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Michiel Kallenberg, Kersten Petersen, Mads Nielsen, Andrew Y. Ng, Pengfei Diao, Christian Igel,
Celine M. Vachon, Katharina Holland, Rikke Rass Winkel, Nico Karssemeijer, and Martin Lillholm

Abstract—Mammographic risk scoring has commonly been
automated by extracting a set of handcrafted features from
mammograms, and relating the responses directly or indirectly
to breast cancer risk. We present a method that learns a feature
hierarchy from unlabeled data. When the learned features are
used as the input to a simple classifier, two different tasks can
be addressed: i) breast density segmentation, and ii) scoring
of mammographic texture. The proposed model learns features
at multiple scales. To control the models capacity a novel
sparsity regularizer is introduced that incorporates both lifetime
and population sparsity. We evaluated our method on three
different clinical datasets. Our state-of-the-art results show that
the learned breast density scores have a very strong positive
relationship with manual ones, and that the learned texture scores
are predictive of breast cancer. The model is easy to apply and
generalizes to many other segmentation and scoring problems.

Index Terms—Unsupervised feature learning, deep learning,
breast cancer, mammograms, prognosis, risk factor, segmentation

I. INTRODUCTION

REAST cancer is the most frequently diagnosed cancer

among women, worldwide [1]. In 2012, 464,000 new
cases (13.5% of all cancers) were diagnosed in Europe and
131,000 died from the disease [2]. Breast cancer mortality
can be reduced by identifying high risk patients early and
treating them adequately [3]. One of the strongest known risk
factors for breast cancer after gender, age, gene mutations, and
family history is the relative amount of radiodense tissue in the
breast, expressed as mammographic density (MD). According
to several studies, women with high MD have a two to six-fold
increased breast cancer risk compared to women with low
MD [4], [5]. Further, breast density is modifiable and density
changes relate to breast cancer risk. Tamoxifen, for example,
reduces breast density and decreases the risk, whereas hormone
replacement therapy causes the opposite [6].
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Many MD scores have been proposed, ranging from manual
categorical (e.g. BI-RADS) to automated continuous scores.
In early years, radiologists characterized the mammographic
appearance by a set of intuitive, but loosely defined breast tissue
patterns that were shown to relate to the risk of breast cancer [7],
[8]. The current gold standard are semi-automated continuous
scores, as obtained by Cumulus-like thresholding [9]. In
Cumulus, the radiologist sets an intensity threshold to separate
radiodense (white appearing) from fatty (dark appearing) tissue.
The computer then measures the proportion of dense to total
breast area, known as percentage mammographic density
(PMD). However, user-assisted thresholding is subjective and
time-consuming, and hence not suited for large epidemiological
studies. There has been a trend towards fully automating PMD
scoring [10], [11], [12], [13], [14], [15], but most of these
approaches rely on handcrafted features with several parameters
that need to be controlled. Generalizing these methods beyond
the reported datasets could be challenging.

Finding features that capture the relevant information in
the mammogram is a difficult task. This becomes even more
apparent when looking at work on mammographic texture
(MT) scoring. MT scoring methods aim to find breast tissue
patterns (or textures) that are predictive of breast cancer [16],
[17], [18], [19], [20], [21], [22]. Intuitively, their goal is to
characterize breast heterogeneity instead of breast density. MT
scoring is even harder than MD scoring, since the label of
interest (healthy vs. diseased) is defined per image and not
per pixel (e.g. fatty vs. dense). Previous work on MT scoring
has focused on manually designing and selecting features,
similar to automatic MD scoring methods [17], [18], [19], [20].
However, these studies reach different conclusions on which
texture features discriminate best. Furthermore, it is unclear if
the published methods generalize to multiple datasets.

The goal of this paper is to present a method that auto-
matically learns features for images, which in our case are
mammograms. The model is called a convolutional sparse
autoencoder (CSAE), as its core consists of a sparse autoen-
coder within a convolutional architecture. The method extends
previous work on CSAEs [23], [24] to the problem of pixel-
wise labeling and to large images (instead of small patches).
The proposed CSAE is generic, easy to apply, and requires
barely any prior knowledge about the problem. The main idea
of the model is to learn a deep hierarchy of increasingly more
abstract features from unlabeled data. Once the features have
been learned, a classifier is trained to map the features to the
labels of interest.

We evaluate the method on two breast-cancer tasks that have
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previously been addressed in very different ways: The first task
is the automated segmentation of breast density (MD). The
second task is to characterize mammographic textural (MT)
patterns with the goal of predicting whether a woman will
develop breast cancer.

