
1 23

Machine Learning

ISSN 0885-6125
Volume 93
Number 1

Mach Learn (2013) 93:53-69
DOI 10.1007/s10994-013-5390-3

The flip-the-state transition operator for
restricted Boltzmann machines

Kai Brügge, Asja Fischer & Christian Igel

1 23

Your article is protected by copyright and all

rights are held exclusively by The Author(s).

This e-offprint is for personal use only

and shall not be self-archived in electronic

repositories. If you wish to self-archive your

article, please use the accepted manuscript

version for posting on your own website. You

may further deposit the accepted manuscript

version in any repository, provided it is only

made publicly available 12 months after

official publication or later and provided

acknowledgement is given to the original

source of publication and a link is inserted

to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.

Mach Learn (2013) 93:53–69
DOI 10.1007/s10994-013-5390-3

The flip-the-state transition operator for restricted
Boltzmann machines

Kai Brügge · Asja Fischer · Christian Igel

Received: 14 February 2013 / Accepted: 3 June 2013 / Published online: 3 July 2013
© The Author(s) 2013

Abstract Most learning and sampling algorithms for restricted Boltzmann machines
(RMBs) rely on Markov chain Monte Carlo (MCMC) methods using Gibbs sampling. The
most prominent examples are Contrastive Divergence learning (CD) and its variants as well
as Parallel Tempering (PT). The performance of these methods strongly depends on the mix-
ing properties of the Gibbs chain. We propose a Metropolis-type MCMC algorithm relying
on a transition operator maximizing the probability of state changes. It is shown that the
operator induces an irreducible, aperiodic, and hence properly converging Markov chain,
also for the typically used periodic update schemes. The transition operator can replace
Gibbs sampling in RBM learning algorithms without producing computational overhead. It
is shown empirically that this leads to faster mixing and in turn to more accurate learning.

Keywords Restricted Boltzmann machine · Markov chain Monte Carlo · Gibbs sampling ·
Mixing rate · Contrastive divergence learning · Parallel tempering

1 Introduction

Restricted Boltzmann machines (RBMs, Smolensky 1986; Hinton 2002) are undirected
graphical models describing stochastic neural networks. They have raised much attention

Editors: Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, and Filip Železný.

K. Brügge
Department of Computer Science, University of Helsinki, P.O. Box 68, 00014 Helsinki, Finland
e-mail: Kai.Bruegge@cs.helsinki.fi

K. Brügge
Helsinki Institute for Information Technology HIIT, P.O. Box 68, 00014 Helsinki, Finland

A. Fischer
Institut für Neuroinformatik, Ruhr-Universität Bochum, 44780 Bochum, Germany
e-mail: asja.fischer@ini.rub.de

C. Igel (�)
Department of Computer Science, University of Copenhagen, 2100 Copenhagen, Denmark
e-mail: igel@diku.dk

Author's personal copy

mailto:Kai.Bruegge@cs.helsinki.fi
mailto:asja.fischer@ini.rub.de
mailto:igel@diku.dk

54 Mach Learn (2013) 93:53–69

recently as building blocks of deep belief networks (Hinton and Salakhutdinov 2006).
Learning an RBM corresponds to maximizing the likelihood of the parameters given
data. Training large RBMs by steepest ascent on the log-likelihood gradient is in gen-
eral computationally intractable, because the gradient involves averages over an expo-
nential number of terms. Therefore, the computationally demanding part of the gradi-
ent is approximated by Markov chain Monte Carlo (MCMC, see, e.g., Neal 1993) meth-
ods usually based on Gibbs sampling (e.g., Hinton 2002; Tieleman and Hinton 2009;
Desjardins et al. 2010). The higher the mixing rate of the Markov chain, the fewer sampling
steps are usually required for a proper MCMC approximation. For RBM learning algorithms
it has been shown that the bias of the approximation increases with increasing absolute val-
ues of the model parameters (Bengio and Delalleau 2009; Fischer and Igel 2011) and that
this can indeed lead to severe distortions of the learning process (Fischer and Igel 2010).
Thus, increasing the mixing rate of the Markov chains in RBM training is highly desirable.

In this paper, we propose to employ a Metropolis-type transition operator for RBMs that
maximizes the probability of state changes in the framework of periodic sampling and can
lead to a faster mixing Markov chain. This operator is related to the Metropolized Gibbs
sampler introduced by Liu (1996) and the flip-the-spin operator with Metropolis acceptance
rule used in Ising models (see related methods in Sect. 3) and is, thus, referred to as flip-the-
state operator. In contrast to these methods, our main theoretical result is that the proposed
operator is also guaranteed to lead to an ergodic and thus properly converging Markov chain
when using a periodic updating scheme (i.e., a deterministic scanning policy). It can replace
Gibbs sampling in existing RBM learning algorithms without introducing computational
overhead.

After a brief overview over RBM training and Gibbs sampling in Sects. 2, 3 introduces
the flip-the-state transition operator and shows that the induced Markov chain converges to
the RBM distribution. In Sect. 4 we empirically analyze the mixing behavior of the proposed
operator compared to Gibbs sampling by looking at the second largest eigenvector modulus
(SLEM), the autocorrelation time, and the frequency of class changes in sample sequences.
While the SLEM describes the speed of convergence to the equilibrium distribution, the
autocorrelation time concerns the variance of an estimate when averaging over several suc-
cessive samples of the Markov chain. The class changes quantify mixing between modes in
our test problems. Furthermore, the effects of the proposed sampling procedure on learning
in RBMs is studied. We discuss the results and conclude in Sects. 5 and 6.

