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Abstract

Many state-of-the-art evolutionary vector optimization algorithms compute the
contributing hypervolume for ranking candidate solutions. However, with an
increasing number of objectives, calculating the volumes becomes intractable.
Therefore, although hypervolume-based algorithms are often the method of
choice for bi-criteria optimization, they are regarded as not suitable for many-
objective optimization. Recently, Monte Carlo methods have been derived and
analyzed for approximating the contributing hypervolume. Turning theory into
practice, we employ these results in the ranking procedure of the multi-objective
covariance matrix adaptation evolution strategy (MO-CMA-ES) as an example
of a state-of-the-art method for vector optimization. It is empirically shown
that the approximation does not impair the quality of the obtained solutions
given a budget of objective function evaluations, while considerably reducing
the computation time in the case of multiple objectives. These results are ob-
tained on common benchmark functions as well as on two design optimization
tasks. Thus, employing Monte Carlo approximations makes hypervolume-based
algorithms applicable to many-objective optimization.

1. Introduction

Multi-objective optimization, also known as multi-criteria or vector opti-
mization, is the basis of multiple criteria decision making [19, 22, 32, 33]. It
is concerned with the optimization of vector-valued objective functions. The
goal is to find or to approximate the set of Pareto-optimal solutions. A solu-
tion is Pareto-optimal if it cannot be improved in one objective without getting
worse in another one. In recent years, it has become apparent that stochastic,
population-based search algorithms such as evolutionary computing techniques
are particularly well suited for solving vector optimization problems (e.g., see
[15, 16]).
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Multi-objective evolutionary algorithms (MOEAs) have become broadly ac-
cepted methods in multi-criteria decision making and multiple criteria mathe-
matical programming. It is known that the performance of MOEAs tends to de-
teriorate with an increasing number of objectives [14]. This is a general problem
of vector optimization algorithms. For few objectives, MOEAs relying on the
contributing hypervolume as the (second-level) sorting criterion are the methods
of choice. These include the evolution strategy with probabilistic mutation for
multi-objective optimisation (ESP, [26]), the multi-objective covariance matrix
adaptation evolution strategy (MO-CMA-ES, [27, 28, 34]), the SMS-EMOA [4],
and variants of the indicator-based evolutionary algorithm (IBEA, [41]). De-
spite the progress in developing algorithms for hypervolume computation (e.g.,
[3, 6, 7, 10, 21, 38, 40]), the computational complexity of calculating the con-
tributing hypervolume prevents the broad application of these powerful MOEAs
to objective functions with many (say, more than four) objectives.

Recently, several approximation algorithms for determining the least hyper-
volume contributor of a given Pareto-front approximation have been presented,
for example, in [8, 11] or as part of the HypE MOEA [2]. Because of the
good performance of HypE and encouraged by a preliminary study [36], we hy-
pothesize that using such an approximation instead of the exact contributing
hypervolume will make the aforementioned MOEAs applicable to problems with
many objectives and that the resulting algorithms will push the boundaries of
MOEAs for many-objective optimization.

In theory, the approximation allows for the application of hypervolume-
based MOEAs to optimization problems with an arbitrary number of objec-
tives. While there exist comparisons of approximation-based algorithms with
other MOEAs [2], the effects of replacing the exact hypervolume calculation
with an approximation algorithm on the overall performance of MOEAs have
not been investigated in isolation. Apart from [36], there has been no empirical
comparison of state-of-the-art MOEAs in which the exact hypervolume compu-
tation has been replaced by an approximation while fixing the other components
of the algorithm.

Against this background, we employ the approximation within the steady-
state MO-CMA-ES while all other components are kept fixed to empirically
investigate whether the Monte Carlo approximation is actually useful in prac-
tice. In our experiments, using approximations indeed considerably reduced
the computation time in the case of multiple objectives without impairing the
quality of the obtained solutions.