As in our previous work on multiscale denoising autoen-
coders [25], [26], we analyze features at multiple scales. On
top of that, the CSAE employs a convolutional architecture
that models the topology of images, and integrates a novel
sparsity term to control the model capacity. We continue with
a literature review for each of the two concerned tasks and
summarize related work on feature learning.

A. Mammographic Density Scoring (MD)

Various approaches have been suggested to automate percent-
age mammographic density (PMD), which is widely considered
as the gold standard in mammographic density scoring. A
recent overview of methods can be found in He et al.[27].
A first class of methods takes the global image appearance
into account. Sivaramakrishna et al. [28] mimicked PMD by
measuring Kittler’s optimal threshold, whereas Torrent et al.
[29] determined the threshold based on excess entropy. Ferrari
et al. [30] fitted a Gaussian Mixture Model to regions of
different density. Keller et al. [15] utilized adaptive multiclass
fuzzy c-means clustering on the gray-level intensity followed
by support vector machine classification.

None of the aforementioned methods takes neighborhood
information into account. To capture structural information, sev-
eral authors assessed breast density using texture features from
the computer vision literature. An approach that integrates many
of these features with location, intensity, and global contextual
information has been proposed by Kallenberg et al. [10]. The
approach achieves state-of-the-art performance, but introduces a
plethora of parameters that need to be controlled. To overcome
this problem, we have recently proposed a feature learning
method called multiscale denoising autoencoder [25],[26]. The
method is more generic, yet achieves comparable results in
automating MD.

Instead of assessing PMD in the breast area, it has also
been suggested to estimate PMD in the breast volume [31],
[32]. Highnam and Brady [31] suggested the standard mam-
mographic form, a model of the imaging process, to automate
volumetric PMD.

In this paper, we use a similar framework as in [25], [26], but
introduce a convolutional learning architecture that preserves
the spatial layout of the image and regularizes the learning
algorithm with a novel sparsity term.

B. Mammographic Texture Scoring (MT)

Mammographic texture (MT) scores consider structural
information of breast tissue and can be grouped into manual
and automated MT scores. Manual MT scores characterize
breast tissue by a small number of intuitive, but rather imprecise
patterns. Popular examples include the Wolfe patterns [7] or
the Tabdar score [8]. In contrast, existing automated MT scores
select a set of generic statistical features and employ a statistical
learning algorithm to separate healthy from diseased patients.

Consequently, automated MT scores may consider textural
patterns that are predictive, but weakly correlated with manual
density patterns.

The literature contains various approaches for automated
MT scores. Byng et al. [33], Huo et al. [34], and Heine et
al. [20] estimated texture by computing histogram statistics,
such as the central moments or the entropy of the histogram.
Also features that capture spatial relationships among pixels
have been considered, such as statistics of the gray-level co-
occurrence matrix (GLCM) [17], [18], run-length measures
[17], [18], Laws features [17], Fourier techniques [17], Wavelet
features [17], [18], fractal dimension [33], [29], or lacunarity
[29]. Manduca et al. [17], Haberle et al. [18] and Zheng
et al. [22] summarized and combined most of the common
heuristic texture features for breast cancer risk assessment. The
approaches resemble each other with respect to the examined
features. However, they differ in the evaluated dataset, feature
selection schemes, classifiers, and the region of interest for
computing the MT score. Manduca et al. found that a set
of Fourier and Wavelet features at coarse scales performs
best, whereas Hiberle et al. concluded that certain GLCM
and histogram features from fine and coarse scales are most
predictive. Zheng et al. found that extracting features from
multiple locations in the breast outperforms a single-ROI
approach.

Nielsen et al. [19] investigated another method to determine
the texture features. They selected a combination of multiscale
3-jet and 2D location features, employed a sequential forward
selection using bootstrapping, and predicted pixel-wise labels
which were afterwards averaged over the breast region.

In contrast to previous work, we do not handpick heuristic
texture features, but instead aim to learn meaningful texture
features directly from the unlabeled mammograms. The hope
is that an uncommitted method is better suited to generalize
to different datasets.

C. Feature Learning

A lot of research has been devoted to selecting and handcraft-
ing features that encode the important factors of variation in the
input data. However, it can be time-consuming and tedious to
mathematically describe human intuition and domain-specific
knowledge. Furthermore, human heuristics are not guaranteed
to capture the salient information of the data, and features that
perform well on a related computer vision problem may not
transfer to the application at hand.

An increasing number of papers demonstrate that comparable
or even better results are achieved by learning features directly
from the data. Especially deep nonlinear models have been
proven to generate descriptors that are extremely effective in
object recognition and localization in natural images. A recent
overview of feature learning with deep models is given in [35]
and [36]. Inspired by the human brain, these architectures first
learn simple concepts (or features) and then compose them
to more complex ones in deeper layers. In addition, features
share components from lower layers which allow them to
compactly express the idiosyncrasies of the data and fight
the curse of dimensionality [37]. Most of these models are
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trained by iteratively encoding features (forward propagation)
and updating the learned weights to improve the optimization
(backward propagation).