2 Background

An RBM is an undirected graphical model with a bipartite structure (Smolensky 1986;
Hinton 2002) consisting of one layer of m visible variables V = (V1, . . . , Vm) and one
layer of n hidden variables H = (H1, . . . ,Hn) taking values (v,h) ∈ Ω := {0,1}m+n.
The modeled joint distribution is p(v,h) = e−E(v,h)/

∑
v,h e−E(v,h) with energy E given by

E (v,h) = −∑n

i=1

∑m

j=1 wijhivj − ∑m

j=1 bjvj − ∑n

i=1 cihi with weights wij and biases bj

and ci for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, jointly denoted as θ . By v−i and h−i we denote
the vectors of the states of all visible and hidden variables, respectively, except the ith one.

Typical RBM training algorithms perform steepest ascent on approximations of the
log-likelihood gradient. One of the most popular is Contrastive Divergence (CD, Hinton

2002), which approximates the gradient of the log-likelihood by −∑
h p(h|v(0)) ∂E(v(0),h)

∂θ
+

∑
h p(h|v(k)) ∂E(v(k),h)

∂θ
, where v(k) is a sample gained after k steps of Gibbs sampling starting

from a training example v(0).

Author's personal copy

Mach Learn (2013) 93:53–69 55

Fig. 1 Transition diagrams for a single variable Vi (a) updated by Gibbs sampling (b) updated by the
flip-the-state transition operator (here p(Vi = 0|h) < p(Vi = 1|h))

Several variants of CD have been proposed. For example, in Persistent Contrastive Di-
vergence (PCD, Tieleman 2008) and its refinement Fast PCD (Tieleman and Hinton 2009)
the Gibbs chain is not initialized by a training example but maintains its current value be-
tween approximation steps. Parallel Tempering (PT, also known as replica exchange Monte
Carlo sampling) has also been applied to RBMs (Cho et al. 2010; Desjardins et al. 2010;
Salakhutdinov 2010). It introduces supplementary Gibbs chains that sample from more and
more smoothed variants of the true probability distribution and allows samples to swap be-
tween chains. This leads to faster mixing, but introduces computational overhead.

In general, a homogeneous Markov chain on a finite state space Ω with N elements can
be described by an N × N transition probability matrix A = (ax,y)x,y∈Ω , where ax,y is the
probability that the Markov chain being in state x changes its state to y in the next time
step. We denote the one step transition probability ax,y by A(x,y), the n-step transition
probability (the corresponding entry of the matrix An) by An(x,y). The transition matrices
are also referred to as transition operators. We write p for the N -dimensional probability
vector corresponding to some distribution p over Ω .

When performing periodic Gibbs sampling in RBMs, we visit all hidden and all visible
variables alternately in a block-wise fashion and update them according to their conditional
probability given the state of the other layer (i.e., p(hi |v), i = 1, . . . , n and p(vj |h), j =
1, . . . ,m, respectively). Thus, the Gibbs transition operator G can be decomposed into two
operators Gh and Gv (with G = GhGv) changing only the state of the hidden layer or the
visible layer, respectively. The two operators can be further decomposed into a set of basic
transition operators Gk , k = 1, . . . , (n + m), each updating just a single variable based on
the conditional probabilities. An example of such a transition of a single variable based on
these probabilities is depicted in the transition diagram in Fig. 1(a).

3 The flip-the-state transition operator

In order to increase the mixing rate of the Markov chain, it seems desirable to change the
basic transition operator of the Gibbs sampler in such a way that each single variable tends
to change its state rather than sticking to the same state. This can be done by making the
sample probability of a single neuron dependent on its current state. Transferring this idea
to the transition graph shown in Fig. 1, this means that we wish to decrease the probabilities
associated to the self-loops and increase the transition probabilities between different states
as much as possible. Of course, we have to ensure that the resulting Markov chain remains
ergodic and still has the RBM distribution p as equilibrium distribution.

The transition probabilities are maximized by scaling the probability for a single vari-
able to change from the less probable state to the more probable state to one (making
this transition deterministic) while increasing the transition in the reverse direction accord-
ingly with the same factor. In the—in practice not relevant but for theoretical considerations

Author's personal copy

56 Mach Learn (2013) 93:53–69

important—case of two states with the exact same conditional probability, we use the tran-
sition probabilities of Gibbs sampling to avoid a non-ergodic Markov chain.

These considerations can be formalized by first defining a variable v∗
i that indicates what

the most probable state of the random variable Vi is or if both states are equally probable:

v∗
i =

⎧
⎪⎨

⎪⎩

1, if p(Vi = 1|h) > p(Vi = 0|h)

0, if p(Vi = 1|h) < p(Vi = 0|h)

−1, if p(Vi = 1|h) = p(Vi = 0|h).

(1)

Now we define the flip-the-state transition operator T as follows:

Definition 1 For i = 1, . . . ,m, let the basic transition operator Ti for the visible unit Vi be
defined through its transition probabilities: Ti((v,h), (v′,h′)) = 0 if (v,h) and (v′,h′) differ
in another variable than Vi and as

Ti

(
(v,h),

(
v′,h′)) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

p(v′
i
|h)

p(vi |h)
, if v∗

i = vi �= v′
i

1 − p(v′
i
|h)

p(vi |h)
, if v∗

i = vi = v′
i

1, if vi �= v′
i = v∗

i

0, if vi = v′
i �= v∗

i

1
2 , if v∗

i = −1

(2)

otherwise. The transition matrix containing the transition probabilities of the visible layer is
given by Tv = ∏

i Ti . The transition matrix for the hidden layer Th is defined analogously,
and the flip-the-state transition operator is given by T = ThTv .

