backpropagation. In D. E. Rumelhart, J. L. McClelland,
and the PDP Research Group, editors, Parallel Distributed Processing: Ex-
plorations in the Microstructure of Cognition, volume 1, pages 318–362. MIT
Press, 1986.

[18] M. Toussaint. On model selection and the disability of neural networks to
decompose tasks. In Proceedings of the International Joint Conference on
Neural Networks (IJCNN 2002), pages 245–250, 2002.

Institut für Neuroinformatik
Ruhr-Universität Bochum
D-44780 Bochum, Germany
Email address: {christian.igel,marc.toussaint}@neuroinformatik.rub.de

14 Christian Igel, Marc Toussaint, and Wan Weishui

PSfrag replacements

0

1

2

3

4

5

6

C0

C1

x1

x2

year
average number of sunspots

1750

1800

1850

1900

1950

0

20

40

60

80

100

120

140

160

180

200

er
ro

r
o
n

lo
g
a
ri
th

m
ic

sc
a
le

iteration
0 1000 2000 3000 4000 5000

1 0.1

0.01

100

1000

iRprop+

Natural iRprop+

Levenberg-Marquardt

PSfrag replacements

0

1

2

3

4

5

6

C0

C1

x1

x2

year
average number of sunspots

1750

1800

1850

1900

1950

0

20

40

60

80

100

120

140

160

180

200

er
ro

r
o
n

lo
g
a
ri
th

m
ic

sc
a
le

iteration
0 1000 2000 3000 4000 5000

1 0.1

0.01

100

1000

iRprop+

Natural iRprop+

Levenberg-Marquardt

PSfrag replacements

0

1

2

3

4

5

6

C0

C1

x1

x2

year
average number of sunspots

1750

1800

1850

1900

1950

0

20

40

60

80

100

120

140

160

180

200

er
ro

r
o
n

lo
g
a
ri
th

m
ic

sc
a
le

iteration
0 1000 2000 3000 4000 5000

1

0.1

0.01

100

1000

iRprop+

Natural iRprop+

Levenberg-Marquardt

Figure 4: Results for the extended XOR problem. The upper plots show the results
for the different settings of λ0 and λ− averaged over 20 trials for iRprop+ using
natural gradient and Levenberg-Marquardt optimization, respectively. The lower
plot shows the averaged trajectories for the parameters resulting in the lowest final
error in each case compared to standard iRprop+.

Rprop Using the Natural Gradient 15

PSfrag replacements

0

1

2

3

4

5

6

C0

C1

x1

x2

year
average number of sunspots

1750

1800

1850

1900

1950

0

20

40

60

80

100

120

140

160

180

200

er
ro

r
o
n

lo
g
a
ri
th

m
ic

sc
a
le

iteration
0 1000 2000 3000 4000 5000

1

0.1

0.01

100

1000

iRprop+

Natural iRprop+

Levenberg-Marquardt

PSfrag replacements

0

1

2

3

4

5

6

C0

C1

x1

x2

year
average number of sunspots

1750

1800

1850

1900

1950

0

20

40

60

80

100

120

140

160

180

200

er
ro

r
o
n

lo
g
a
ri
th

m
ic

sc
a
le

iteration
0 1000 2000 3000 4000 5000

1

0.1

0.01

100

1000

iRprop+

Natural iRprop+

Levenberg-Marquardt

PSfrag replacements

0

1

2

3

4

5

6

C0

C1

x1

x2

year
average number of sunspots

1750

1800

1850

1900

1950

0

20

40

60

80

100

120

140

160

180

200

er
ro

r
o
n

lo
g
a
ri
th

m
ic

sc
a
le

iteration
0 1000 2000 3000 4000 5000

1

0.1

0.01

100
1000

iRprop+

Natural iRprop+

Levenberg-Marquardt

Figure 5: Results for the sunspots prediction problem. The upper plots show the
results for the different settings of λ0 and λ− averaged over 20 trials for natu-
ral iRprop+ and Levenberg-Marquardt optimization, respectively. The lower plot
shows the averaged trajectories for the parameters resulting in the lowest final
error in each case compared to standard iRprop+.