One approach is to jointly optimize the features of the deep
model, in order to minimize the loss between the predictions
of the top most layer and the target values. Traditional
neural networks fall into this category, and also variants like
convolutional neural networks (CNNs) by Lecun et al. [38],
which are tailored towards images. Deep neural networks, such
as CNNs, have been successfully applied to challenging image
analysis problems, e.g., object recognition, scene parsing [39],
cell segmentation [40], neural circuit segmentation [41], [42],
analysis of images the breast [43], [44], [45], [46]. They were
found to be faster and more expressive than other graphical
models like Markov or Conditional Random Fields [47].

The features can also be learned in an unsupervised way,
e.g. using Restricted Boltzmann Machines [48], [49] or au-
toencoders [23], [50], [51]. The features are typically learned
in a greedy, layer-wise fashion, before a classifier is trained
to predict the labels from the feature responses of the top
most layer. The division into multiple optimization problems
has several advantages. First, large amounts of unlabeled data
can be exploited for training the features. Second, the features
are learned faster and more stable, as each layer is optimized
by a small encoder-decoder architecture instead of a complex
deep network. And third, these deep models can incorporate
transformations and classifiers that are optimized independently
from the features.

In this paper, we employ a sparse autoencoder for learning
the features in an unsupervised way. Previous work has
suggested sparse autoencoders for object recognition from
small image patches [23], [24], [52]. In contrast, we propose a
feature learning method for images that exploits information at
multiple scales and incorporates a different sparsity regularizer.

II. METHOD

We explain the overall approach consisting of three parts:
generating input data, model representation, and parameter
learning. The input data is composed of multiscale image
patches that capture both detail and large contextual regions.
The patches are processed by a multilayer convolutional
architecture. The parameters of this representation are learned
using a sparse autoencoder, which enhances the standard
autoencoder with a novel sparsity regularizer.

A. Overall Approach

Assume we are given a set of training images with associated
label masks and our goal is to predict the label mask for an
unseen image. It would be computationally prohibitive to map
entire images to label masks. Downsampling the image is also
infeasible, as many structures of interest occur at a fine scale.
However, we can learn a compact representation for local
neighbors (or patches) from the image.

Let us represent the labels in a 1-of-C' coding scheme. Then
formally, we aim to map a multi-channel image patch x € X =
Rex™m>m of size m x m with ¢ channels to a label posterior
patchy € Y = ROXMxM of size M x M with one channel

per label, where we assume quadratic input sizes for ease of
notation. The image and label posterior patch are centered at
the same location, but can have different sizes. The channels
of the image patch may include color channels, preprocessed
image patches, or feature responses.

For training our model, n labeled training examples D =
{(2!, yl)}»_, are extracted at randomly chosen locations
across the set of training images. Given the training data D,
our model learns a hypothesis function h : X — ) which is
parameterized by 6.

In this paper, the hypothesis function / is defined as a latent
variable model that consists of multiple layers. Instead of
mapping x to y directly, we learn a series of increasingly more
abstract feature representations' z\") for layers | € 1,..., L,
where z(1) = z and 2(/) € ). The feature representations
are gained by encoding the input through a cascade of
transformations, of which some are trainable. We learn the
parameters of these transformations in a greedy layer-wise
fashion without using the labels. While an individual layer
is not deep, the stacked architecture is (e.g, the second layer
receives as input the output from the first layer). Thus, the
individual unsupervised training of (“shallow’) layers results
in an unsupervised deep learning procedure.

Three steps are necessary to move from one feature repre-
sentation, z("), to the next one, z(‘t1):

1) Extract sub-patches (called local receptive fields) from
random locations in z() and optionally preprocess them.

2) Feature learning: Learn transformation parameters (or
features) by autoencoding the local receptive fields.

3) Feature encoding: Transform all local receptive fields
in z() using the learned features from step 2. The
result of the transformation is referred to as the feature
representation 2D,

A classifier maps the last feature representation into label space
Y. An unseen image is tested by applying the trained hypothesis
function hg(z) to all possible patches in a sliding window
approach. Thus, every patch within the tested image is sent
through the trained encoders and classifier to create a prediction.
If the size of the predicted output region is bigger than a single
pixel, i.e., M > 1, predictions at neighboring image locations
might overlap with each other. These predictions can be fused
by computing the average probability per class.

