
Variable Metric

Reinforcement Learning Methods

Applied to the Noisy Mountain Car Problem

Verena Heidrich-Meisner and Christian Igel

Institut für Neuroinformatik, Ruhr-Universität Bochum, Germany
{Verena.Heidrich-Meisner,Christian.Igel}@neuroinformatik.rub.de

Abstract. Two variable metric reinforcement learning methods, the
natural actor-critic algorithm and the covariance matrix adaptation evo-
lution strategy, are compared on a conceptual level and analysed exper-
imentally on the mountain car benchmark task with and without noise.

1 Introduction

Reinforcement learning (RL) algorithms address problems where an agent is
to learn a behavioural policy based on reward signals, which may be unspe-
cific, sparse, delayed, and noisy. Many different approaches to RL exist, here we
consider policy gradient methods (PGMs) and evolution strategies (ESs). This
paper extends our previous work on analysing the conceptual similarities and
differences between PGMs and ESs [1].

For the time being, we look at single representatives of each approach that
have been very successful in their respective area, the natural actor critic algo-
rithm (NAC, [2–5]) and the covariance matrix adaptation ES (CMA-ES, [6]).
Both are variable metric methods, actively learning about the structure of the
search space. The CMA-ES is regarded as state-of-the-art in real-valued evolu-
tionary optimisation [7]. It has been successfully applied and compared to other
methods in the domain of RL [8–12]. Interestingly, recent studies compare CMA-
ES and variants of the NAC algorithm in the context of optimisation [13], while
we look at both methods in RL.

We promote the CMA-ES for RL because of its efficiency and, even more
important, its robustness. The superior robustness compared to other RL al-
gorithms has several reasons, but probably the most important reason is that
the adaptation of the policy as well as of the metric is based on ranking poli-
cies, which is much less error prone than estimating absolute performance or
performance gradients.

Our previous comparison of NAC and CMA-ES on different variants of the
single pole balancing benchmark in [1] indicate that the CMA-ES is more ro-
bust w.r.t. to the choice of hyperparameters (such as initial learning rates) and
initial policies compared to the NAC. In [1] the NAC performed on par with the
CMA-ES in terms of learning speed only when fine-tuning policies, but worse for



harder pole balancing scenarios. In this paper, we compare the two methods ap-
plied to the mountain car problem [14] to support our hypotheses and previous
findings. As the considered class of policies has only two parameters, this bench-
mark serves as some kind of minimal working example for RL methods learning
correlations between parameters. The performance of random search provides a
performance baseline in our study. In order to investigate the robustness of the
algorithms, we study the influence of noise added to the observations.

The paper is organised as follows. In section 2 we review the NAC algorithm
and the CMA-ES for RL. Section 3 describes the conceptual relations of these
two approaches and in section 4 we empirically compare the methods.

2 Reinforcement learning directly in policy space

Markov decision processes (MDP) are the basic formalism to describe RL prob-
lems. An MDP 〈S,A,P ,R〉 consists of the set of states S, the possible actions A,
the probabilities Pa

s,s′ that an action a taken in state s leads to state s′, and the
expected rewards Ra

s,s′ received when going from state a s to s′ after performing
an action a.

Partially observable Markov decision processes (POMDP) are a generalisa-
tion of MDPs [15]. In a POMDP, the environment is determined by an MDP, but
the agent cannot directly observe the state of the MPD. Formally, a POMDP
can be described as a tuple 〈S,A,P ,R, Ω, O〉. The first four elements define the
underlying MDP, Ω is the set of observations an agent can perceive, and the ob-
servation function S : S ×A → Λ(Ω) maps a state and the action that resulted
in this state to a probability distribution over observations (i.e., S(s′, a)(o) is
the probability of observing o given that the agent took action a and landed in
state s′).