3.1 Activation function & computational complexity

An RBM corresponds to a stochastic, recurrent neural network with activation function
σ(x) = 1/(1 + e−x). Similarly, the transition probabilities defined in (2) can be interpreted
as resulting from an activation function depending not only on the weighted input to a neu-
ron and its bias but also on the neuron’s current state Vj (or analogously Hi):

σ ′(x) =
{

min{ex,1} if Vj = 0

max{1 − e−x,0} if Vj = 1.
(3)

Corresponding graphs are shown in Fig. 2.
The differences in computational complexity between the activation functions σ and σ ′

can be neglected. The transition operator described here requires a switch based on the cur-
rent state of the neuron on the one hand, but saves the computationally expensive call to the
random generator in deterministic transitions on the other hand. Furthermore, in the asymp-
totic case, the running time of a sampling step is dominated by the matrix multiplications,
while the number of activation function evaluations in one step increases only linearly with
the number of neurons.

If the absolute value of the sum of the weighted inputs and the bias is large (i.e., extreme
high conditional probability for one of the two states), the transition probabilities between
states under Gibbs sampling are already almost deterministic. Thus, the difference between
G and T decreases in this case. This is illustrated in Fig. 2.

Author's personal copy

Mach Learn (2013) 93:53–69 57

Fig. 2 Activation function for
Gibbs sampling (black) and for
transitions based on T when the
current state is 0 (red, dashed) or
1 (blue, dotted) (Color figure
online)

3.2 Related work

Both G and T are (local) Metropolis algorithms (Neal 1993). A Metropolis algorithm pro-
poses states with a proposal distribution and accepts them in a way which ensures detailed
balance. In this view, Gibbs sampling corresponds to using the proposal distribution “flip
current state” and the Boltzmann acceptance probability p(x′)

p(x)+p(x′) , where x and x′ denote
the current and the proposed state, respectively. This proposal distribution has also been
used with the Metropolis acceptance probability min(1,

p(x′)
p(x)

) for sampling from Ising mod-
els. The differences between the two acceptance functions are discussed, for example, by
Neal (1993). He comes to the conclusion that “the issues still remain unclear, though it
appears that common opinion favours using the Metropolis acceptance function in most
circumstances” (p. 69).

The work by Peskun (1973) and Liu (1996) shows that the Metropolis acceptance func-
tion is optimal with respect to the asymptotic variance of the Monte Carlo estimate of the
quantity of interest. This result only holds if the variables to be updated are picked randomly
in each step of the (local) algorithm. Thus, they are not applicable in the typical RBM train-
ing scenario, where block-wise sampling in a predefined order is used. In this scenario, it
can indeed happen that the flip-the-state proposal combined with the Metropolis acceptance
function leads to non-ergodic chains as shown by the counter-examples given by Neal (1993,
p. 69).

The transition operator T also uses the Metropolis acceptance probability, but the pro-
posal distribution differs from the one used in Ising models in one detail, namely that it
selects a state at random if the conditional probabilities of both states are equal. This is im-
portant from a theoretical point of view, because it ensures ergodicity as proven in the next
section. This is the reason why our method does not suffer from the problems mentioned
above.

Furthermore, Breuleux et al. (2011) discuss a similar idea to the one underlying our tran-
sition operator as a theoretic framework for understanding fast mixing, where one increases
the probability to change states by defining a new transition matrix A′ based on an exist-
ing transition matrix A by A′ = (A − λI)(1 − λ)−1, where λ ≤ minx∈Ω A(x,x) and I is the
identity matrix. Our method corresponds to applying this kind of transformation, not to the
whole transition matrix, but rather to the transition probabilities of a single binary variable
(i.e., the base transition operator). This makes the method not only computationally feasible
in practice, but even more effective, because it allows us to redistribute more probability
mass (because the redistribution is not limited by minx∈Ω A(x,x)), so that more than one
entry of the new transition matrix is 0.

Author's personal copy

58 Mach Learn (2013) 93:53–69

3.3 Properties of the transition operator

To prove that a Markov chain based on the suggested transition operator T converges to the
probability distribution p defined by the RBM, it has to be shown that p is invariant with
respect to T and that the Markov chain is irreducible and aperiodic.

As stated above, the described transition operator belongs to the class of local Metropolis
algorithms. This implies that detailed balance holds for all the base transition operators (see,
e.g., Neal 1993). If p is invariant w.r.t. the basic transition operators it is also invariant w.r.t.
the concatenated transition matrix T.

However, there is no general proof of ergodicity of Metropolis algorithms if neither the
proposal distribution nor the acceptance distribution are strictly positive and the base transi-
tions are applied deterministically in a fixed order. Therefore irreducibility and aperiodicity
still remain to be proven (see, e.g., Neal 1993, p. 56).

To show irreducibility, we need some definitions and a lemma first. For a fixed hidden
state h let us define vmax(h) as the visible state that maximizes the probability of the whole
state,

vmax(h) := arg max
v

p(v,h), (4)

and analogously

hmax(v) := arg max
h

p(v,h). (5)

We assume that arg max is unique and that ties are broken by taking the greater state accord-
ing to some arbitrary predefined strict total order ≺.

Furthermore, let M be the set of states, for which the probability can not be increased by
changing either only the hidden or only the visible states:

M = {
(v,h) ∈ Ω |(v,h) = (

vmax(h),h
) = (

v,hmax(v)
)}

. (6)

Note, that M is not the empty set, since it contains at least the most probable state
arg max(v,h) p(v,h). Now we have:

Lemma 1 From every state (v,h) ∈ Ω one can reach (vmax(h),h) by applying the visible
transition operator Tv once and (v,hmax(v)) in one step of Th. It is possible to reach every
state (v,h) ∈ Ω in one step of Tv from (vmax(h),h) and in one step of Th from (v,hmax(v)).