An overview of the pipeline is shown in Fig. 1. Our
architecture consists of four hidden layers: a convolutional
layer, a maximum pooling layer, and two further convolutional
layers. We chose one pooling layer to be invariant towards
small distortions, but sensitive to fine-scaled structures. The
specifics will be presented in the following sections.

B. Multiscale Input Data

We capture long range interactions in the mammograms by
extracting input examples = from multiple scales. As introduced

'We use the terms weights and features interchangeably to refer to the
parameters of a representation transformation. The output of this transformation
are called activations or feature representation. Within a convolutional
architecture, the activations will be spatially arranged as feature maps (see
Section 1II).
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Fig. 1: Deep convolutional architecture consisting of convolutional, pooling and a softmax layer(s). Input patches are extracted
from multiple scales of an image. The pixel spacing of the patches is adjusted such that the feature maps at different scale
levels are equally sized. Each scale level of the CSAE model is processed in isolation before all activations are integrated in
the second last layer. The convolutional layers in the unsupervised parts are trained as autoencoders; In the supervised part the
(pretrained) weights and bias terms are fine-tuned using softmax regression (see text for details).

in our previous work [25], [26], a given mammogram I is
embedded into a Gaussian scale space I(u;o0y) = [I * Gy, |(w).
Here the x operator denotes convolution. Multi-scale mammo-
graphic analysis is realized using the well established discrete
scale space theory (see, e.g., [53]); specifically we use a Fourier
implementation where the Gaussian kernel is discretized in
the Fourier domain and spatial convolution obtained through
multiplication (in the Fourier domain) with the discrete Fourier
transform of the mammogram [54]. The parameter s € R?
denotes the position (or site) and o; determines the standard
deviation of the Gaussian at the tth scale. More specifically,
the standard deviation

(D

t—1
E )2
=0

is given as the square root of the summed Gaussian variances
from the first ¢ scale levels of the Gaussian pyramid. In this
paper, we chose downsampling factor § = 2.

An input example x4 at location u from scale ¢ is constructed
by sampling a patch with pixel distance (or stride) 6! around
location u in the Gaussian scale space. For example, an input
patch at scale level ¢ = 1 is a coherent m X m region, whereas
the patch at scale ¢ = 4 considers only every eighth pixel
around w from a heavily smoothed mammogram.

The underlying representation of our model, a convolutional
architecture, processes inputs from multiple scales (Fig. 1). For
computational reasons, features are first learned for each scale
in isolation, before they are merged in deeper layers.

C. Sparse Autoencoder

It would be possible to learn the weights (or features)
using forward and backward propagation through the entire
architecture [38]. However, as argued in our review of feature
learning, we aim to learn features in an unsupervised way
using autoencoders. We propose a variant of the autoencoder

that enables to learn a sparse overcomplete representation. A
feature representation is called overcomplete if it is larger
than the input. Sparsity forces most of the entries to be zero,
leaving only a small number of non-zero entries to represent
the input signal. Thus, in the case of extreme sparsity, each
input example would be encoded by a single hidden unit, the
one whose input weights (or feature) are the most similar to
the input example.

Sparse overcomplete representations provide simple interpre-
tations, are cost-efficient, and robust to noise. They are suited
to disentangle the underlying factors of variation because each
input example needs to be represented by the combination of
a few (specialized) features.

In previous work, feature representations have been made
sparse by limiting the number of active (non-zero) units per
example (population sparsity) or by limiting the number of
examples for which a specific unit is active (lifetime sparsity).
Population sparsity underlies methods like sparse coding [55],
or K-means, where each cluster centroid can be interpreted as
a feature and each example is encoded by the most similar
centroid. Lifetime-sparsity is incorporated in the sparsifying
logistic by Ranzato et al. [23] or the sparse RBM by Lee et
al. [56], where the average activation per unit is supposed to
equal a user-specified sparsity threshold.

In this paper, we formulate a sparsity regularizer that
incorporates both population sparsity and lifetime sparsity.
While population sparsity enforces a compact encoding per
example, lifetime sparsity leads to example-specific features.
Our proposed sparsity prior can be combined with any
activation function including the rectified linear function, which
was shown to produce better features than the sigmoid or the
hyperbolic tangent in [57]. The formalization of the sparse
autoencoder is given in the appendix.
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D. Experiments and Datasets

We evaluated the performance of the CSAE for two different
tasks (MD, MT) on three different mammographic datasets.
For each task we first segmented mammograms into back-
ground, pectoral muscle, and breast tissue region. The breast
tissue region was then used as a region of interest for the
mammographic scoring tasks (MD and MT). We continue with
a description of the datasets, the parameter settings, and the
results for each of the two tasks.