The remainder of the document is structured as follows. The next section
introduces the problem of determining the least hypervolume contributor. We
briefly review results on Monte Carlo approximation of the least hypervolume
contributor as well as the exact hypervolume algorithm. Then, we present our
empirical evaluation before concluding with the results of our experiments and
suggestions for future work.
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2. Vector Optimization and the Least Hypervolume Contributor

We consider multi-objective optimization problems of the form

f : X → Rm, f(x) 7→ (f1(x), . . . , fm(x)),

where X denotes the search space of the optimization problem and m refers
to the number of objectives. Without loss of generality, we assume that all
objectives are to be minimized. The number of objectives of all considered test
problems is m ≥ 3. Pareto-dominance is the fundamental concept for comparing
candidate solutions of a multi-objective optimization problem. The candidate
solution x′ weakly dominates x and we write x′ � x if

∀i ∈ {1, . . . ,m} : fi(x
′) ≤ fi(x)

The solution x′ strictly dominates x and we write x′ ≺ x if additionally

∃j ∈ {1, . . . ,m} : fj(x
′) < fj(x)

hold.
Using the notion of dominance, the goal of multi-objective optimization can

be defined as finding or approximating the set

X ′ = {x ∈ X | @x′ ∈ X : x′ ≺ x} ⊆ X,

which is called the Pareto-optimal set. The image of X ′ under f is referred to
as the corresponding Pareto-optimal front.

The concept of dominance can be extended to sets. Let A and B be sets of
candidate solutions. Then A weakly dominates B and we write A � B if every
element in B is weakly dominated by at least one element in A.

2.1. Evolutionary Vector Optimization

Evolutionary algorithms (EAs, [20]) are iterative direct search heuristics that
maintain a set of µ candidate solutions, the so-called parent population. In each
iteration, λ new offspring solutions are generated. Then a new parent population
is assembled from both the offspring and the former parent population. Candi-
date solutions with better objective function values are preferentially selected.
In the elitist EA considered in this study, the parent population of the next
generation is formed by the best µ of the new solutions and their parents. This
requires sorting the solutions. However, the Pareto-dominance relation does not
establish a total order. Therefore, incomparable candidate solutions need to be
sorted by a so-called second-level sorting criterion. Given two incomparable
individuals a and b (i.e. neither a � b nor b � a holds) and a Pareto front F ,
the second-level sorting criterion determines whether a or b is more valuable in
the context of F (cf. [41]). The contributing hypervolume is one of the most
popular second-level sorting criteria due to its attractive theoretical properties,
and it is deployed in most recent multi-objective evolutionary algorithms.
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2.2. The Contributing Hypervolume

The hypervolume measure or S-metric (see [42]) of a population A is the
volume of the union of regions of the objective space which are dominated by A
and bounded by some appropriately chosen reference point r ∈ Rm, that is,

HYP(A) := VOL

(⋃
a∈A

[
f1(a), r1

]
× · · · ×

[
fm(a), rm

])
,

with VOL( · ) being the Lebesgue measure. One of the unique features of the
hypervolume indicator is that it is, up to weighting objectives, the only known
indicator which is strictly Pareto compliant [43], that is, given two sets A and B
the indicator values A higher than B if A dominates B. It has further been
shown by Bringmann and Friedrich [13] that the worst-case approximation fac-
tor of all possible Pareto fronts obtained by any hypervolume-optimal set of
fixed size µ is asymptotically equal to the best worst-case approximation factor
achievable by any set of size µ, namely Θ(1/µ) for additive approximation and
1 + Θ(1/µ) for relative approximation. The authors have shown in [23] that
by considering a transformed variant of the hypervolume indicator, the loga-
rithmic hypervolume indicator, a close-to-optimal multiplicative approximation
ratio can be achieved. For these reasons, the hypervolume indicator is a pop-
ular second-level sorting criterion in many recent multi-objective evolutionary
algorithms (MOEAs).

When using the hypervolume as a second-level sorting criterion for compar-
ing incomparable individuals, we measure the respective contribution of each
individual to the total hypervolume. The contributing hypervolume of an indi-
vidual a ∈ A is given by

CON(a,A) := HYP(A)−HYP(A \ {a}).

Note that the contributing hypervolume of a dominated individual is zero. Thus,
in the following we assume that all dominated individuals have been removed
from A before contributing hypervolumes are computed or estimated. The con-
tribution CON(a,A) is an important measure since instead of using the hyper-
volume directly, most hypervolume based algorithms such as the steady-state
MO-CMA-ES or the SMS-EMOA remove, in the selection step, the individual

a1 := argmin
a∈A

(
CON(a,A)

)
contributing the least hypervolume to the population A.1

1To be precise, the algorithms consider not the whole population A but the subset A′ of
individuals having the worst rank w.r.t. non-dominated sorting [17]. This set is constructed
iteratively starting from A′ = A as follows. If A′ contains dominated individuals, all non-
dominated individuals are removed from A′. This removal process is iterated until the re-
maining set A′ does not contain dominated individuals, and the individual contributing least
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3. Computing the Contributing Hypervolume

In this section, we summarize an exact algorithm and two approximation
schemes for calculating the contributing hypervolume.

