
This article was downloaded by:[Igel, Christian]
On: 13 June 2008
Access Details: [subscription number 794040982]
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Connection Science
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713411269

Task-dependent evolution of modularity in neural
networks
Michael Hüsken; Christian Igel; Marc Toussaint

Online Publication Date: 01 September 2002

To cite this Article: Hüsken, Michael, Igel, Christian and Toussaint, Marc (2002)
'Task-dependent evolution of modularity in neural networks ', Connection Science,
14:3, 219 — 229

To link to this article: DOI: 10.1080/09540090208559328
URL: http://dx.doi.org/10.1080/09540090208559328

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly
forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713411269
http://dx.doi.org/10.1080/09540090208559328
http://www.informaworld.com/terms-and-conditions-of-access.pdf

D
ow

nl
oa

de
d

B
y:

 [I
ge

l,
C

hr
is

tia
n]

 A
t:

14
:1

4
13

 J
un

e
20

08

Connection Science, Vol. 14, No. 3,2002, 219-229 Taylor &Francis Croup

Task-dependent evolution of modularity in neural
networks*

MICHAEL HUSKEN, CHRISTIAN IGEL and
MARC TOUSSAINT

Institut fur Neuroinformatik, Ruhr- Universitat Bochurn, 44780 Bochum,
Germany
email: (huesken, igel, mt}@neuroinformatik.ruhr-uni-bochum.de
tel: +49 234 32 25558
fax: +49 234 32 14209

Abstract. There exist many ideas and assumptions about the development and
meaning of modularity in biological and technical neural systems. We empirically
study the evolution of connectionist models in the context of modular problems.
For this purpose, we define quantitative measures for the degree of modularity and
monitor them during evolutionary processes under different constraints. It turns
out that the modularity of the problem is reflected by the architecture of adapted
systems, although learning can counterbalance some imperfection of the architec-
ture. The demand for fast learning systems increases the selective pressure towards
modularity.

Keywords: structure evolution, learning, measures for modularity, task-decomposition

1. Introduction
The performance of biological as well as technical neural systems depends crucially
on their architectures. In the case of a feedforward neural network (NN), architecture
may be defined as the underlying graph constituting the number of neurons and the
way these neurons are connected. In particular, one property of architectures,
modularity, has raised a lot of interest among researchers dealing with biological and
technical aspects of neural computation. It appears to be obvious to emphasize
modularity in neural systems because the vertebrate brain is highly modular in both
an anatomical and a functional sense.

It is important to stress that there are different concepts of modules. 'When a
neuroscientist uses the word "module", slhe is usually referring to the fact that brains
are structured, with cells, columns, layers, and regions which divide up the labour of
information processing in various ways' (Elman et al. 1996). A definition of modularity
from the viewpoint of behavioural or cognitive science could be based on Fodor7s
(1983) work: 'A module is a specialised, encapsulated mental organ that has evolved
to handle specific information types of particular relevance to the species7. In general,
modularity can be viewed as a fundamental design principle of complex systems.

*This paper is a revised and extended version of the GECCO 2001 Late-Breaking Paper by
Hiisken, et al. (2001).

Connection Science ISSN 0954-0091 print1ISSN 1360-0494 online O 2002 Taylor & Francis Ltd
http://www.tandf.co.uk/journals

DOI: 10.1080/0954009021000047892

D
ow

nl
oa

de
d

B
y:

 [I
ge

l,
C

hr
is

tia
n]

 A
t:

14
:1

4
13

 J
un

e
20

08

220 M. Husken et al.

For example, the strategy to divide a complicated problem into several smaller
subproblems, which may be easier to solve than the whole problem, has led to modular
NNs, most often manually designed architectures consisting of expert networks, cf.
Jordan and Jacobs (1995) and Sharkey (1996,1997). Already in 1962, Simon (1962)
had given very elaborate arguments in favour of modularity. He claimed that the
development of complex systems requires stable subsystems, which are combined in
a hierarchical manner. Similarly, an engineer might argue that it is easier to design a
complex system from smaller building blocks that have been tested in other systems
and reliably solve a self-contained problem. According to such arguments, modularity
could be viewed not only as an outcome of system design, but also as a necessity for
the development of highly complex systems.