The goal of RL is to find a behavioral policy π such that some notion of ex-
pected future reward ρ(π) is maximized. For example, for episodic tasks we can
define ρ(π) =

∑

s,s′∈S,a∈A dπ(s)π(s, a)Pa
s,s′Ra

s,s′ , where dπ(s) =
∑∞

t=0 γt Pr{st =
s | s0, π} is the stationary state distribution, which we assume to exist, st is state
in time step t, and γ ∈]0, 1] a discount parameter. The immediate reward re-
ceived after the action in time step t is denoted by rt+1 ∈ R.

Most RL algorithms learn value functions measuring the quality of an action
in a state and define the policy on top of these functions. Direct policy search
methods and PGMs search for a good policy in a parametrised space of functions.
They may build on estimated value functions (as PGMs usually do), but this is
not necessary (e.g., in ESs).

2.1 Natural policy gradient ascent

Policy gradient methods operate on a predefined class of stochastic policies. They
require a differentiable structure to ensure the existence of the gradient of the
performance measure and ascent this gradient. Let the performance ρ(π) of the
current policy with parameters θ be defined as above. Because in general neither



dπ, R, nor P are known, the performance gradient ∇θρ(π) with respect to the
policy parameters θ is estimated from interaction with the environment.

The policy gradient theorem [16] ensures that the performance gradient
can be determined from unbiased estimates of the state-action value function
Qπ(s, a) = E [

∑∞
t=0 γtrt+1|π, s0 = s, a0 = a] and stationary distribution, respec-

tively. For any MDP we have

∇θρ =
∑

s∈S
dπ(s)

∑

a∈A
∇θπ(s, a)Qπ(s, a) . (1)

This formulation contains explicitly the unknown value function, which has to
be estimated. It can be replaced by a function approximator fv : S × A → R

(the critic) with real-valued parameter vector v satisfying the convergence con-

dition
∑

s∈S dπ(s)
∑

a∈A π(s, a) [Qπ(s, a)− fv(s, a)] ∇vfv(s, a) = 0. This leads
directly to the extension of the policy gradient theorem for function approxima-
tion. If fv satisfies the convergence condition and is compatible with the policy
parametrisation in the sense that ∇vfv(s, a) = ∇θπ(s, a)/π(s, a), that is,

fv = ∇θ ln(π(s, a))v + const , (2)

then the policy gradient theorem holds if Qπ(s, a) in equation 1 is replaced by
fv(s, a) [16].

Stochastic policies π with parameters θ are parametrised probability distri-
butions. In the space of probability distributions, the Fisher information matrix
F (θ) induces an appropriate metric suggesting “natural” gradient ascent in the
direction of ∇̃θρ(π) = F (θ)−1

∇θρ(π). Using the definitions above, we have

F (θ) =
∑

s∈S
dπ(s)

∑

a∈A
π(s, a)∇θ ln(π(s, a))(∇θ ln(π(s, a)))T .

This implies ∇θρ = F (θ)v, which leads to the most interesting identity

∇̃θρ(π) = v .

In the following, we derive the NAC according to [4, 5]. The function approx-
imator fv estimates the advantage function Aπ(s, a) = Qπ(s, a)− V π(s), where
V π(s) = E [

∑∞
t=0 γtrt+1|π, s0 = s] is the state value function. Inserting this in

the Bellman equation for Qπ leads to

Qπ(st, at) = Aπ(st, at) + V π(st) =
∑

s′

P at

st,s′

(

Rat

st,s′ + γV π(s′)
)

. (3)

Now we insert equation 2 for the advantage function and sum up equation 3 over
a sample path:

T
∑

t=0

γtAπ(st, at) =

T
∑

t=0

γtrt+1 + γT+1V π(sT+1)− V (s0) .