3.1. Exact Computation

In order to determine a1, the usual way is calculating HYP(A) and HYP(A\
{a}) for all a ∈ A. This can be done by (|A| + 1) hypervolume calculations
with one of the many available hypervolume algorithms. Unfortunately, as the
problem is #P-hard [9], none of them can run in time polynomial in m unless
P = NP. In fact, assuming the widely believed exponential time hypothesis [30],
the runtime of all algorithms computing the hypervolume must be |A|Ω(m) [12].
Note that this only holds in the worst-case. The average-case complexity can
be polynomial in the number of objectives [12].

Many algorithms have been present recently for calculating the hypervol-
ume (e.g. [3, 6, 7, 10, 21, 38, 40]). We use the algorithm of Bringmann and
Friedrich [10] which computes all contributions CON(a,A), a ∈ A, in only one
pass. This saves a factor of |A| compared to most other hypervolume algorithms
and gives a total runtime of O(|A|m/2 log(|A|)) to compute all |A| hypervol-
ume contributions. For dimension m = 3 there is an even faster algorithm by
Emmerich and Fonseca [21], which computes all hypervolume contributions in
time O(|A| log(|A|)). As we are more interested in higher-dimensional prob-
lems (m ≥ 5), we use the algorithm of Bringmann and Friedrich [10] for all
dimensions.

3.2. Probably Approximately Correct Approximation

In our experiments we want to compare this exact calculation of the hyper-
volume with an approximation algorithm. It is known that the hypervolume
can be approximated very efficiently by an FPRAS (fully polynomial-time ran-
domized approximation scheme) [9]. Unfortunately, an approximation of the
hypervolume does not yield an approximation of CON. Even worse, CON(a,A)
is not only #P-hard to calculate exactly, it is also NP-hard to approximate by a
factor of 2m

1−ε

for all ε > 0 [8, 11]. Though CON is therefore not approximable
in time polynomial in |A| and m, there are still a few approximation algorithms
for CON (see [2, 8, 11]). The approximation algorithms presented in [2, 8, 11]
are Monte Carlo algorithms based on different sampling techniques. The algo-
rithm HypE [2] is a MOEA using hypervolume estimations at a user-specified
confidence level to guide the search. However, here we want to compare a stan-
dard MOEA with and without hypervolume approximation to study the effects
of the approximation. For this, we use the approximation algorithm of Bring-
mann and Friedrich [8, 11]. We now briefly describe this approach, which we

hypervolume to A′ is removed from the population A.
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will later improve in Section 3.3. This Monte Carlo algorithm returns, for a
population A and arbitrary small ε, δ > 0, an individual ã1 with the property

Pr
[
CON

(
ã1, A

)
≤ (1 + ε)CON(a1, A)

]
≥ 1− δ. (1)

The algorithm samples in the minimal bounding boxes of all contributions and
conducts a race between the different candidates until an individual ã1 is found
which (with high probability) has a contribution very close to the hypervolume
contribution of a1.

The runtime of this algorithm is bounded by O(m |A| (|A| + H)), where H
is a measure of hardness of the instance. It is polynomial in m and |A| for
most practical instances, but unbounded in the worst case. More precisely, H
is defined as

H :=

(
BB(a1, A)

CON(a2, A)−CON(a1, A)

)2

(2)

+
∑

a1 6=a∈A

(
BB(a,A)

CON(a,A)−CON(a1, A)

)2

,

where a1 denotes the individual with the smallest contribution, a2 denotes the
individual with the second smallest contribution, and BB(a,A) denotes the vol-
ume of the smallest bounding box of the contribution CON(a,A). By definition,
H is unbounded and can even be undefined if there is no unique least contrib-
utor. However, in such cases an abortion criterion bounds the runtime. In
general, H is small if BB(a,A) ≈ CON(a,A) and CON(a1, A) � CON(a,A)
for all a ∈ A\{a1}. On the other hand, H is large if either (i) there is an individ-
ual with a large bounding box BB(a,A) but a small contribution CON(a,A),
or (ii) there are two or more boxes contributing the minimal contribution or
only slightly more than it, that is, for all CON(a,A)−CON(a1, A), a 6= a1, is
very small.