In any case, the modularity of an architecture is a result-or a by-product-of a
creation process, e.g. of natural evolution in the case of biological systems. In
a technical framework, the role of natural evolution is often played by evolutionary
algorithms: the task of finding a suitable network for a given problem is often solved
by means of evolutionary computation; please refer to the survey of Yao (1999). Based
on arguments similar to the ones given above, evolutionary algorithms for the opti-
mization of NNs have often been designed in such a way that modular architectures
are favoured. This can be achieved by indirect encoding schemes, where the adjacency
matrix of the graph describing the NN is not stored directly in the genome of an
individual, but a non-trivial (e.g. grammar-based) genotype-phenotype mapping is
utilized to construct the NN from a given genotype (Kitano 1990, Gruau 1995,
Friedrich and Moraga 1996, Sendhoff 1998, Sendhoff and Kreutz 1999). We believe,
however that there are some fundamental, unanswered questions. Above all, we want
to know under which circumstances modular architectures of neural systems evolve.
This basic question raises several others, for example: For what kind of tasks are
modular architectures favourable? What are expressive and general measures for
modularity?

In this article, we test the hypothesis that modular problems are solved better
by modular NNs than by non-modular ones. This claim appears to be natural and is
often presumed in the literature. We utilize evolutionary algorithms to search for
good NNs tackling artificial modular problems. These algorithms have no explicit bias
towards modular architectures; if modular networks are beneficial, they will evolve. If
no increase in modularity is observed, the hypothesis has to be reconsidered. Measures
that quantify modularity are proposed and employed to trace the evolution of modular
architectures. Different tasks and both Lamarckian and Darwinian inheritance are
considered in order to test the task-dependency of the hypothesis. In particular, we
want to verify if the demand for fast (gradient-based) learning increases the need for
modularity.

Our investigation is related to the work of Bullinaria (2001) and Ferdinand0 et al.
(2001), who studied the non-Lamarckian evolution of architectural modularity in NNs
with a single hidden layer in the context of the 'what' and 'where' problem (Rueckl
et al. 1989). They found that modular architectures develop to improve the learning
performance, i.e. the networks evolve such that some of the hidden neurons are
connected only to 'what7 or only to 'where' output neurons. We extend these results
by introducing finer-grained measures for different aspects of the modularity of
arbitrarily connected feedforward networks (considering the structure and the
weights) and by investigating the influence of different constraints (e.g. the scheme
of inheritance of the weights or the goal of the optimization).

D
ow

nl
oa

de
d

B
y:

 [I
ge

l,
C

hr
is

tia
n]

 A
t:

14
:1

4
13

 J
un

e
20

08

Task-dependent evolution 221

In the next section, we define a concept of modularity of NNs and introduce
measures for its degree. In section 3, we present our simulations, and in the succeeding
section, we discuss the results. The article ends with a conclusion and an outlook.

2. Modularity of neural networks
We concentrate on feedforward NNs. The architecture of a NN can be defined by a
directed graph, where the vertices correspond to the neurons and the edges indicate
the flow of information. The performance of a NN depends on both its architecture
and the weights that are associated with its edges. Usually, gradient-based optimi-
zation is applied for the adjustment of the weights, whereas the search for a suitable
architecture for a given task sets up a hard discrete optimization problem, which is
tackled successfully by means of evolutionary algorithms (Yao 1999). Evolution of
connectionist models is carried out not only to improve the performance of NNs for
technical purposes, but also to investigate fundamental issues such as the interaction
between evolution and learning (Nolfi and Parisi 1999).