Algorithm 1: episodic Natural Actor-Critic

initialise θ = 0 ∈ R
n, Φ = 0 ∈ R

emax×n+1, R = 0 ∈ R
emax

1

for k = 1, . . . do2

// k counts number of policy updates

for e = 1, . . . emax do3

// e counts number of episodes per policy update, emax > n

for t = 1, . . . tmax do4

// t counts number of time steps per episode

begin5

observe state st6

choose action at from πθ7

perform action at8

observe reward rt+19

end10

for i = 1, . . . , n do11

[Φ]e,i ← [Φ]e,i + γt ∂
∂θi

ln πθ(st, at)12

[R]e ← [R]e + γtrt+113

[Φ]e,n+1 ← 114

// update policy parameters:

θ ← θ + (ΦTΦ)−1ΦTR15

For an episodic task terminating in time step T it holds V π(sT+1) = 0. Thus,
we have after replacing Aπ with its approximation according to equation 2:

T
∑

t=0

γt(∇θ lnπ(st, at))
Tv − V (s0) =

T
∑

t=0

γtrt+1

For fixed start states we have V π(s0) = ρ(π) and this is a linear regression
problem with n + 1 unknown variables w = [vT, V π(s0)]

T that can be solved
after n + 1 observed episodes (where n is the dimension of θ and v):





T (e1)
∑

t=0

[

γt
∇θ lnπ(se1

t , ae1
t )
]T

,−1





T

v =

T (e1)
∑

t=0

γtre1
t+1

...
...





T (en)
∑

t=0

[

γt
∇θ lnπ(sen

t , aen

t )
]T

,−1





T

v =

T (en)
∑

t=0

γtren

t+1

The superscripts indicate the episodes. In algorithm 1 the likelihood information
for a sufficient number of episodes is collected in a matrix Φ and the return for
each episode in R. In every update step one inversion of the matrix ΦTΦ is
necessary.



2.2 Covariance matrix adaptation evolution strategy

We consider ESs for real-valued optimisation [17–20]. Let the optimisation prob-
lem be defined by an objective function f : R

n → R to be minimised, where n
denotes the dimensionality of the search space (space of candidate solutions,
decision space). Evolution strategies are random search methods, which itera-
tively sample a set of candidate solutions from a probability distribution over
the search space, evaluate these points using f , and construct a new probability
distribution over the search space based on the gathered information. In ESs,
this search distribution is parametrised by a set of candidate solutions, the par-

ent population with size µ, and by parameters of the variation operators that
are used to create new candidate solutions (the offspring population with size λ)
from the parent population.

In each iteration k, the lth offspring xl ∈ R
n is generated by multi-variate

Gaussian mutation and weighted global intermediate recombination, i.e.,

x
(k+1)
l =

〈

x
(k)
parents

〉

w
+ σ(k)z

(k)
l ,

where z
(k)
l ∼ N(0, C(k)) and

〈

x
(k)
parents

〉

w
=
∑µ

i=1 wix
(k)
ith-best-parent (a common

choice is wi ∝ ln(µ + 1)− ln(i), ‖w‖1 = 1).
The CMA-ES, shown in algorithm 2, is a variable metric algorithm adapting

both the n-dimensional covariance matrix C(k) of the normal mutation distribu-
tion as well as the global step size σ(k) ∈ R

+. In the basic algorithm, a low-pass
filtered evolution path p(k) of successful (i.e., selected) steps is stored,

p(k+1)
c ← (1− cc)p(k)

c +
√

(cc(2− cc)µeff)
1

σ(k)

(〈

x
(k+1)
parents

〉

−
〈

x
(k)
parents

〉)

,

and C(k) is changed to make steps in the promising direction p(k+1) more likely:

C(k+1) ← (1− ccov)C(k) + ccov p(k+1)
c p(k+1)

c

T

(this rank-one update of C(k) can be augmented by a rank-µ update, see [21]).
The variables cc and ccov denote fixed learning rates. The learning rate ccov =