Proof From the definition of vmax(h) and the independence of the conditional probabilities
of the visible variables given the state of the hidden layer it follows:

p
(
vmax(h)|h) = max

v1,...,vn

∏

i

p(vi |h). (7)

Thus, in vmax(h) every single visible variable is in the state with the higher conditional
probability (i.e., in v∗

i) or both states are equally probable (in which case v∗
i = −1). By

looking at the definition of the base transitions (2) it becomes clear that this means that
Ti((v,h), (vmax(h)i ,v−i ,h)) > 0 and Ti((vmax(h),h), (vi ,vmax(h)−i ,h)) > 0. So we get for
all (v,h) ∈ Ω :

Tv

(
(v,h),

(
vmax(h),h

)) =
∏

i

Ti

(
(v,h),

(
vmax(h)i ,v−i ,h

))
> 0 (8)

Author's personal copy

Mach Learn (2013) 93:53–69 59

Tv

((
vmax(h),h

)
, (v,h)

) =
∏

i

Ti

((
vmax(h),h

)
,
(
vi,vmax(h)−i ,h

))
> 0. (9)

This holds equivalently for the hidden transition operator Th and (v,hmax(v)). For all
(v,h) ∈ Ω :

Th

(
(v,h),

(
v,hmax(v)

)) =
∏

i

Ti

(
(v,h),

(
v, hmax(v)i ,h−i

))
> 0 (10)

Th

((
v,hmax(v)

)
, (v,h)

) =
∏

i

Ti

((
v,hmax(v)

)
,
(
v, hi,hmax(v)−i

))
> 0. (11)

�

Now we prove the irreducibility:

Theorem 1 The Markov chain induced by T is irreducible:

∀(v,h),
(
v′,h′) ∈ Ω : ∃n > 0 : T n

(
(v,h),

(
v′,h′)) > 0. (12)

Proof The proof is divided into three steps showing:

(i) from every state (v,h) ∈ Ω one can reach an element of M in a finite number of
transitions, i.e., ∀(v,h) ∈ Ω ∃(v∗,h∗) ∈ M and n ∈ N, with T n((v,h), (v∗,h∗)) > 0,

(ii) for every state (v,h) ∈ Ω there exists a state (v∗,h∗) ∈ M from which it is possible to
reach (v,h) ∈ Ω in a finite number of transitions, i.e., ∀(v,h) ∈ Ω ∃(v∗,h∗) ∈ M and
n ∈ N with T n((v∗,h∗), (v,h)) > 0, and

(iii) any transition between two arbitrary elements in M is possible, i.e., ∀(v∗,h∗),
(v∗∗,h∗∗) ∈ M : T ((v∗,h∗), (v∗∗,h∗∗)) > 0.

Step (i): Let us define a sequence ((vk,hk))k∈N with v0 := v, h0 := h and hk := hmax(vk−1)

and vk := vmax(hk) for k > 0. From the definition of vmax and hmax it follows that
(vk−1,hk−1) �= (vk,hk) unless (vk−1,hk−1) ∈ M and that no state in Ω \ M is visited
twice. The latter follows from the fact that in the sequence two successive states (vk,hk)

and (vk+1,hk+1) from Ω \ M have either increasing probabilities or (vk,hk) ≺ (vk+1,hk+1).
Since Ω is a finite set, such a sequence must reach a state (vn,hn) = (vn+i ,hn+i) ∈ M, i ∈ N

after a finite number of steps n.
Finally, this sequence can be produced by T since from Eq. (8) and Eq. (10) it follows

that ∀k > 0:

T
(
(vk−1,hk−1), (vk,hk)

)

= Th

(
(vk−1,hk−1), (vk−1,hk)

) · Tv

(
(vk−1,hk), (vk,hk)

)
> 0. (13)

Hence, one can get from (vk−1,hk−1) to (vk,hk) in one step of the transition operator T.
Step (ii): We now consider a similar sequence ((vk,hk))k∈N with v0 := v, h0 := h and

vk := vmax(hk−1) and hk := hmax(vk), for k > 0. Again, there exists n ∈ N, so that (vn,hn) =
(vn+i ,hn+i) ∈ M, i ∈ N. From equations (9) and (11) it follows that ∀k > 0:

T
(
(vk,hk), (vk−1,hk−1)

)

= Th

(
(vk,hk), (vk,hk−1)

) · Tv

(
(vk,hk−1), (vk−1,hk−1)

)
> 0. (14)

Author's personal copy

60 Mach Learn (2013) 93:53–69

That is, one can get from (vk+1,hk+1) to (vk,hk) in one step of the transition operator T and
follow the sequence backwards from (vn,hn) ∈ M to (v,h).

Step (iii): From equations (8)–(11) it follows directly that a transition between two arbi-
trary points in M is always possible. �

Showing the aperiodicity is straight-forward:

Theorem 2 The Markov chain induced by T is aperiodic.

Proof For every state (v∗,h∗) in the nonempty set M it holds that

T
((

v∗,h∗),
(
v∗,h∗)) > 0, (15)

so the state is aperiodic. This means that the whole Markov chain is aperiodic, since it is
irreducible (see, e.g., Brémaud 1999). �

Theorems 1 and 2 show that the Markov chain induced by the operator T has p as its
equilibrium distribution, i.e., the Markov chain is ergodic with stationary distribution p.

4 Experiments

First, we experimentally compare the mixing behavior of the flip-the-state method with
Gibbs sampling by analyzing T and G for random RBMs. Then, we study the effects of
replacing G by T in different RBM learning algorithms applied to benchmark problems.
After that, the operators are used to sample sequences from trained RBMs. The autocorrela-
tion times and the number of class changes reflecting mode changes are compared. Training
and sampling the RBMs was implemented using the open-source machine learning library
Shark (Igel et al. 2008).