Most people have an intuitive idea about what modular architectures and networks
are. Usually, they refer either to structural modularity, defining modules as highly
connected areas that are only sparsely connected to the surrounding, or to functional
modularity; see Snoad and Bossomaier (1995) and Toussaint (2002b) for different
approaches. However, giving a general mathematical definition and providing a
measure for the degree of modularity capturing all concepts of modularity mentioned
above and in section 1 are formidable tasks. Hence, we do not propose a general
definition of modularity, but focus only on a specific character of problems and
architectures: we call a problem modular if it can be solved by a number of non-
interacting subsystems.

We assume that a NN has to deal with a completely separable problem with
m output variables y,, . . . yn,. Separable means that the set of input variables
x,, . . . ,xn can be divided into m disjoint subsets Xi, such that the underlying
input-output mapping

can be expressed as

where4 depends only on variables in X,. This definition is an extension of the one used
by Lam and Shin (1998).

Given a separable problem, it does not seem to be disadvantageous to divide the
whole network into rn separated ones; such a system would be called highly modular.
In this context, the degree of modularity of the network is related to how strongly
separate parts interfere. In the following, we shall give two possible definitions of such
a measure.

First, the neurons can be distinguished by their source of information presuming
that m and the partitioning of the inputs are known: neurons that solely get input,
directly or indirectly, from one subset 3, j E (1, . . . , m}, are denoted as pure neurons.
In the example in figure 1, neurons 1 ,2 and 3 are pure. Neurons 4,5 and 6 are mixed
to a certain degree, as they receive input from both subsets of input neurons.

D
ow

nl
oa

de
d

B
y:

 [I
ge

l,
C

hr
is

tia
n]

 A
t:

14
:1

4
13

 J
un

e
20

08

M. Hiisken et al.

Figure 1. Sample architecture to illustrate the measure of the degree of modularity.

The degree of modularity A is defined as the average degree of pureness of the
hidden and output neurons, calculated by the following procedure. First, an m-tuple
(cEi(l), . . . , di (m)) is assigned to each neuron i, indicating the degree of dependency
of the neuron on the m different input subsets. For the input neurons all diG) are zero
except the one with j equal to the index of the subset that the input neuron belongs
to: this one is set to one:

The values diQ) of the hidden and output neurons are defined recursively:

The first sum runs over all neurons k the ith neuron gets input from and w, is the
weight of the connection from neuron k to neuron i. Neglecting the weights, i.e.
assuming all of them to be equal, yields in the above example the 2-tuples depicted in
figure 1. In the following, we quantify the degree of pureness of each neuron i by
means of the variance o:=$ X;" (diJ - L)2; the higher o:, the higher the pureness of
neuron i. It can be shown that *, the maximum value of oj , is only reached by pure
neurons. The modularity measure of the network is given by the average variance of
all N hidden and output neurons

mapped into the interval [0,1] by means of the first factor. If the weights are neglected
in equation (4) (i.e. only the architecture becomes important), we denote the measure
defined by equation (5) as A(wch.). In both cases, a completely separated network
corresponds to a value of A = 1, a homogeneous one to A = 0. In the case of the
example in figure 1, we have = 5771864 - 0.668.

D
ow

nl
oa

de
d

B
y:

 [I
ge

l,
C

hr
is

tia
n]

 A
t:

14
:1

4
13

 J
un

e
20

08

Task-dependent evolution 223

As these measures focus on the basic information processing units, they allow for
an identification and separation of modules if modules are defined as those subgraphs
with input from the same subproblem; this definition is related to the concept of
strongly connected regions with a low degree of connectivity to the surrounding.
According to our definition, modules are determined in a 'bottom-up' fashion, a
procedure that appears suitable to quantify to what extent a network can be regarded
as a hierarchical assembly of modules.

Usually, there is no strict partitioning of the input space as in our scenario and even
if there is such a division, it is unlikely to be known. However, the measures
and A(aKh.) can alternatively be calculated in a 'top-down' fashion, i.e. starting from
the outputs as pure neurons, where the partitioning is usually known, and summing
over the output connections of the ith unit in the calculation of equation (4). The
resulting 'top-down' version of A(arch.) can be regarded as a finer-grained version of
the modularity measure used by Ferdinand0 et al. (2001).