3.3. Fast Approximate Computation

As has been pointed out, approximating the least hypervolume contributor
is an NP-hard problem [8, 11]. For fixed error bounds and error probabilities,
the above described approximation scheme can degenerate to an exponential
runtime. For guiding the search in a randomized search heuristic this seems
inappropriate. Despite the fact that the approximation algorithm is reported
to have a very fast empirical average-case performance [8, 11], we observed
that difficult situations do indeed occur for typical benchmark problems, and
sometimes very many samples are needed to achieve the specified error bound
and error probability. These slow instances have a very large hardness value H
(see Equation (2)), for example, because the contribution is extremely small
compared to the bounding box and most samples do not lie in the contribution.
This is unavoidable for a probably approximately correct approximation, but
undesirable for a practical optimization algorithm.
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To address these situations, we propose a heuristic that stops the overall se-
lection process whenever a certain threshold of total samples has been reached.
On early stopping, the current estimate of the least contributor is considered
further by the selection scheme. Note that, in contrast to the approximation
scheme described in Section 3.2, this algorithm is not anymore probably ap-
proximately correct with parameters ε and δ (cf. Equation (1)), but it results
in a very fast algorithm which still gives competitive results with respect to the
quality of the final Pareto-front approximation.

This new approximation scheme comes with an additional threshold param-
eter. In order to determine a good value for this parameter, we conducted a
preliminary study of the threshold parameter for the DTLZ benchmark set [18].
As a testbed, we chose the objective function DTLZ 2 with eight objectives
and considered a maximum number of 103, 104, 105 and 106 samples for the
hypervolume approximation scheme. We conducted 25 independent trials for
every parameter setting and analyzed the quality of the resulting Pareto-front
approximations in terms of the absolute hypervolume indicator. Moreover, we
recorded the required running time for every parameter setup.

The results of the parameter study are presented in Figure 1. Limiting the
number of samples directly affects the running time of the selection scheme,
and thus, of the overall algorithm. For a threshold of 103 and 104 samples,
respectively, the quality of the resulting Pareto-front approximations is nega-
tively affected and the absolute hypervolume starts to fluctuate as it nears the
Pareto-optimal front (see Figure 1, bottom). In case of higher thresholds (105

and 106 samples), the quality remains stable and is on par with the quality ob-
tained when considering the approximation scheme without a sample threshold.
We therefore use sample threshold 105 for our fast approximation algorithm.

4. Empirical Evaluation

We compared the two approximated hypervolume indicators to the exact
hypervolume indicator w.r.t. the influence on the performance (in terms of
the quality of the final Pareto-front approximation) and the running time of
MOEAs. To this end, we deploy all three indicators in the steady-state vari-
ant of the multi-objective covariance matrix evolution strategy (MO-CMA-ES,
[27, 34, 37]). However, we expect the results to carry over to any MOEA also
relying on the hypervolume indicator as second-level sorting criterion.

4.1. MO-CMA-ES

The MO-CMA-ES relies on the Pareto-dominance relation and a second-level
sorting criterion for selection, which is state-of-the-art in MOEAs since [17].
The algorithm builds on the principles of the single-objective covariance matrix
adaptation strategy (CMA-ES, [24, 31, 34]), which is a variable metric algorithm
adapting the shape and strength of its Gaussian search distribution. The claim
that the “CMA-ESs represent the state-of-the-art in evolutionary optimization
in real-valued Rn search spaces” [5] is backed up by many performance compar-
isons across different suites of benchmark problems (e.g., see the competition
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Figure 1: Comparison of different sample thresholds (103: , 104: , 105: , 106: )
for the benchmark function DTLZ 2 with eight objectives. Both the quality of
the Pareto-front approximations (in terms of the absolute hypervolume) and the
runtime requirements for the different parameter settings are shown as the median
of 25 independent trials.
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results in [1, 25]). Here, we use the most recent variant of the (µ + 1)-MO-
CMA-ES presented in [37]. For empirical evaluations of the MO-CMA-ES see,
for example, [27, 28, 37].

4.2. Experimental Setup

We compared the MO-CMA-ES using an approximation of the least hy-
pervolume contributor to the results of the original MO-CMA-ES with exact
hypervolume computation. More precisely, we compare the following indica-
tors:

• Exact computation as described in Section 3.1.

• Probably approximately correct as described in Section 3.2.

• Fast approximation with sample threshold 105 as described in Section 3.3.