1) Density Dataset: From the Dutch breast cancer screening
program we collected 493 mammograms of healthy women.
Mean age of the women was 60.25 & 7.83 years. The images
were recorded between 2003 and 2012 on a Hologic Selenia
FFDM system, using standard clinical settings. We used the
raw image data. The set contained a mixture of mediolateral
oblique (MLO) and craniocaudal (CC) views from the left
and right breast. For each woman however only one view was
available.

A trained radiologist annotated the skin-air boundary and the
pectoral muscle by a polygon tool. In a second step, the breast
tissue area was delineated by cropping superfluous tissue folds
below and above the breast area. The radiologist estimated
percent density using a Cumulus like approach.

2) Texture Dataset: The texture dataset comprises 668
mediolateral mammograms from the Mayo mammography
Health Study (MMHS) cohort at the Mayo Clinic in Rochester,
Minnesota. The purpose of the MMHS study was to examine
the association of breast density with breast cancer [58]. The
chosen subset included 226 cases and 442 controls that were
matched on age and time from earliest available mammogram
to study enrollment/diagnosis date. The images were recorded
between October 2003 and September 2006, between 6 months
and 15 years prior to the detection of the cancer. The mean
age was 5.2 £ 10.5 years.

All mammograms were digitized with an Array 2905 laser
digitizer (Array Corporation, the Netherlands) that provided a
pixel spacing of 50 microns on a 12-bit gray scale. A trained
observer annotated the skin-air boundary and the pectoral
muscle by a polygon tool.

3) Dutch Breast Cancer Screening Dataset: From the Dutch
breast cancer screening program we collected 394 cancers, and
1182 healthy controls. Controls were matched on age and
acquisition date. The images were recorded between 2003
and 2012 on a Hologic Selenia FFDM system, using standard
clinical settings. For each woman MLO views from both the
right and left breast were available. However, to exclude signs
of cancerous tissue, we took the contralateral mammograms
for our analyses on breast cancer risk prediction. We used
the raw image data. Mean age of the women was 60.6 + 7.70
years. The images were segmented into the breast area, pectoral
muscle and background using automated software (Volpara,
Matakina Technology Limited, New Zealand).

E. Parameter Settings and Model Selection

If not stated otherwise, the same parameter settings have
been applied to each task and each dataset.

1) Patch Creation: Before extracting the patches, the mam-
mograms were resized to an image resolution of roughly 50
pixels per mm. The model was trained on n = 48, 000 patches.
The patch size in terms of number of pixels was restricted to
24x24 in order to keep the number of trainable weights and
bias terms limited. The training patches were sampled across
the whole dataset as follows: For density scoring 10% of the
patches were sampled from the background and the pectoral
muscle, 45% from the fatty breast tissue, and 45% from the
dense breast tissue. For texture scoring 50% of the patches
were sampled from the breast tissue of controls, and 50%
from the breast tissue of cancer cases. In pilot experiments
we experimented with different breast tissue masks to sample
patches from. Best results were obtained if we restricted the
sampling of the patches to the inner breast zone, which is the
breast area that is fully compressed during image acquisition,
and in which the fibroglandular tissue is most prominent. For
both tasks M = 1 was chosen. We set scales ¢ to 1 to 4 for both
density and texture scoring. The smallest patch was thus 4.8mm
x 4.8mm, whereas the biggest patch was 3.7cm x 3.7cm. As
such several structures of interest could be captured in different
detail. On a validation set we experimented with different setups
of the input channels. Best results were obtained by having
one input channel consisting of the unprocessed image.

2) Convolutional Architecture: For each tasks the number of
feature map were set to K = {50, (50), 50, 100}; the associated
kernel sizes were fixed to {7,2,5,5}. These values were
motivated from previous work on convolutional architectures
[59].

3) Sparse Autoencoder: To learn the weights of the convolu-
tional layers, a sparse autoencoder was trained on N = 48, 000
extracted local receptive fields from the activations of the
previous layer. For the first layer each local receptive field was
preprocessed by removing its DC components. The sparsity
parameter was set to p = 0.01 and the weighting term of the
sparsity regularizer to A = 1. We applied the backpropagation
algorithm to compute the gradient of the objective function
in (6). The parameters were optimized with L-BFGS using
25 mini-batches of size 2, 000. Each mini-batch was used for
20 iterations, such that the entire optimization ran for 500
iterations. In pilot experiments we determined the settings of
the hyperparameters. In these pilot experiments we put most
emphasis on the sparsity regularizer A and the length of the
training for both the unsupervised and the supervised part of
our network. We found that the performance was robust for a
broad range of values of the mentioned parameters.