As an example, we monitor the 'top-down' version of during the learning
process of a fully connected NN for the not completely separable 'what' and 'where'
problem as described by Rueckl et al. (1989) (except that we use batch learning as
described later). Figure 2 shows that first the 'where' and then the 'what' subproblem
is learnt by the NN (compare dash-dotted line versus thin dotted line). This is also
reflected by the modularity measure: during the initial phase of learning, the 'where'
problem dominates over the 'what' problem (bold solid line) and the overall modu-
larity increases strongly (bold dotted line). While adapting to the 'what' problem, a
restructuring process can be observed: the focus on the 'where' task is reduced while
the overall modularity decreases and subsequently-after restructuring-increases
again. These results are in accordance with the finding of Rueckl et al. that the 'where'
subproblem is learnt first and additionally demonstrate that even in a fully connected

~ t ~ ~ d ~ ~ ~ ' (weight) --------
modularity asymmetry -

~ (s s e , w h a t)

~ (s s e , w h e r e)

learning cycles

Figure 2. Development of the weight-modularity during learning the 'what' and 'where'
problem with a fully connected architecture with a single hidden layer with 18 neurons. Shown
are the medians of 10 independent learning trials. The sum of squared error used for training
is shown separated into its 'what' and 'where' parts. The bold dotted line depicts the 'top-down'
version of and the solid line characterizes the mean asymmetry % (d,,,, - dwha,) at the
neurons, i.e. the larger this value, the stronger the neurons are connected to the 'where'

problem.

D
ow

nl
oa

de
d

B
y:

 [I
ge

l,
C

hr
is

tia
n]

 A
t:

14
:1

4
13

 J
un

e
20

08

224 M. Hiisken et al.

network the development of modularity during learning can be measured. In the
following we focus on the evolution of modularity.

3. Experimental framework
In this section, we present the framework of our simulations of the evolution of NNs.
In the experiments, we distinguish between two different kinds of application of the
optimized NNs, in the following denoted as two different tasks. A NN is denoted
accurate model if it is designed for solving a single problem, for instance representing
an input-output mapping induced by a sample data set, as accurately as possible. The
search for an accurate model is the most frequent application of NN optimization.
The other task is to be a fast learner, an architecture that can learn a given problem
within a short time. As this fast learning task is most sensible when dealing with
a number of different but related tasks, the problem to be learnt is changed in every
generation, but remains separable in the sense of section 2. To make the results of
the fast learner more comparable to the accurate modelling task, we also performed
fast learner optimization trials without changing the problem in every generation,
i.e. the same problem has to be learnt repeatedly as fast as possible. In the following,
the superscripts ($1 or (=) indicate whether the problem is periodically changed or not.
In section 4, we shall see that the choice of the task has a strong impact on the
development of modularity of the optimization outcomes.'

3.1. Data set
We chose a completely separable problem in the sense of section 2. We used two
different classification problems (m = 2) with three Boolean inputs each (n = 6). For
each evolutionary trial the class labels corresponding to the inputs of each problem
are chosen randomly such that half of the input patterns belong to each class. The data
set contains all possible combinations of inputs (i.e. 2" = 64 different patterns), 'true'
and 'false' are encoded by 1 and -1, respectively.

3.2. Neural networks
We used NNs with six input and two linear output neurons. The absolute value of the
measure of modularity is strongly influenced by the number of hidden neurons and
connections. In particular, it turned out that very modular NNs (A - 1) evolve in the
case of a slight selective pressure towards small NNs. To avoid side-effects, we kept
the size of the NNs constant. Our experiments were performed with 10 hidden neurons
with sigmoidal activation function and 40 connections. The resulting networks were
large enough to solve the problem, but sparse enough to allow for the evolution of
separated modules. However, experiments with slightly modified architecture sizes
yield qualitatively similar results. There is no maximum number of layers in the
architecture, the only restriction is that each hidden neuron must be connected,
directly or indirectly, to at least one input and one output neuron.

