Publications by Christian Igel
More papers can be downloaded from my
Google
scholar profile.
Contributions to journals, books, and conferences
Coming soon
Philip Enevoldsen, Christian Gundersen, Nico Lang, Serge Belongie,
Christian Igel.
Familiarity-Based Open-Set Recognition Under Adversarial Attacks.
Northern Lights Deep Learning Conference, PMLR, accepted
Bjørn Leth Møller, Sepideh Amiri, Christian Igel, Kristoffer Knutsen
Wickstrøm, Robert Jenssen, Matthias Keicher, Mohammad Farid
Azampour, Nassir Navab, and Bulat Ibragimov. NEMt: Fast Targeted
Explanations for Medical Image Models via Neural Explanation Masks.
Northern Lights Deep Learning Conference, PMLR, accepted
Raghavendra Selvan, Bob Pepin, Christian Igel, Gabrielle Samuel, and
Erik B Dam.
PePR: Performance Per Resource Unit as a Metric to Promote Small-scale Deep Learning.
Northern Lights Deep Learning Conference, PMLR, accepted
Dustin Wright, Christian Igel, and Raghavendra Selvan.
BMRS: Bayesian Model Reduction for Structured Pruning. Advances
in Neural Processing Systems (NeurIPS), accepted
Dustin Wright, Christian Igel, Gabrielle Samuel, and Raghavendra Selvan.
Efficiency is Not Enough: A Critical Perspective of
Environmentally Sustainable. Communications of the ACM, accepted
2024
Martin Brandt, Maurice Mugabowindekwe, Athanase Mukuralinda, Philippe
Ciais, Florian Reiner, Ankit Kariryaa, Christian Igel, Jerome Chave,
Ole Mertz, Pierre Hiernaux, Xiaoye Tong, Gaspard Rwanyiziri, Dimitri
Gominski, Sizhuo Li, Siyu Liu, Ivan Gasangwa, Yves Hategekimana,
Alain Ndoli, Jean Nduwamungu, Sassan Saatchi, and Rasmus
Fensholt.
Trees on
smallholder farms and forest restoration are critical for Rwanda
to achieve net zero emissions.
Communications Earth &
Environment 5:113, 2024
Naomi Crump, Bo Markussen, Stefan Oehmcke, Christian Igel, Hans
Skov-Petersen, and Patrik Karlsson Nyed.
Modelling Residential Fire Vulnerability of Denmark.
Fire Technology, 2024
Vishal Nedungadi, Ankit Kariryaa, Stefan Oehmcke, Serge Belongie, Christian Igel and Nico Lang
MMEarth: Exploring Multi-Modal Pretext Tasks For Geospatial Representation Learning.
European Conference
on Computer Vision (ECCV), 2024
project homepage
2023
Patrick Bilic, Patrick Christ, Hongwei Bran Li, Eugene Vorontsov, Avi
Ben-Cohen, Georgios Kaissis, Adi Szeskin, Colin Jacobs, Gabriel
Efrain Humpire Mamani, Gabriel Chartrand, Fabian Lohöfer, Julian
Walter Holch, Wieland Sommer, Felix Hofmann, Alexandre Hostettler,
Naama Lev-Cohain, Michal Drozdzal, Michal Marianne Amitai, Refael
Vivanti, Jacob Sosna, Ivan Ezhov, Anjany Sekuboyina, Fernando
Navarro, Florian Kofler, Johannes C Paetzold, Suprosanna Shit,
Xiaobin Hu, Jana Lipková, Markus Rempfler, Marie Piraud, Jan
Kirschke, Benedikt Wiestler, Zhiheng Zhang, Christian Hülsemeyer,
Marcel Beetz, Florian Ettlinger, Michela Antonelli, Woong Bae,
Míriam Bellver, Lei Bi, Hao Chen, Grzegorz Chlebus, Erik B Dam, Qi
Dou, Chi-Wing Fu, Bogdan Georgescu, Xavier Giró-i-Nieto, Felix
Gruen, Xu Han, Pheng-Ann Heng, Jürgen Hesser, Jan Hendrik Moltz,
Christian Igel, Fabian Isensee, Paul Jäger, Fucang Jia, Krishna
Chaitanya Kaluva, Mahendra Khened, Ildoo Kim, Jae-Hun Kim, Sungwoong
Kim, Simon Kohl, Tomasz Konopczynski, Avinash Kori, Ganapathy
Krishnamurthi, Fan Li, Hongchao Li, Junbo Li, Xiaomeng Li, John
Lowengrub, Jun Ma, Klaus Maier-Hein, Kevis-Kokitsi Maninis, Hans
Meine, Dorit Merhof, Akshay Pai, Mathias Perslev, Jens Petersen,
Jordi Pont-Tuset, Jin Qi, Xiaojuan Qi, Oliver Rippel, Karsten Roth,
Ignacio Sarasua, Andrea Schenk, Zengming Shen, Jordi Torres,
Christian Wachinger, Chunliang Wang, Leon Weninger, Jianrong Wu,
Daguang Xu, Xiaoping Yang, Simon Chun-Ho Yu, Yading Yuan, Miao Yue,
Liping Zhang, Jorge Cardoso, Spyridon Bakas, Rickmer Braren, Volker
Heinemann, Christopher Pal, An Tang, Samuel Kadoury, Luc Soler, Bram
van Ginneken, Hayit Greenspan, Leo Joskowicz, and Bjoern Menze.