2
(n+

√
2)2

is roughly inversely proportional to the degrees of freedom of the covari-

ance matrix. The backward time horizon of the cumulation process is approxi-
mately c−1

c , with cc = 4/(n + 4) linear in the dimension of the path vector. Too
small values for cc would require an undesirable reduction of the learning rate for

the covariance matrix. The variance effective selection mass µeff =
(
∑µ

t=1 w2
i

)−1

is a normalisation constant.
The global step size σ(k) is adapted on a faster timescale. It is increased if the

selected steps are larger and/or more correlated than expected and decreased if
they are smaller and/or more anticorrelated than expected:

σ(k+1) ← σ(k) exp

(

cσ

dσ

(

‖p
(k+1)
σ ‖

E‖N(0, I)‖
− 1

))

,



Algorithm 2: rank-one CMA-ES

initialise m(0) = θ and σ(0), evolution path p
(0)
σ = 0, p

(0)
c = 0 and covariance1

matrix C(0) = I (unity matrix)
for k = 1, . . . do2

// k counts number generations respective of policy updates

for l = 1, . . . , λ do3

x
(k+1)
l ∼ N(m(k), σ(k)2C(k)) // create new offspring4

// evaluate offspring:

for l = 1, . . . , λ do5

fl ← 0 // fitness of lth offspring6

for e = 1, . . . emax do7

// counts number of episodes per policy update

for t = 1, . . . tmax do8

// t counts number of time steps per episode

begin9

observe state st,10

choose action at from πθ,11

perform action at,12

observe reward rt+113

end14

fl ← fl + γt−1rt+115

// selection and recombination:

m(k+1) ←
Pµ

i=1 wix
(k)
i:λ16

// step size control:

p
(k+1)
σ ← (1− cσ)p

(k)
σ +

p

cσ(2− cσ)µeffC(k)−
1
2 m(k+1)−m(k)

σ(k)17

σ(k+1) ← σ(k) exp cσ

dσ

„

‖p
(k+1)
σ ‖

E‖N(0,I)‖
− 1

«

18

// covariance matrix update:

p
(k+1)
c ← (1− cc)p

(k)
c +

p

cc(2− cc)µeff
m(k+1)−m(k)

σ(k)19

C(k+1) ← (1− ccov)C(k) + ccovp
(k+1)
c p

(k+1)
c

T
20

and its (conjugate) evolutions path is:

p(k+1)
s ← (1− cσ)p(k)

s +
√

cσ(2− cσ)µeff C(k)−
1
2

(〈

x
(k+1)
parents

〉

−
〈

x
(k)
parents

〉)

Again, cσ = µeff+2
n+µeff+3 is a fixed learning rate and dσ = 1+2 max

(

0,
√

µeff−1
n+1

)

+cσ

a damping factor. The matrix C− 1
2 is defined as BD−1BT, where BD2BT is

an eigendecomposition of C (B is an orthogonal matrix with the eigenvectors of
C and D a diagonal matrix with the corresponding eigenvalues) and sampling
N(0, C) is done by sampling BDN(0, I).

The values of the learning rates and the damping factor are well considered
and have been validated by experiments on many basic test functions [21]. They



need not be adjusted dependent on the problem and are therefore no hyperparame-

ters of the algorithm. Also the population sizes can be set to default values, which
are λ = max(4 + ⌊3 lnn⌋, 5) and µ = ⌊λ

2 ⌋ for offspring and parent population,

respectively [21]. If we fix C(0) = I, the only (also adaptive) hyperparameter
that has to be chosen problem dependent is the initial global step size σ(0).

The CMA-ES uses rank-based selection. The best µ of the λ offspring form
the next parent population.

The highly efficient use of information and the fast adaptation of σ and
C makes the CMA-ES one of the best direct search algorithms for real-valued
optimisation [7]. For a detailed description of the CMA-ES see the articles by
Hansen et al. [22, 21, 6, 23].

3 Similarities and differences of NAC and CMA-ES

Fig. 1. Conceptual similarities and differences
of natural policy gradient ascent and CMA evo-
lution strategy: Both methods adapt a metric
for the variation of the policy parameters based
on information received from the environment.
Both explore by stochastic perturbation of poli-
cies, but at different levels.