4) Classifier: We trained a two layer neural network,
consisting of a pretrained convolutional layer (i.e., layer L-
1) and multinomial logistic regression (or softmax classifier)
layer. That is, that the weights and bias terms of the pretrained
convolutional layer (i.e., layer L-1) are fine-tuned with a
supervised signal. For MD scoring we utilized three class
labels: (i) pectoral muscle and background, (ii) fatty tissue,
and (iii) dense tissue. For MT scoring we had two class labels:
(i) cancer, and (ii) control. The optimization was performed
for 500 iterations using L-BFGS on the n encoded patches.
Unless stated otherwise for each task and dataset results were
obtained by performing 5-fold cross-validation by image to
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estimate the generalization ability of our machinery.

ITII. RESULTS
A. Mammographic Density Scoring

1) Density Dataset: The initial output of the MD scoring is
a score that represents the posterior probability that a given
pixel belongs to the dense tissue class. By thresholding the
posteriors with threshold 7},,;c We obtain a segmentation of the
dense tissue. Percent density (PMD) is then computed as the
percentage of breast pixels that is segmented as dense. To speed

up training we oversampled the dense class during training.

As such our machinery tends to overestimate the density if we
set the threshold Ty,s to 0.50. By raising T ., this effect is
compensated for. Figure 2 shows the effect of T, On two
performance measures, namely (i) the image-wise average of
the Dice coefficient, defined as 2|A N B|/(|A| + | B|) between
the automated segmentation A and the segmentation of the
radiologist B, and (ii) the root mean squared error between the
percent density (PMD) as measured by our machinery and the
radiologist. Best results are obtained with Ty, in the interval
0.70-0.80. In the remainder of the paper results are therefore
reported with Tes set to 0.75. Table I summarizes the results
on the density dataset. Reported are (i) the Pearson correlation
coefficient (and 95% CI) between PMD as measured by our
(£ standard deviation) of the Dice coefficient for both dense
and fatty tissue, and (iv) the average percent density (& standard
deviation). Figure 3 shows an example of a mammogram, the
corresponding Cumulus-like segmentation and the segmentation
obtained with the CSAE that incorporates the novel sparsity
term.

0.6 -
[
s
>
£04-
GE-‘ Dicecsae
] —A— RMSECSAE
Q2
k3

0.2-

1 1 1 1 1
0.00 0.25 0.50 0.75 1.00
Tdense

Fig. 2: Effect of varying the threshold on the posteriors 7 ese
on two performance measures of MD scoring, namely (i) the
image-wise average of the Dice coefficient, and (ii) the root
mean squared error between the percent density (PMD) as
measured by our machinery and the radiologist.

2) Dutch Breast Cancer Screening Dataset: We used the
networks that were trained on the density dataset to score PMD
on all images of the Dutch Breast Cancer Screening Dataset.

TABLE I: Comparison of automated with radiologist’s MD
scores for the density dataset.

RpMDessp-PMDgyg  0-85 (0.83-0.88)

Dicegense 0.63 £0.19
Dicegy 0.95 £ 0.05
PMD 0.16 £0.11

(b)

Fig. 3: Automated MD thresholding. Depicted are (a) original
image, (b) dense tissue according to expert Cumulus-like
threshold, and (c) dense tissue according to CSAE .

Subsequently we assessed how well our estimation of PMD
is able to discriminate between cancers and controls. Table II
presents (i) left-right correlation for the automated PMD scores
cancers and controls, and (iv) the area under the ROC curve
(AUC) for separating between cancers and controls.

TABLE II: Statistics of MD scores on the Dutch Breast Cancer
Screening dataset.

0.93 (0.92-0.94)
0.19+0.11
0.15+0.11
0.59 (0.56-0.62)

RPMDlefrPMDngm
PMDcye (n=394)
PMDcontrol (n=1182)
AUCpmp

B. Mammographic Texture Scoring

1) Texture dataset: The initial output of the MT scoring is
a score that represents the posterior probability that a given
pixel belongs to the cancer class. To obtain one MT score per
image we averaged the posteriors of 500 patches randomly
sampled from the breast area. We have evaluated the MT
scoring performance on the texture dataset (see Table III). Our
model improved on two state-of-the-art methods in MT scoring:
(i) the KNN method by Nielsen et al. [19] using multiscale local
jet features [60], which so far had reported the best results on
the texture dataset (results were communicated); (ii) a softmax
classifier on static histogram features inspired by the method of
Hiberle et al. [18]. A precise reimplementation of the original
method by Hiberle et al. was not possible, since we could not
get access to important hyperparameters like the orientation of
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the chosen features. The static histogram features represent 16
of the 45 final selected features, but accounted for 15 of the
18 highest coefficients in their final softmax classifier.