This allows us to isolate the influence of the indicator by altering only the envi-
ronmental selection procedure. We applied the algorithms to several classes of
benchmark functions that are scalable to an arbitrary number of objectives m.
We considered the seven constrained functions DTLZ 1–7 [18] with search space
dimension 30. The number of objectives was chosen to be 3, 5, and 7. In addi-
tion, we considered two real-world many-objective optimization problems. The
first one deals with the design of 2D airfoil shapes that are encoded by 10 real-
valued parameters, the so-called PARSEC 10 parameter set. An airfoil shape is
then evaluated with respect to six objectives by means of a computational fluid
dynamics simulation (see [39]). The second one considers the optimization of
centrifugal pump designs with respect to eight objectives (see [35]).

For all experiments, the number of parent individuals was set to µ = 50.
We conducted 25 independent trials with 50,000 objective function evaluations
each. For both approximation algorithms, we used the parameters ε = 10−2

and δ = 10−2 (cf. Equation (1)). The experiments were carried out on a clus-
ter of technically equivalent workstations with 2.93 GHz Intel Quad-Core Xeon
processors running Linux. We used the GNU compiler chain and enabled com-
piler optimizations according to the following command line arguments: -O3

-ffast-math -msse4 -mtune=core2. The reported runtimes refer to the over-
all CPU times.

We monitored the performance of the algorithms after every 5,000th objec-
tive function evaluation and carried out the statistical evaluation after 25,000
and 50,000 function evaluations. We relied on the hypervolume indicator to
compare the Pareto-front approximations obtained by the three optimizers. In
case of the benchmark functions DTLZ 1–7 and the centrifugal pump design
problem, the reference point was determined from the union of all Pareto-front
approximations. In case of the airfoil shape optimization problem, we chose the
reference point r = (0.00516, 0.00606, 0.00982, 0.30806, 0.92314, 0.65460) as sug-
gested in [39]. We applied the statistical evaluation procedure described in [37]
to evaluate our experiments employing the Wilcoxon rank-sum test to verify sta-
tistical significance. All experiments were implemented using the Shark machine
learning library [29], which is available online.
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Figure 2: Achieved absolute hypervolume (the higher the better) for the objective
function DTLZ 3 with seven objectives for the MO-CMA-ES with exact indicator
( ), with approximate indicator ( ) and with its heuristic variant with
sample threshold 105 ( ). Shown are the medians and the corresponding lower
and upper quartiles. The areas between both quartiles are shaded. Note that the
75 % percentile and median are very close. In the upper plot, where the x-axis is
the number of fitness function evaluations, the two algorithms behave similarly.
After roughly 25,000 fitness evaluations they are very close to the Pareto front.
The lower plot shows the hypervolume depending on the actual running time
on a logarithmic scale, demonstrating the performance gain by using the Monte
Carlo approximations. Plots for all other objective functions with five or more
objectives look similar.
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Exact Probably approximately Fast approximation with

computation correct approximation sample threshold 105

DTLZ 1 (3 objectives) 7m 16m (2x slower) 16m (2x slower)

DTLZ 1 (5 objectives) 4h 2m 24m (10x faster) 24m (10x faster)

DTLZ 1 (7 objectives) 3d 19h 12m 21h 21m (4.3x faster) 13h 31m (6.7x faster)

DTLZ 2 (3 objectives) 14m 1m (14x faster) 1m (14x faster)

DTLZ 2 (5 objectives) 18h 6m 31m (35x faster) 31m (35x faster)

DTLZ 2 (7 objectives) 23d 0h 43m 1d 11h 44m (16x faster) 17h 53m (31x faster)

DTLZ 3 (3 objectives) 3m 1m (3x faster) 1m (3x faster)

DTLZ 3 (5 objectives) 54m 21m (2.6x faster) 21m (2.6x faster)

DTLZ 3 (7 objectives) 5d 4h 48m 9h 50m (13x faster) 8h 36m (15x faster)

DTLZ 4 (3 objectives) 8m 1m (8x faster) 1m (8x faster)

DTLZ 4 (5 objectives) 2h 20m 41m (3.4x faster) 41m (3.4x faster)

DTLZ 4 (7 objectives) 3d 16h 48m 2d 3h 4m (1.7x faster) 2h 3m (43x faster)

DTLZ 5 (3 objectives) 32m 1m (32x faster) 1m (32x faster)

DTLZ 5 (5 objectives) 5h 14m 34m (9.2x faster) 34m (9.2x faster)