Policy gradient methods and ESs
share several constituting aspects,
see Fig. 1. Both search directly
in policy space, thus the actor-
part in the agent is represented
and learnt actively. Yet, while
ESs are actor-only methods, the
NAC has an actor-critic archi-
tecture. In both approaches the
class of possible policies is given
by a parametrised family of func-
tions, but in the case of PGMs
the choice of the policy class is
restricted to differentiable func-
tions.

Exploration of the search
space is realised by random
perturbations in both ESs and
PGMs. Evolutionary methods usu-
ally perturb a deterministic policy
by mutation and recombination,
while in PGMs the random vari-
ations are an inherent property
of the stochastic policies. In ESs
there is only one initial stochas-
tic variation per policy update. In

contrast, the stochastic policy introduces perturbations in every step of the
episode. While the number n of parameters of the policy determines the n-
dimensional random variation in the CMA-ES, in the PGMs the usually lower
dimensionality of the action corresponds to the dimensionality of the random
perturbations. In ESs the search is driven solely by ranking policies and not by



the exact values of performance estimates or their gradients. The reduced num-
ber of random events and the rank-based evaluation are decisive differences and
we hypothesise that they allow ESs to be more robust.

The CMA-ES as well as the NAC are variable-metric methods. A natural pol-
icy gradient method implicitly estimates the Fisher metric to follow the natural
gradient of the performance in the space of the policy parameters and chooses
its action according to a stochastic policy. Assuming a Gaussian distribution
of the actions this resembles the CMA-ES. In the CMA-ES the parameters are
perturbed according to a multi-variate Gaussian distribution. The covariance
matrix of this distribution is adapted online. This corresponds to learning an
appropriate metric for the optimisation problem at hand. After the stochastic
variation the actions are chosen deterministically.

Thus, both types of algorithms perform the same conceptual steps to obtain
the solution. They differ in the order of these steps and the level at which the
random changes are applied.

Policy gradient methods have the common properties of gradient techniques.
They are powerful local search methods and thus benefit from a starting point
close to an optimum. However, they are susceptible to being trapped in undesired
local minima.

4 Experiments

The experiments conducted in this paper extend our previous work described in
[1]. We have chosen the mountain car problem, which is a well-known benchmark
problem in RL requiring few policy parameters.

The objective of this task is to navigate an underpowered car from a valley to
a hilltop. The state s of the system is given by the position x ∈ [−1.2, 0.6] of the
car and by its current velocity v = ẋ ∈ [−0.07, 0.07], actions are discrete forces
applied to the car a ∈ {−amax, 0, amax}, where amax is chosen to be insufficient
to drive the car directly uphill from the starting position in the valley to the goal
at the top. The agent receives a negative reward of r = −1 for every time step.
An episode terminates when the car reaches the position x = 0.5, the discount
parameter is set to γ = 1.

To allow for a fair comparison, both methods operate on the same policy
class πdeter

θ (s) = θTs with s, θ ∈ R
2 The continuous output acont of the policy

is mapped by the environment to a discrete action a ∈ A: a = 1 if acont > 0.1,
a = −1 if acont < 0.1, and a = 0 otherwise. We also considered the mountain
car problem with continuous actions, which, however, makes the task easier for
the CMA-ES and more difficult for the NAC. For learning, the NAC uses the
stochastic policy πstoch