Training is performed by means of iRprop+ (Igel and Hiisken 2002), an improved
version of the Rprop-algorithm (Riedmiller and Braun 1993), which is a powerful,
gradient-based batch-learning algorithm. The aim of training is the minimization of
the mean squared error EcrnX) (i.e. the mean squared difference between the NN's
outputs 9. and the target values y,). We compute the classification result of the network

I
by mapping positive outputs to 'true' and negative ones to 'false'. The classification
error E(c'as) is given by the rate of incorrect classifications.

D
ow

nl
oa

de
d

B
y:

 [I
ge

l,
C

hr
is

tia
n]

 A
t:

14
:1

4
13

 J
un

e
20

08

Task-dependent evolution 225

3.3. Evolutionary algorithm
Prior to the first generation, p = 10 individuals are initialized at random. The 40
connections are randomly spread over the whole architecture and the weights are
initialized with values from the interval [-0.2, 0.21. The only operator employed to
generate the h = 70 offspring per generation is the random move of single connections
(i.e. a connection is deleted and afterwards inserted at a random position and
reinitialized randomly). This means that the number of connections remains constant,
see above. The parents of the next generation are selected out of the offspring by
means of (p,h)-selection, i.e. the best p out of the h offspring form the next parent
population (Schwefel1995).

Depending on the task of the optimization (accurate model or fast learner) the
algorithms differ slightly. In the former case, in every generation each individual is
trained for T(""") = 200 cycles. In the Lamarckian trials, learning starts from the
weights that have been re-encoded after learning in the previous generation. In the
Darwinian style evolution, only the architecture is encoded in the individual's genome
and the weights are reinitialized prior to learning within the interval [-0.2,0.2]. The
fitness function

includes only the errors after learning.
In the case of the evolution of the fast learner, in every generation the weights of

each individual are reinitialized randomly in the interval [-0.2,0.2] (Darwinian style)
and learning takes place as long as there are still misclassified patterns left, but not for
more than a maximum number of flmax) = 200 cycles. In this case, the fitness is given
by

Herein, f l s t o p) denotes the cycle when learning actually has stopped. The choice of
a, = lo4 and a, = lop8 has the effect that E(C1ass) has the strongest and E(msr) the weakest
influence on the fitness, i.e. the primary aim of the optimization is the correct
classification, which cannot be levelled out by faster learning or a smaller E(mse).

4. Discussion of experimental results
All graphs represent the median of the results of 200 independent trials. Figure 3
depicts the evolution of the relevant fitness terms E("") and flstop). The classification
error is hardly of interest, because it has vanished already in generation 6 for all four
models. In the succeeding approximately 100 generations, the algorithms focus on
the reduction of the learning time and the mean squared error, respectively, and,
thereafter, no evolutionary progress is observable.

Figure 4 displays the development of the 'bottom-up' architecture-modularity
At(arch.) and weight-modularity At(weight) for all four experimental scenarios. We find
that except for some random fluctuations the modularity increases the more the fitness
decreases. This general increase of modularity supports the intuition that modular
networks are indeed advantageous for modular problems. The following observations,

D
ow

nl
oa

de
d

B
y:

 [I
ge

l,
C

hr
is

tia
n]

 A
t:

14
:1

4
13

 J
un

e
20

08

226 M. Hiisken et al.

(a) mean squared error (b) fast learner's learning time

 fast(#) Darwinian -

fast(') Darwinian .-.....-...... .

fast(#) Darwinian - :

-..- ---.----,--..-."*+--- .--..--.-

0 50 100 150 200
generations

0 50 100. 150 200
generations

Figure 3. Relevant terms of the fitness function.

(a) architecture-modularity (b) weight-modularity

/-. -
2 1.0 2 0.5 5

% 0.9
b 0.4 . +

h + . +
2 - + 2 0.8
a 3
o 0.3 a
E 0.7

0 50 100 150 200 0 50 100 150 200
generations generations

Figure 4. Average modularity in the parent population.

to be discussed later, give a more detailed insight into the relation between the two
modularity measures and the four experimental scenarios.