4.1 Analysis of the convergence rate

The convergence speed of an ergodic, homogeneous Markov chain with finite state space
is governed by the second largest eigenvector modulus (SLEM). This is a direct conse-
quence of the Perron-Frobenius theorem. Note that the SLEM computation considers abso-
lute values, in contrast to the statements by Liu (1996) referring to the signed eigenvalues.
We calculated the SLEM for transition matrices of Gibbs sampling and the new transition
operator for small, randomly generated RBMs by solving the eigenvector equation of the
resulting transition matrices G and T. To handle the computational complexity we had to
restrict our considerations to RBMs with only 2, 3, and 4 visible and hidden neurons, re-
spectively. The weights of these RBMs were drawn randomly and uniformly from [−c; c],
with c ∈ {1, . . . ,10}, and bias parameters were set to zero. For each value of c we generated
100 RBMs and compared the SLEMs of G and T.

4.2 Log-likelihood evolution during training

We study the evolution of the exact log-likelihood, which is tractable if either the number of
the hidden or the visible units is chosen to be small enough, during gradient-based training
of RBMs using CD, PCD, or PT based on samples produced by Gibbs sampling and the
flip-the-state transition operator.

Author's personal copy

Mach Learn (2013) 93:53–69 61

We used three benchmark problems taken from the literature. Desjardins et al. (2010)
consider a parametrized artificial problem, referred to as Artificial Modes in the following,
for studying mixing properties. The inputs are 4 × 4 binary images. The observations are
distributed around four equally likely basic modes, from which samples are generated by
flipping pixels. The probability of flipping a pixel is given by the parameter pmut, controlling
the “effective distance between each mode” (Desjardins et al. 2010). In our experiments,
pmut was either 0.01 or 0.1. Furthermore, we used a 4 × 4 pixel version of Bars and Stripes
(MacKay 2002) and finally the MNIST data set of handwritten digits.

In the small toy problems (Artificial Modes and Bars and Stripes) the number of hidden
units was set to be the same as the number of visible units, i.e., n = 16. For MNIST the
number of hidden units was set to 10. The RBMs were initialized with weights and biases
drawn uniformly from a Gaussian distribution with 0 mean and standard deviation 0.01.

The models were trained on all benchmark problems using gradient ascent on the gradient
approximation of either CD or PCD with k sampling steps (which we refer to as CDk or
PCDk) or PT. Note that Contrastive Divergence learning with k = 1 does not seem to be a
reasonable scenario for applying the new operator. The performance of PT depends on the
number t of tempered chains and on the number of sampling steps k carried out in each
tempered chain before swapping samples between chains. We call PT with t temperatures
and k sampling steps t -PTk . The inverse temperatures were distributed uniformly between
0 and 1. Samples for each learning method where either obtained by G or T.

We performed mini-batch learning with a batch size of 100 training examples in the case
of MNIST and Artificial Modes and batch learning for Bars and Stripes. The number of
samples used for the gradient approximation was set to be equal to the number of training
examples in a (mini) batch. We tested different learning rates η ∈ {0.01,0.05,0.1} and used
neither weight decay nor a momentum parameter. All experiments were run for a length of
20000 update steps and repeated 25 times. We calculated the log-likelihood every 100th step
of training. In the following, all reported log-likelihood values are averaged over the training
examples.

4.3 Autocorrelation analysis

To measure the mixing properties of the operators on larger RBMs, we performed an auto-
correlation analysis.

We estimated the autocorrelation function

R(�t) = E[E (Vk,Hk)E (Vk+�t ,Hk+�t)]
σE(Vk,Hk)σE(Vk+�t ,Hk+�t)

. (16)

The random variables Vk and Hk are the state of the visible and hidden variables after
running the chain for k steps. The expectation E is over all k > 0, and the standard deviation
of a random variable X is denoted by σX . The autocorrelation function is always defined
with respect to a specific function on the state space. Here the energy function E is a natural
choice.

The autocorrelation time is linked to the asymptotic variance of an estimator based on
averaging over consecutive samples from a Markov chain. It is defined as

τ =
∞∑

�t=−∞
R(�t). (17)

Author's personal copy

62 Mach Learn (2013) 93:53–69

An estimator based on lτ consecutive samples from a Markov chain has the same variance
as an estimator based on l independent samples (see, e.g., Neal 1993). In this sense τ con-
secutive samples are equivalent to one independent sample.

For the autocorrelation experiments we trained 25 RBMs on each of the previously men-
tioned benchmark problems with 20-PT10. In addition to the RBMs with 10 hidden units
we trained 24 RBMs with 500 hidden neurons on MNIST for 2000 parameter updates. To
estimate the autocorrelations we sampled these RBMs for one million steps using G and
T, respectively. We followed the recommendations by Thompson (2010) and, in addition to
calculating and plotting the autocorrelations directly, fitted AR-models to the times series to
estimate the autocorrelation time using the software package SamplerCompare (Thompson
2011).

4.4 Frequency of class changes

To access the ability of the two operators to mix between different modes, we observed
the class changes in sample sequences, similar to the experiments by Bengio et al. (2013).
We trained 25 RBMs with CD-5 on Artificial Modes with pmut = 0.01 and pmut = 0.1. After
training, we sampled from the RBMs using either T or G as transition operator and analyzed
how often subsequent samples belong to different classes. We considered four classes. Each
class was defined by one of the four basic modes used to generate the dataset. A sample
belongs to the same class as the mode to which it has the smallest Hamming distance. Am-
biguous samples which could not be assigned to a single class, because they were equally
close to at least two of the modes, were discarded. In one experimental setting, all trained
RBMs were initialized 1000 times with samples drawn randomly from the training distri-
bution (representing the starting distribution of CD learning), and the number of sampling
steps before the first class change was measured. In a second setting, for each RBM one
chain was started with all visible units set to one and run for 10000 steps. Afterwards, the
number of class changes was counted.