θ (s, a) = N(πdeter
θ (s), σNAC), where the variance σNAC is

viewed as an additional adaptive parameter of the PGM. The NAC is evaluated
on the corresponding deterministic policy. In all experiments the same number of
emax = 10 episodes is used for assessing the performance of a policy. We analyse
two sets of start policies: θ = 0 (referred to as P0) and drawing the components
of θ uniformly from [−100., 100] (termed P100). P0 lies reasonably close to the
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Fig. 2. Performance of NAC and CMA-ES on the mountain car task without noise
based on 20 trials. a) CMA-ES, NAC, and stochastic search for initial policy P0 and
initial environment state Srandom (with best respective parameter values) without noise
b) CMA-ES, NAC, and stochastic search for initial policy P100 and initial environment
state Srandom (with best respective parameter values) without noise c) CMA-ES, NAC,
and stochastic search for initial policy P0 and initial environment state Sfixed (with best
respective parameter values) without noise d) CMA-ES, NAC, and stochastic search for
initial policy P100 and initial environment state Sfixed (with best respective parameter
values) without noise

optimal parameter values. In the original mountain car task the start states for
each episode are drawn randomly from the complete state space S (Srandom). We
additionally analyse the case (Sfixed) where all episodes start in the same state
with position x = −0.8 and velocity v = 0.01. Driving simply in the direction of
the goal is not sufficient to solve the problem for this starting condition.

As a baseline comparison we considered stochastic search, where policy pa-
rameters were drawn uniformly at random from a fixed interval and were then
evaluated in the same way as CMA-ES and NAC.

In a second set of experiments we add Gaussian noise with zero mean and
variance σnoise = 0.01 to state observations (i.e., now we consider a POMDP).

Mountain car task without noise. Figure 2 shows the performance of NAC and
CMA-ES on the mountain car problem. In the easiest cases (P0 with Srandom and
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Fig. 3. Performance of NAC and CMA-ES on the mountain car task with noisy obser-
vations based on 20 trials. a) CMA-ES, NAC, and stochastic search for initial policy
P0 and initial environment state Srandom (with best respective parameter values) with
noise b) CMA-ES, NAC, and stochastic search for initial policy P100 and initial envi-
ronment state Srandom (with best respective parameter values) with noise c) CMA-ES,
NAC, and stochastic search for initial policy P0 and initial environment state Sfixed

(with best respective parameter values) with noise d) CMA-ES, NAC, and stochastic
search for initial policy P100 and initial environment state Sfixed (with best respective
parameter values) with noise

Sfixed) the NAC clearly outperforms the CMA-ES. Here the NAC is also robust
w.r.t changes of its hyperparameters (learning rate and initial variance). But this
changes when the policy is not initialised close to the optimal parameter values
and the parameters are instead drawn randomly. The CMA-ES performs as in
the former case, but now it is faster than the NAC in the beginning. The NAC
still reaches an optimal solution faster, but it is no longer robust. The CMA-ES
is more stable in all cases. Its performance does not depend on the choice of
initial policy at all and changing the value of its single parameter σ as the initial
step size only marginally effects the performance, see figure 4 and tables 1 and
2.

Mountain car task with noise. For the next set of experiments we added noise
to the observed state, thus creating a more realistic situation, see figure 3. In



Table 1. Final performance values of NAC on the mountain car task without noise
with initial policy P0 and starting states from Srandom after 5000 episodes. The medians
of 20 trials are reported.

α 0.0001 0.001 0.0001 0.0001 0.001 0.01 0.01 0.001

σNAC 10 10 100 50 100 1 10 1

final value −49.4 −49.4 −49.55 −49.55 −50.7 −50.75 −50.85 −51.4

α 0.001 0.01 0.01 0.1 0.1 0.1 0.1 0.0001

σNAC 50 50 100 10 100 1 50 1

final value −51.45 −52.35 −53.6 −73.3 −82.2 −98.55 −131.6 −147.45

Table 2. Final performance values of NAC on the mountain car task without noise
with initial policy P100 and starting states from Srandom after 5000 epsisodes.

α 0.001 0.01 0.01 0.001 0.1 0.01 0.1 0.1

σNAC 100 50 100 50 50 10 100 10

final value −53.2 −54.25 −54.4 −59.15 −70.7 −84.45 −113.1 −117.25

α 0.0001 0.01 0.1 0.0001 0.0001 0.001 0.001 0.0001

σNAC 100 1 1 50 10 10 1 1

final value −200.4 −289.15 −307.35 −309.2 −314.85 −316.1 −352.05 −354

Table 3. Final performance values of NAC on the mountain car task with noisy ob-
servations with initial policy P0 and starting states from Srandom after 5000 epsisodes.