DTLZ 5 (7 objectives) 9d 3h 24m 20h 18m (11x faster) 29m (454x faster)

DTLZ 6 (3 objectives) 15h 46m 1m (946x faster) 1m (946x faster)

DTLZ 6 (5 objectives) 6d 19h 40m 43m (228x faster) 43m (228x faster)

DTLZ 6 (7 objectives) 41d 18h 14m 1d 3h 1m (37x faster) 23m (2614x faster)

DTLZ 7 (3 objectives) 4m 1m (4x faster) 1m (4x faster)

DTLZ 7 (5 objectives) 2h 44m 36m (4.6x faster) 35m (4.7x faster)

DTLZ 7 (7 objectives) 8d 21h 7m 1d 5h 23m (7.3x faster) (10h 7m) (21x faster)

Airfoil (6 objectives) 6d 12h 57m 1d 5h 45m (5.3x faster) 23h 34m (6.7x faster)

Pump (8 objectives) >100d 8d 2h 13m (>12x faster) 4d 19h 27m (>21x faster)

Table 1: Experimental results for DTLZ benchmark set obtained by the MO-CMA-
ES with exact and two approximate calculations of the hypervolume indicator
after 50,000 objective function evaluations. The differences in achieved hypervol-
umes were not statistically significant according to a Wilcoxon rank-sum test at a
confidence level of α = 0.05 for all test functions except DTLZ 7 with 7 objectives.
The median running time that each of the algorithms required to complete one
independent trial is listed and the average overall speedup is summarized.

4.3. Results

Table 1 summarizes our experimental results. In terms of the achieved hyper-
volume, the MO-CMA-ES relying on an approximation of the least hypervolume
contributor performed at least on par with the variant employing the exact hy-
pervolume indicator across the set of benchmark functions. More precisely, the
differences in achieved hypervolumes were not statistically significant according
to a Wilcoxon rank-sum test at a confidence level of α = 0.05 for all test func-
tions except DTLZ 7 with 7 objectives. The final objective values are therefore
omitted in Table 1.

Table 1 shows clearly that the MO-CMA-ES achieves an enormous speed-up
if the indicator is only approximated, especially for more than 4 dimensions. The
speedup is the largest for the heuristically improved approximation introduced
in Section 3.3 of this paper. However, we also observe that for very complicated
test functions such as the disconnected fronts of DTLZ 7 in 7 dimensions, a
sample threshold of 105 might not suffice. Here, we observe a tradeoff between
speed (sample threshold 105) and quality (probably approximately correct com-

11



putation).
Figure 2 illustrates the typical behavior of the algorithms as a function of

time and number of objective function evaluations. Shown are the medians over
the 25 trials and the corresponding lower and upper quartiles (i.e., 25th and
75th percentiles). As expected, the hypervolume as a function of the number
of objective function evaluations behaves similarly. On the other hand, both
variants with approximated hypervolume finished all 50,000 objective functions
evaluations in less than 10 hours, while the exact version needed more than
10 hours for only the first 5000 objective function evaluations.

A closer look at Figure 2 reveals that the algorithms using the Monte Carlo
approximation perform even a bit better. The final medians are slightly higher,
and, more prominently, the lower quartiles are larger. That is, there are fewer
trials reaching only low hypervolume values within the given budget. A possible
explanation might be that the approximation adds a little noise to the other-
wise deterministic selection operator, which turns out to be beneficial for the
evolutionary process.

5. Conclusions

We empirically investigated the effects of replacing the exact hypervolume
indicator with two different Monte Carlo approximations on the performance
of multi-objective evolutionary algorithms (MOEAs). We evaluated whether a
state-of-the-art MOEA relying on hypervolume-indicator-based selection is af-
fected by the potential errors made by approximating the least hypervolume
contributor. The results show that the performance of the algorithms in terms
of the quality of the Pareto front approximation given a budget of objective
function evaluations does not suffer from the additional noise introduced by the
Monte Carlo approximation. In some trials, the approximation, which intro-
duces noise into the otherwise deterministic, greedy indicator-based selection
scheme, led to better performance. We observed a vast reduction of the running
time even for few objectives, when relying on the approximation scheme. In gen-
eral, the higher the number of objectives the more pronounced the performance
advantage of using Monte Carlo approximation becomes. Hence, by employing
Monte Carlo approximations, hypervolume-based MOEAs become applicable to
many-objective optimization.
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