5 Results and discussion

5.1 Analysis of the convergence rate

The upper plot in Fig. 3 shows the fraction of RBMs (out of 100) for which the correspond-
ing transition operator T has a smaller SLEM than the Gibbs operator G (and therefore T
promises a faster mixing Markov chain than G) in dependence on the value of c, which
upper bounds the weights. If all the weights are equal to zero, Gibbs sampling is always
better, but the higher the weights get the more often T has a better mixing rate. This effect
is the more pronounced the more neurons the RBM has, which suggests that the results of
our analysis can be transfered to real world RBMs.

In the hypothetical case that all variables are independent (corresponding to an RBM
where all weights are zero), Gibbs sampling is optimal and converges in a single step. With
the flip-the-state operator, however, the probability of a neuron to be in a certain state would

oscillate and converge exponentially by a factor of
1−p(v∗

i
)

p(v∗
i
)

(i.e., the SLEM of the base tran-

sition matrix in this case) to the equilibrium distribution. As the variables get more and
more dependent, the behavior of Gibbs sampling is no longer optimal and the Gibbs chain
converges more slowly than the Markov chain induced by T. Figure 3 directly supports
our claim that in this relevant scenario changing states more frequently by the flip-the-state
method can improve mixing.

Author's personal copy

Mach Learn (2013) 93:53–69 63

Fig. 3 The upper figure
compares the mixing rates for
2 × 2 RBMs (black), 3 × 3
RBMs (red, dashed) and 4 × 4
RBMs (blue, dotted). The lower
figure depicts the learning curves
for CD5 on Bars and Stripes with
learning rate 0.05 using G
(black) or T (red, dashed). The
inset shows the difference
between the two and is positive if
the red curve is higher. The
dashed horizontal line indicates
the maximum possible value of
the average log-likelihood (Color
figure online)

5.2 Log-likelihood evolution during training

To summarize all trials of one experiment into a single value we calculated the maximum
log-likelihood value reached during each run and finally calculated the median over all runs.
The resulting maximum log-likelihood values for different experimental settings for learning
the Bars and Stripes and the MNIST data set with CD and PT are shown in Table 1. Similar
results were found for PCD and for experiments on Artificial Modes, see appendix. For most
experimental settings, the RBMs reaches statistically significant higher likelihood values
during training with the new transition operator (Wilcoxon signed-rank test, p < 0.05).

If we examine the evolution of likelihood values over time (as shown, e.g., in the lower
plot of Fig. 3) more closely, we see that the proposed transition operator is better in the end

Author's personal copy

64 Mach Learn (2013) 93:53–69

Table 1 Median maximum
log-likelihood values on Bars
and Stripes (top) and MNIST
(bottom). Significant differences
are marked with a star

Bars and Stripes

Algorithm η Gibbs T

CD5 0.01 −4.070406 −3.986813∗
CD5 0.05 −3.832875 −3.727781∗
CD5 0.1 −3.838406 −3.732438∗
CD10 0.01 −3.963563 −3.930687∗
CD10 0.05 −3.640219 −3.57625∗
CD10 0.1 −3.635781 −3.589219∗
5-PT1 0.01 −4.011406 −4.0095

5-PT1 0.05 −3.675312 −3.636125∗
5-PT1 0.1 −3.8255 −3.77825

5-PT5 0.01 −3.928125 −3.918781

5-PT5 0.05 −3.515719 −3.500844∗
5-PT5 0.1 −3.565281 −3.540625∗
20-PT1 0.01 −3.974219 −3.977562

20-PT1 0.05 −3.548969 −3.524406∗
20-PT1 0.1 −3.577812 −3.549812∗
20-PT5 0.01 −3.917969 −3.923781

20-PT5 0.05 −3.470094 −3.466188∗
20-PT5 0.1 −3.478844 −3.472594∗

MNIST

Algorithm η Gibbs T

CD5 0.01 −178.716 −177.958∗
CD5 0.05 −179.345 −178.873

CD5 0.1 −179.007 −178.446∗
CD10 0.01 −176.495 −175.638∗
CD10 0.05 −176.844 −176.476

CD10 0.1 −177.925 −176.586

10-PT2 0.01 −182.283 −180.272∗
10-PT2 0.05 −182.303 −181.379∗
10-PT2 0.1 −181.727 −180.164

10-PT5 0.01 −178.71 −178.215∗
10-PT5 0.05 −179.625 −178.708∗
10-PT5 0.1 −179.051 −178.504∗

of training, but Gibbs sampling is actually slightly better in the beginning when weights
are close to their small initialization. Learning curves as in Fig. 3 also show that if diver-
gence occurs with Gibbs sampling (Fischer and Igel 2010), it will be slowed down, but not
completely avoided with the new transition operator.

It is not surprising that Gibbs sampling mixes better at the beginning of the training, be-
cause the variables are almost independent when the weights are still close to their initial
values near zero. Still, the results confirm that the proposed transition operator mixes bet-
ter in the difficult phase of RBM training and that the faster mixing helps reaching better
learning results.

Author's personal copy

Mach Learn (2013) 93:53–69 65

Table 2 Mean autocorrelation
times τG and τT for single
Markov chains using the Gibbs
sampler and the flip-the-state
operator. The last column shows
the gain defined as 1 − τT

τG

Gibbs
τG

T
τT

Gain
in %

Bars and Stripes 22.46 20.06 10.67

Artificial Modes, pmut = 0.1 3.16 2.19 30.73

Artificial Modes, pmut = 0.01 6.00 5.94 1.06

MNIST, n = 10 488.26 445.84 8.69

MNIST, n = 500 522.39 432.12 17.28

Fig. 4 Autocorrelation function
R(�t) for RBMs with 500
hidden neurons trained on
MNIST based on 24 trials,
sampled 106 steps each. The
dotted line corresponds to T and
the solid one to G (Color figure
online)

The results suggest that it may be reasonable to mix the two operators. Either, one could
start with G and switch to T as the weights grow larger, or one can softly blend between the
basic operators and consider Tα

i = αTi + (1 − α)Gi , α ∈ [0,1].