Figure 3(a) clearly exhibits that the two accurate learners (accurate Darwinian
and accurate Lamarckian) efficiently decrease the E(mw), while the fast learners
(fast Darwinian) minimize the classification learning time fl"@, figure 3(b),
without reaching small E(mse).
Figure 4 shows that the fast learners reach significantly higher architecture-
modularity A(Nch.-) than the accurate learners (Wilcoxon rank sum test,p < 0.05
after generation 50), whereas the accurate learners reach significantly higher
weight-modularity A(Weight) than the fast learners (p < 0.05 after generation
10).
Comparing the two fast learners, we see that the reiterated change of the
problem yields a higher architecture-modularity A(arCh.) (p < 0.05 in most
generations), while the weight-modularity remains unchanged.

To understand observations 1 and 2, let us first reconsider the relation between A(arch.)
and It is plausible that a high architecture-modularity A(Nch.) also induces a
high weight-modularity since architecture determines the terms of
summation in equation (4). In particular, A("ch.) = 1 implies A(weight) = 1. However, the
inverse need not be true; even a network with a non-modular architecture may reach
high by having many weights of 'cross-connections' set to zero. In this sense,

D
ow

nl
oa

de
d

B
y:

 [I
ge

l,
C

hr
is

tia
n]

 A
t:

14
:1

4
13

 J
un

e
20

08

Task-dependent evolution 227

a suitable adjustment of weights can counterbalance a non-modular architecture in
favour of weight-modularity A(weight).2

A fine-tuning of the weights should lead to a small E(mse). This explains what we find
in figure 4(b): both algorithms that minimize the E(""), the accurate Darwinian and
accurate Lamarckian, have high weight-modularity, even close to one. In contrast,
the fast Darwinian learners do not have a high weight-modularity (the EcmX) is orders
of magnitude higher), but instead reach high architecture-modularity, see figure 4 (a).
The task of learning fast does not aim at a precise adjustment of weights, it aims at an
optimal architectural predisposition to learn the classification. The learning is stopped
after reaching this goal, so that a fine adjustment of weights cannot take place. Hence,
the fast learners rely on appropriate architecture-modularity, whereas the accurate
models can counterbalance architectural imperfection by a more accurate weight
adjustment in the longer learning period. Summarizing, the evolutionary pressure
towards architecture-modularity is increased by the task of fast learning. In turn, the
reduction of the E("") for modular problems also increases weight-modularity when
the architecture is not particularly modular, and thus induces lower pressure towards
architecture-modularity. The latter effect depends only weakly on the scheme of
inheritance.

Regarding observation 3, the architecture-modularity A(arch.) is maximal when the
networks have to learn a number of different, but related (in the sense of section 2 and
section 3.1) problems. If the same problem is to be learnt repeatedly, certain 'cross-
connections' do not necessarily interfere with learning, depending on particular
characteristics of the problem and of the learning algorithm. However, if the problem
is changed over and over, at least for some of the problems these 'undesired7
connections will interfere with learning. Therefore, it becomes more important to
adapt the architecture to the common aspects of all presented problems; in our
example this corresponds to an increase of A(arch.). The need for fast and robust
learning demands for more modular architectures.

In addition, we performed the same experiments under changed conditions. We
considered sigmoidal output neurons instead of linear ones and applied: (i) the Ecrn")
cost function with target values 0.1 and 0.9; (ii) the E("") cost function with target
values 0 and 1; and (iii) the cross-entropy cost function (with target values 0 and 1).
In the first case the results are qualitatively the same as the ones presented here.
However, in the second and third cases the results cannot be reproduced. The reason
may be the unbounded learning dynamics towards saturated output neurons in the
second and third cases, where the absolute weight values are orders of magnitude
greater than in the other scenarios. This effect could also explain the results found by
Bullinaria (2001), that the use of an E("") cost function with target values 0.1 and 0.9
leads to different degrees of modularity than the cross-entropy cost function.

5. Conclusion and outlook
The work presented aims at a better understanding of the development and functional
importance of modularity in NNs. We introduced measures for the degree of
modularity in NNs that allow characterization of the architecture and the weight
configuration. The measures proved to be of use in understanding the development
of modularity during learning and evolution of NNs.