We also checked the robustness of our results with respect
to different randomizer seed points. We found that the CSAE
model was able to produce similar scores in different runs. The
AUC varied less than 0.01 across multiple runs.

TABLE III: AUC values for separating between cancers and
controls for various automated MT scores on the texture dataset.

Method AUC
Static histograms [18] 0.56 (0.51-0.61)
Multiscale local jet [19]  0.60 (N/A)

CSAE 0.61 (0.57-0.66)

2) Dutch Breast Cancer Screening Dataset: Table IV
presents performance indicators for our MT scoring on the
Dutch Breast Cancer Screening dataset. Shown are 1) left-right
correlation of the MT scores ii) the area under the ROC curve
(AUC) for separating between cancers and controls.

TABLE IV: Statistics of MT scores on the Dutch Breast Cancer
Screening dataset.

0.91 (0.90-0.92)
0.57 (0.54-0.61)

RMTleerTrigm
AUCMmT

IV. DISCUSSION

We have presented an unsupervised feature learning method
for breast density segmentation and automatic texture scoring.
The model learns features across multiple scales. Once the
features are learned, they are fed to a simple classifier that is
specific to the task of interest. After adapting a small set of
hyperparameters (feature scales, output size, and label classes),
the CSAE model achieved state-of-the-art results on each of
the tasks.

The results suggest that the proposed method was able to
learn useful features for each of the considered applications.
The automated PMD scores have a very strong positive
relationship with the manual Cumulus scores (R = 0.85) and
are competitive with reported correlation coefficients from
the literature, e.g., 0.63 [61], 0.70 [12], 0.85 [15], 0.88 [14]
and 0.91 [10]. We also evaluated how well the automated
PMD scores separated out cases from controls. We found that
the automated PMD scores yielded an AUC of 0.59, which
is competitive to reported AUCs in the literature on similar
populations (e.g. 0.57 [61], 0.59 [14], and 0.60 [62]). Thus,
our automatic MD scoring method could be an alternative to
subjective and expensive manual MD scoring.

The automated MT scores separated cancers and controls
better than two state-of-the-art MT scoring methods. In the
texture dataset the CSAE model improved on the KNN method
by Nielsen et al. [19] and a simplified version of the model of
Hiéberle et al. [18]. The full model of Héberle et al. could not
be tested, as necessary parameter settings were missing.

Based on our results we conclude that useful discriminative
features can be attained by ”letting the data speak” instead of
modeling prior assumptions.

We proposed a novel sparsity regularizer that incorporates
both population sparsity and lifetime sparsity. We compared
the performance of the machinery with the novel sparsity term
with a control setup that used an alternative sparsity term
[56], which measured the KL-divergence between the mean
activation and the desired activation. For each experiment the
novel sparsity term performed at least equally well as the
control setup.

The stack of convolutional (sparse) autoencoders (CSAE)
presented in this work forms a convolutional neural network
(CNN). The major difference between a CSAE and a classic
CNN is the usage of unsupervised pre-training. In our previous
work [25] we found that unsupervised pre-training with
autoencoders led to an increase in performance on similar tasks
as presented here. This is in line with several works (e.g., [24],
[63], [64], [65]) that demonstrated the merits of employing
unsupervised pre-training with autoencoders in convolutional
architectures.

We have focused on presenting a principled and generic
framework for learning image features. The MT features were
learned on image patches and mapped to individual locations
in the image. In a second step, the classifier predictions
were merged to assign a disease label for the mammogram.
However, the labels in the texture scoring task are provided per
mammogram. We assumed that texture changes are systemic
and occur at many locations in the tissue. One may also
hypothesize the opposite. Texture changes could be restricted to
the vicinity of future cancers. We plan to extend the framework
to learn from multiple instances. The idea would be to train
a classifier that maps the feature responses from multiple
locations to one label. This is a difficult task and probably
requires many more disease labels than considered in this paper.
However, with the advent of large screening datasets, it may
become possible to learn a relationship from images to labels,
and investigate the locality of texture changes.

The model could be easily adjusted to support 3D data.
Features could be learned for different mammographic projec-
tions (e.g., craniocaudal views) or images from complementary
modalities (e.g., ultrasound, magnetic resonance imaging,
tomosynthesis, or computed tomography). There are several
applications for automatically derived MD and MT scores. As
part of a risk prediction model, they stimulate research on breast
cancer epidemiology. For instance, large databases of historical
mammograms could be scored to investigate change of breast
cancer risk. Moreover, mammographic risk scores may affect
decision making for the individual patient, e.g., the selection
of screening interval, imaging modalities, or treatment options.
Thus, they could help organize mammographic screening
programs more efficiently and effectively, which may ultimately
lead to a reduction in breast cancer mortality.