5.3 Autocorrelation analysis

The autocorrelation analysis revealed that sampling using the flip-the-state operator leads to
shorter autocorrelation times in the considered benchmark problems, see Table 2 and Fig. 4.
For example, an RBM trained on MNIST with 500 hidden neurons needed on average to be
sampled for 17.28 % fewer steps to achieve the same variance of the estimate if T is used
instead of G—without overhead in computation time or implementation complexity. The
results with n = 500 demonstrate that our previous findings carry over to larger RBMs.

5.4 Frequency of class changes

The numbers of class changes observed in sequences of 10000 samples starting from the
visible nodes set to one produced by G and T are given in Table 3. Table 4 shows the number
of samples before the first class change when initializing the Markov chain with samples
randomly drawn from the training distribution. Markov chains based on T led to more and
faster class changes than chains using Gibbs sampling. As the modes in the training set get

Author's personal copy

66 Mach Learn (2013) 93:53–69

Table 3 Frequencies of class
changes for the Gibbs sampler
and the flip-the-state operator in
sequences of 10000 samples
(medians and quantiles over
samples from 25 RBMs)

25 %
quantile

Median 75 %
quantile

Artificial Modes,
pmut = 0.1, G

615 637 655

Artificial Modes,
pmut = 0.1, T

919 944 958

Artificial Modes,
pmut = 0.01, G

134 148 162

Artificial Modes,
pmut = 0.01, T

175 186 199

Table 4 Number of samples
before the first class change when
starting a Markov chain with
samples from the training
distribution (medians and
quantiles over samples from 25
RBMs)

25 %
quantile

Median 75 %
quantile

Artificial Modes,
pmut = 0.1, G

6 13 25

Artificial Modes,
pmut = 0.1, T

3 7 14

Artificial Modes,
pmut = 0.01, G

16 41 96

Artificial Modes,
pmut = 0.01, T

10 27 63

more distinct (comparing pmut = 0.1 to pmut = 0.01) class changes get less frequent and
more sampling steps are needed to yield a class change. Nevertheless, T is superior to G
even in this setting.

6 Conclusions

We proposed the flip-the-state transition operator for MCMC-based training of RBMs and
proved that it induces a converging Markov chain. Large weights lead to slow mixing Gibbs
chains that can severely harm RBM training. In this scenario, the proposed flip-the-state
method increases the mixing rate compared to Gibbs sampling. The way of sampling is
generally applicable in the sense that it can be employed in every learning method for bi-
nary RBMs relying on Gibbs sampling, for example Contrastive Divergence learning and
its variants as well as Parallel Tempering. As empirically shown, the better mixing indeed
leads to better learning results in practice. As the flip-the-state sampling does not introduce
computational overhead, we see no reason to stick to standard Gibbs sampling.

Acknowledgements This work has been supported by the German Federal Ministry of Education and Re-
search within the National Network Computational Neuroscience under grant number 01GQ0951 (Bernstein
Fokus “Learning behavioral models: From human experiment to technical assistance”).

Author's personal copy

Mach Learn (2013) 93:53–69 67

Appendix: Log-likelihood values for different problems, algorithms, and
experimental settings

Table 5 Median maximum
log-likelihood values for different
experimental settings for learning
Bars and Stripes (top) and
MNIST (bottom). Significant
differences are marked with a star

Bars and Stripes

Algorithm η Gibbs T

PCD1 0.01 −4.944813∗ −5.131875

PCD1 0.05 −4.917219 −4.754625∗
PCD1 0.1 −5.285469 −5.176563∗
PCD5 0.01 −4.067437 −4.000844∗
PCD5 0.05 −4.050906 −3.915938∗
PCD5 0.1 −4.209375 −4.124625∗
PCD10 0.01 −3.972812 −3.945219∗
PCD10 0.05 −3.8425 −3.769938∗
PCD10 0.1 −4.02 −3.917937∗

MNIST

Algorithm η Gibbs T

PCD1 0.01 −185.536 −185.378∗
PCD1 0.05 −181.382 −180.905

PCD1 0.1 −179.572 −180.502

PCD5 0.01 −179.061 −177.939∗
PCD5 0.05 −178.195 −177.675

PCD5 0.1 −176.897 −175.946

PCD10 0.01 −175.799 −174.919∗
PCD10 0.05 −176.301 −175.446∗
PCD10 0.1 −176.208 −174.94

Author's personal copy

68 Mach Learn (2013) 93:53–69

Table 6 Median maximum
log-likelihood values for different
experimental settings for learning
Artificial Modes. The top table
shows the results for datasets
generated with a probability pmut
of permuting each pixel of 0.1,
the bottom table for pmut = 0.01.
Significant differences are
marked with a star

Artificial Modes, pmut = 0.1

Algorithm η Gibbs T

CD5 0.01 −6.79103 −6.78603∗
CD5 0.05 −6.80241 −6.79473∗
CD10 0.01 −6.78564 −6.7833∗
CD10 0.05 −6.79646 −6.79682∗
PCD5 0.01 −6.79176 −6.78537∗
PCD5 0.05 −6.80292 −6.79679∗
PCD10 0.01 −6.78512 −6.78329∗
PCD10 0.05 −6.79575 −6.79372∗
10-PT2 0.01 −6.78282 −6.78325