We designed our experiments in order to distinguish between different optimality
criteria (learning a classification maximally fast or learning a regression maximally

D
ow

nl
oa

de
d

B
y:

 [I
ge

l,
C

hr
is

tia
n]

 A
t:

14
:1

4
13

 J
un

e
20

08

228 M. Husken et al.

accurately in a given time) and different inheritance schemes (Lamarckian, with
inheritance of trained weights, and Darwinian, without such weight inheritance). Our
results show that modularity increases with the NN's efficiency, but that this increase
is task-dependent: the fast learning criterion without weight inheritance (significantly)
enforces the development of architecture-modularity; the accurate regression
criterion (with and without weight inheritance) instead enforces the development of
a modular weight configuration. Generally, we gave support to the hypotheses that
modular NNs are indeed beneficial for solving modular problems and that the need
for modularity becomes stronger the more fast and robust learning becomes part of
the task definition.

From a broader perspective, our efforts aim at the evolution of large systems with
modular information processing. In future work, additional measures of modularity
should be developed that address more specific, e.g. information theoretic, aspects of
modular information processing. Such measures would guide the development of new
types of NNs that allow more modularity a priori than today's common NNs. If
findings confirm the appropriateness of modular architectures for classes of problems,
then evolutionary algorithms should be specifically designed to find modular
architectures (Toussaint 2002a). New mutation operators or other types of encoding
(e.g. recursive or grammar encodings, Kitano 1990, Gruau 1995, Friedrich and Moraga
1996, Sendhoff 1998, Sendhoff and Kreutz 1999) should be analyzed and (further)
developed.

Acknowledgements
We would like to thank W. von Seelen for many beneficial discussions and the
anonymous reviewers for their helpful comments and suggestions. Moreover, we
acknowledge financial support from the BMBF, grant LOKI 01 IB 001 C.

Notes
1 The distinction between these two kinds of tasks is also discussed by Hiisken et al. (2000); it is shown

that the fast learner should be preferred if it is necessary to cope with a class of problems, i.e. to be
able to adapt to a number of different, but related problems, in particular within a short time. The
modularity may be one of the main differences between the NNs evolved by Hiisken et al. for the
different tasks.

2 It is likely that an efficient learning algorithm will adjust the weight of an undesirable connection to a
small absolute value. In particular, the fact that we use a batch learning method leads to speculation
that the problem's modularity is 'detected' very quickly by the learning algorithm since the gradient
calculation averages over all possible cases. Thereby all correlations between the subproblems are
cancelled out.

References
Bullinaria, J. A., 2001, Simulating the evolution of modular neural systems. In J. D. Moore and K.

Stenning (eds) Proceeding of the Twenty-third Annual Conference of the Cognitive Science Society,
Edinburgh, Scotland (Mahwah. NJ: USA (Lawrence Erlbaum Associates), pp. 146-151.

Elman, J. L., Bates, E. A., Johnson, M. H., Karmiloff-Smith, A., Parisi, D., and Plunkett, K., 1996,
Rethinking Innateness-A Connectionist Perspective o n Development (Cambridge MA: MIT
Press).

Ferdinando, A. D., Calabretta, R., and Parisi, D., 2001, Evolving modular architectures for neural
networks. In R. French and J. Sougne (eds) Proceedings of the Sixth Neural Computation and
Psychology Workshop: Evolution, Learning and Development (Berlin: Springer), pp. 253-262.

Fodor, J. A., 1983, The Modularity o,f Mind: A n Essay o n Faculty Psychology (Cambridge MA: MIT
Press).

D
ow

nl
oa

de
d

B
y:

 [I
ge

l,
C

hr
is

tia
n]

 A
t:

14
:1

4
13

 J
un

e
20

08

Task-dependent evolution 229

Friedrich, C. M., and Moraga, C., 1996, An evolutionary method to find good building-blocks for
architectures of artificial neural networks. In Sixth International Conference on Information
Processing and Management of Uncertainty in Knowledge Based Systems (IPMU '96), Granada,
Spain, pp. 951-956.