α 0.001 0.001 0.01 0.0001 0.001 0.001 0.01 0.01

σNAC 50 100 100 100 10 1 1 50

final value −133.17 −137.16 −137.83 −144.56 −164.71 −171.69 −174.34 −178.76

α 0.01 0.0001 0.0001 0.1 0.1 0.0001 0.1 0.1

σNAC 10 10 50 10 50 1 100 1

final value −184.03 −185.15 −201.84 −336.33 −353.91 −377.36 −377.66 −380.71

Table 4. Final performance values of NAC on the mountain car task with noisy obser-
vations with initial policy P100 and starting states from Srandom after 5000 epsisodes.

α 0.01 0.001 0.001 0.01 0.1 0.0001 0.01 0.0001

σNAC 100 100 50 50 50 1 1 100

final value −131.81 −182.24 −212.23 −250.83 −308.37 −343.58 −349.77 −350.2

α 0.01 0.0001 0.001 0.1 0.1 0.0001 0.01 0.1

σNAC 10 50 1 10 100 10 10 1

final value −351.04 −358.48 −362.8 −367.38 −368.65 −368.83 −371.67 −378.16

this case the CMA-ES clearly outperforms the NAC while still being robust with
respect to the initialisation of the policy parameters and the choice of the initial
step size, see figure 5 and tables 3 and 4. NAC performs at best on par with
stochastic search, for the more difficult policy initialisation P100 it is even worse.

5 Conclusion

The covariance matrix adaptation evolution strategy (CMA-ES) applied to re-
inforcement learning (RL) is conceptually similar to policy gradient methods
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Fig. 4. Robustness against changes in the respective parameters on the mountain car
task without noise. To avoid overcrowding plots only the worst-case examples are shown
here: a) CMA-ES for initial policy P0 and initial environment state Srandom without
noise and σ ∈ [1, 10, 50, 100]. b) CMA-ES for initial policy P100 and initial environment
state Srandom without noise and σ ∈ [1, 10, 50, 100]. c) NAC for initial policy P0 and
initial environment state Srandom without noise, ordered from top to bottom by their
final value as given in table 1, d) NAC for initial policy P100 and initial environment
state Srandom without noise, ordered from top to bottom by their final value as given
in table 2.

with variable metric such as the natural actor critic (NAC) algorithm. However,
we argue that the CMA-ES is much more robust w.r.t. the choice of hyperpa-
rameters, policy initialisation, and especially noise. On the other hand, given
appropriate hyperparameters, the NAC can outperform the CMA-ES in terms
of learning speed if initialised close to a desired policy. The experiments in this
paper on the noisy mountain car problem and our previous results on the pole
balancing benchmark support these conjectures. Across the different scenarios,
the CMA-ES proved to be a highly efficient direct RL algorithm. The reasons
for the robustness of the CMA-ES are the powerful adaptation mechanisms for
the search distribution and the rank-based evaluation of policies.

In future work we will extend the experiments to different and more complex
benchmark tasks and to other direct policy search methods.
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Fig. 5. Robustness against changes in the respective parameters on the mountain car
task with noise. Again in order to avoid overcrowding plots only the worst-case exam-
ples are shown: a) CMA-ES for initial policy P0 and initial environment state Srandom

with noise and σ ∈ [1, 10, 50, 100]. b) CMA-ES for initial policy P100 and initial envi-
ronment state Srandom with noise and σ ∈ [1, 10, 50, 100]. c) NAC for initial policy P0

and initial environment state Srandom with noise, ordered from top to bottom by their
final value as given in table 3, d) NAC for initial policy P100 and initial environment
state Srandom with noise, ordered from top to bottom by their final value as given in
table 4
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