10-PT2 0.05 −6.79839 −6.79575

10-PT5 0.01 −6.78206 −6.78213

10-PT5 0.05 −6.7929 −6.79351

10-PT10 0.01 −6.7827 −6.78203

10-PT10 0.05 −6.79101 −6.79196

Artificial Modes, pmut = 0.01

Algorithm η Gibbs T

CD5 0.01 −4.01644 −3.64562∗
CD5 0.05 −4.00452 −3.68796∗
CD10 0.01 −3.48928 −3.23056∗
CD10 0.05 −3.51262 −3.27728∗
PCD5 0.01 −3.9956 −3.6295∗
PCD5 0.05 −3.94864 −3.61392∗
PCD10 0.01 −3.46321 −3.21007∗
PCD10 0.05 −3.37534 −3.11163∗
10-PT2 0.01 −2.40041 −2.40195

10-PT2 0.05 −2.40682 −2.40798

10-PT5 0.01 −2.39929 −2.3992

10-PT5 0.05 −2.40648 −2.40072∗
10-PT10 0.01 −2.39973 −2.40012

10-PT10 0.05 −2.40188 −2.40078

References

Bengio, Y., & Delalleau, O. (2009). Justifying and generalizing contrastive divergence. Neural Computation,
21(6), 1601–1621.

Bengio, Y., Mesnil, G., Dauphin, Y., & Rifai, S. (2013). Better mixing via deep representations. Journal of
Machine Learning Research Workshop and Conference Proceedings, 28(1), 552–560.

Brémaud, P. (1999). Markov chains: Gibbs fields, Monte Carlo simulation, and queues. Berlin: Springer.
Breuleux, O., Bengio, Y., & Vincent, P. (2011). Quickly generating representative samples from an RBM-

derived process. Neural Computation, 23(8), 2058–2073.
Cho, K., Raiko, T., & Ilin, A. (2010). Parallel tempering is efficient for learning restricted Boltzmann

machines. In Proceedings of the international joint conference on neural networks (IJCNN 2010)
(pp. 3246–3253). New York: IEEE Press.

Author's personal copy

Mach Learn (2013) 93:53–69 69

Desjardins, G., Courville, A., Bengio, Y., Vincent, P., & Dellaleau, O. (2010). Parallel tempering for training
of restricted Boltzmann machines. Journal of Machine Learning Research Workshop and Conference
Proceedings 9(AISTATS 2010), 145–152.

Fischer, A., & Igel, C. (2010). Empirical analysis of the divergence of Gibbs sampling based learning algo-
rithms for Restricted Boltzmann Machines. In K. Diamantaras, W. Duch, & L. S. Iliadis (Eds.), LNCS:
Vol. 6354. International conference on artificial neural networks (ICANN 2010) (pp. 208–217). Berlin:
Springer.

Fischer, A., & Igel, C. (2011). Bounding the bias of contrastive divergence learning. Neural Computation,
23, 664–673.

Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural Computa-
tion, 14, 1771–1800.

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks.
Science, 313(5786), 504–507.

Igel, C., Glasmachers, T., & Heidrich-Meisner, V. (2008). Shark. Journal of Machine Learning Research, 9,
993–996.

Liu, J. S. (1996). Metropolized independent sampling with comparisons to rejection sampling and importance
sampling. Statistics and Computing, 6, 113–119.

MacKay, D. J. C. (2002). Information theory, inference & learning algorithms. Cambridge: Cambridge Uni-
versity Press.

Neal, R. M. (1993). Probabilistic inference using Markov chain Monte Carlo methods. Technical Report
CRG-TR-93-1, Department of Computer Science, University of Toronto.

Peskun, P. H. (1973). Optimum Monte-Carlo sampling using Markov chains. Biometrika, 60(3), 607–612.
Salakhutdinov, R. (2010). Learning in Markov random fields using tempered transitions. In Y. Bengio,

D. Schuurmans, J. Lafferty, C. K. I. Williams, & A. Culotta (Eds.), Advances in neural information
processing systems (Vol. 22, pp. 1598–1606).

Smolensky, P. (1986). Information processing in dynamical systems: foundations of harmony theory. In D. E.
Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing: explorations in the microstructure
of cognition, Vol. 1: foundations (pp. 194–281). Cambridge: MIT Press.

Thompson, M. B. (2010). A comparison of methods for computing autocorrelation time. Tech. Rep. 1007,
Department of Statistics, University of Toronto.

Thompson, M. B. (2011). Introduction to SamplerCompare. Journal of Statistical Software, 43(12), 1–10.
Tieleman, T. (2008). Training restricted Boltzmann machines using approximations to the likelihood gradient.

In W. W. Cohen, A. McCallum, & S. T. Roweis (Eds.), International conference on machine learning
(ICML) (pp. 1064–1071). New York: ACM.

Tieleman, T., & Hinton, G. E. (2009). Using fast weights to improve persistent contrastive divergence. In A.
Pohoreckyj Danyluk, L. Bottou, & M. L. Littman (Eds.), International conference on machine learning
(ICML) (pp. 1033–1040). New York: ACM.

Author's personal copy

	The flip-the-state transition operator for restricted Boltzmann machines
	Abstract
	Introduction
	Background
	The flip-the-state transition operator
	Activation function & computational complexity
	Related work
	Properties of the transition operator

	Experiments
	Analysis of the convergence rate
	Log-likelihood evolution during training
	Autocorrelation analysis
	Frequency of class changes

	Results and discussion
	Analysis of the convergence rate
	Log-likelihood evolution during training
	Autocorrelation analysis
	Frequency of class changes

	Conclusions
	Acknowledgements
	Appendix: Log-likelihood values for different problems, algorithms, and experimental settings
	References