Grau, F., 1995, Automatic definition of modular neural networks. Adaptive Behavior, 3 (2): 151-183.
Husken, M., Gayko, J. E. and Sendhoff, B. A., 2000, Optimization for problem classes-neural networks

that learn to learn. In X. Yao and D. B. Fogel (eds) IEEE Symposium on Combinations of
Evolutionary Computation and Neural Networks (ECNN 2000) San Antonio, TX, USA (IEEE
Press), pp. 98-109.

Hiisken, M., Igel, C. and Toussaint, M., 2001, Task-dependent evolution of modularity in neural
networks-a quantitative case study. In E. D. Goodman (ed.) Late-breaking Papers at the Genetic
and Evolutionary Computation Conference (GECCO-2001), San Francisco, CA, USA, pp.
187-193.

Igel, C., and Husken, M., 2003, Empirical evaluation of the improved Rprop learning algorithms.
Neurocomputing, January 2003,50: 105-123.

Jordan, M. I., and Jacobs, A., 1995, Modular and hierarchical learning systems. In M. A. Arbib (ed.) The
Handbook of Brain Theory and Neural Networks (Cambridge MA: MIT Press), pp. 579-582.

Kitano, H., 1990, Designing neural networks using genetic algorithms with graph generation system.
Complex Systems, 4: 461476.

Lam, C.-H., and Shin, F. G., 1998, Formation and dynamics of modules in a dual-tasking multilayer feed-
forward neural network. Physical Review E, 58 (3): 3673-3677.

Nolfi, S., and Parisi, D., 1999, Learning and evolution. Autonomous Robots, 7 (1): 89-113.
Riedmiller, M., and Braun, H., 1993, A direct adaptive method for faster backpropagation learning: the

RPROP algorithm. In Proceedings of the IEEE International Conference on Neural Networks, San
Francisco, CA, USA (IEEE Press), pp. 586-591.

Rueckl, J. G., Cave, K. R., and Kosslyn, S. M., 1989, Why are 'what' and 'where' processed by separate
cortical visual systems? A computational investigation. Journal of Cognitive Neuroscience, 1:
171-186.

Schwefel, H.-P., 1995, Evolution and Optimum Seeking. Sixth-Generation Computer Technology Series
(New York: John Wiley & Sons).

Sendhoff, B. A., 1998, Evolution of Structures-Optimization of Artificial Neural Structures for
Information Processing (Aachen: Shaker).

Sendhoff, B. A., and Kreutz, M., 1999, Variable encoding of modular neural networks for time series
prediction. In Congress on Evolutionary Computation (CEC '99) Washington DC, USA, Vol. 1
(IEEE Press), pp. 259-266.

Sharkey, A., 1996, On combining artificial neural networks. Connection Science, 8 (3): 299-314.
Sharkey, A. 1997, Modularity, combining and artificial neural nets. Connection Science, 9 (1): 3-10.
Simon, H. A., 1962, The architecture of complexity. Proceedings of the American Philosophical Society,

106: 467-482.
Snoad, N., and Bossomaier, T., 1995, MONSTER-the ghost in the connection machine: modularity of

neural systems in theoretical evolutionary research. In Proceedings of the 1995 ACM/IEEE
Supercomputing Conference, San Diego, CA, USA, (ACM Press and IEEE Press).

Toussaint, M., 2002a, A neural model for multi-expert architectures. In Proceedings of the International
Joint Conference on Neural Networks (IJCNN 2002), Honolulu, HI, USA, (IEEE Press), pp.
2755-2760.

Toussaint, M., 2002b, On model selection and the disability of neural networks to decompose tasks. In
Proceedings of the International Joint Conference on Neural Networks (IJCNN 2002), Honolulu,
HI, USA, (IEEE Press), pp. 245-250.

Yao, X., 1999, Evolving artificial neural networks. Proceedings of the IEEE, 87 (9): 1423-1447.