APPENDIX

In the unsupervised part of our machinery features are
learned using autoencoders. We propose a variant of the
autoencoder that enables to learn a sparse overcomplete
representation. We introduce a novel sparsity regularizer
that combines population sparsity and lifetime sparsity. We
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summarize the idea of the standard autoencoder (Fig. 4), before
introducing an autoencoder that exploits sparsity.

A. Autoencoder

Consider learning the weights w; € R®*4X? in for j =
1,..., K, where we omit the layer index for brevity. We rewrite
the K 3D weight arrays as a weight matrix W € RX xed?
where the jth row corresponds to w;. Similarly, the bias vector
b € RE concatenates the K bias terms b;. Assume further
that we have sampled one local receptive field at a random
location per input feature map example zl) € RX*™ with
i =1,...,n. The local receptive fields have a size of ¢ x d x d,
but are arranged as vectors rlil e RCdz, where i = 1,...,n
and d < m. Then, we can learn W and b in an unsupervised
way by autoencoding the local receptive fields.

The autoencoder reconstructs an input r € Red by a
composition f(g(r)) of an encoder g(-) and a decoder f(-).
The encoder

a=g(r)=¢(Wr+b) 2)

connects the input layer with the hidden layer and uses
the activation function ¢(-), which is commonly one of the
following: the sigmoid, the hyperbolic tangent, or the recently
introduced rectified linear function ¢(z) = max(0, z) that is
used in this paper due to its reported superior performance
[57]. The decoder

fla) = ¢(Va+b) 3)

is an affine mapping between the hidden layer and the output
layer. The activation function of the decoder v (-) is usually
set to the identity function and the weight matrix V = W T
is defined as the transpose of the encoder weight matrix (i.e.,
we use tied weights [66]). The bias of the decoder b€ Re?’
has the same dimension as the input. Tying the weights of
the encoder and decoder encourages V' and W to be at the
same scale and orthogonal to each other [67]. It also decreases
the number of trainable parameters and thereby improves the
numerical stability of the algorithm. The specialized decoder
is thus given by f(a) = W 'a +b.

Let us denote the set of training examples as Dy = {rl1}Y
and the trainable parameters as 0. = {W,b,b}. Then the
objective function to be minimized is

jAE(Drem erec) = % Z Erec [r[i], f(g(r[z])):| ) (4)
i=1

where the reconstruction error
L [, 60| = 17 = FGE ®)

is the squared loss. To avoid that the autoencoder learns
the identity function, the hidden layer is constrained to be
undercomplete, i.e., the number of hidden units is smaller than
the number of input units (K < cd?).

B. Sparse autoencoder

We define a sparse autoencoder that minimizes the objective
function

1 & . .
jSAE(Drem erec) = E Z £rec |:71[Z] ) f(g(r[’])) + )\Wsp(A)
=1
(6)

using the novel sparsity term
wep(A) = wpsp(A) + wigp(A) . (7

This regularizer combines population sparsity wpe(A) and
lifetime sparsity wiqp(A) with respect to the activation matrix
AeREXn A, = aE-Z] = g(rj[-z]).

To define the population sparsity term, let us compute the
average absolute activation for the jth activation unit (averaged
across the n examples)

. 1 n
pi=—>_ |4l
n =1
=n" A, (8

where || A;.||1 is the L;-norm of the jth row in A. We compare
this unit-wise population sparsity to a pre-specified sparsity
parameter p

1 K
wpp(A) = 22 D 7(p530)? )
j=1

and average the squared thresholded difference over the K
units. Here, the threshold function

7(p; p) = max(p — p,0) . (10)

penalizes sparsity values above p to avoid non-specific features.
Values below p are not punished because selective features
shall be permitted. A typical value for the sparsity level is
p = 0.01 (see Section II-E).

Similarly, we specify the lifetime sparsity for the ith example
as its average absolute activation averaged across the K
activation units

1 X
5(1) — § )
Pl = Kj:1‘Aﬂ‘

=K Al , (11)

where || A.;||1 is the Ly-norm of the ith column in A. The total
lifetime sparsity is then given by

Wisp (A) = (12)
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Fig. 4: (a) An autoencoder for learning the features of the convolutional layer. The input is vectorized and reconstructed by an
encoder-decoder architecture. (b) Inference in a convolutional layer using a 3D convolution. The encoded units correspond to
the highlighted units in output z(!*) of the convolutional layer. The weights w; between input feature maps 2 and the jth
output feature map are marked in red and initialized with the learned weights from the autoencoder. We refer to the text for
details.
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