The Liver Tumor Segmentation Benchmark (LiTS).
Medical Image
Analysis 84, 2023
Erik B. Dam, Arjun D. Desai, Cem M. Deniz, Haresh R. Rajamohan, Ravinder
Regatte, Claudia Iriondo, Valentina Pedoia, Sharmila Majumdar, Mathias
Perslev, Christian Igel, Akshay Pai, Sibaji Gaj, Mingrui
Yang, Kunio Nakamura, Xiaojuan Li, Hasan Maqbool, Ismail Irmakci,
Sang-Eun Song, Ulas
Bagci, Brian Hargreaves, Garry Gold, and Akshay Chaudhari.
Towards Automatic Cartilage Quantification in Clinical Trials –
Continuing from the 2019 IWOAI Knee Segmentation Challenge.
Osteoarthritis Imaging 3(1):100087, 2023
Jeppe Klok Due, Marianne
Giørtz Pedersen, Sussie Antonsen, Joen Rommedahl, Esben Agerbo, Preben Bo Mortensen, Henrik
Toft Sørensen, Jonas Færch Lotz, Laura Cabello Piqueras, Constanza
Fierro, Antonia Karamolegkou, Christian Igel, Phillip Rust, Anders Søgaard, and Carsten
Bøcker Pedersen.
Towards more comprehensive nationwide familial aggregation studies in
Denmark: The Danish Civil Registration System versus the lite Danish
Multi-Generation Register.
Scandinavian Journal of Public Health, 2023
Lei Li, Tianfang Zhang, Stefan Oehmcke, Fabian Gieseke, and Christian
Igel. BuildSeg: A General Framework for the Segmentation of
Buildings. Nordic Machine Intelligence 2:1-4, 2023
Siyu Liu, Martin Brandt, Thomas Nord-Larsen, Jerome Chave, Florian Reiner, Nico Lang, Xiaoye Tong, Philippe Ciais, Christian Igel, Adrian Pascual, Juan Guerra-Hernandez, Sizhuo Li, Maurice Mugabowindekwe, Sassan Saatchi, Yuemin Yue, Zhengchao Chen and Rasmus Fensholt.
The
overlooked contribution of trees outside forests to tree cover and
woody biomass across Europe.
Science Advances
9(37), 2023
Sizhuo Li, Martin Brandt, Rasmus Fensholt, Ankit Kariryaa, Christian
Igel, Fabian Gieseke, Thomas Nord-Larsen, Stefan Oehmcke, Ask Holm
Carlsen, Samuli Junttila, Xiaoye Tong, Alexandre d’Aspremont, and
Philippe Ciais.
Deep learning
enables image-based tree counting, crown segmentation and height
prediction at national scale.
PNAS Nexus 2(4), 2023
Florian Reiner, Martin Brandt, Xiaoye Tong, David Skole, Ankit Kariryaa, Philippe Ciais,
Andrew Davies, Pierre Hiernaux, Jerome Chave, Maurice Mugabowindekwe, Christian Igel,
Stefan Oehmcke, Fabian Gieseke, Sizhuo Li, Siyu Liu, Sassan S. Saatchi, Peter Boucher,
Jenia Singh, Simon Taugourdeau, Morgane Dendoncker, Xiao-Peng Song, Ole Mertz,
Compton Tucker, and Rasmus Fensholt.
More than one quarter of Africa’s tree
cover found outside areas previously classified as forest.
Nature
Communications 14, 2023
Compton Tucker, Martin Brandt, Pierre Hiernaux, Ankit Kariryaa, Kjeld Rasmussen, and
Jennifer Small, Christian Igel, Florian Reiner, Katherine Melocik, Jesse Meyer, Scott
Sinno, Eric Romero, Erin Glennie, Yasmin Fitts, August Morin, Jorge Pinzon, Devin
McClain, Paul Morin, Claire Porter, Shane Loeffle, Laurent Kergoat, Bil-Assanou Issoufou, Patrice Savadogo, Jean-Pierre Wigneron, Benjamin Poulter, Philippe Ciais, Robert
Kaufmann, Ranga Myneni, Sassan Saatchi, and Rasmus Fensholt.
Sub-continental
scale carbon stocks of individual trees in African
drylands.
Nature 615:80-86, 2023
Rasmus Kær Jørgensen, Oliver Brandt, Mareike Hartmann, Xiang Dai, Christian Igel, and
Desmond Elliott.
MultiFin: A Dataset for Multilingual Financial
NLP.
Findings of the 16th Conference of the European Chapter of the
Association for Computational Linguistics (EACL Findings), 2023
2022
Abdelrahman Mohamed, Hung-yi Lee, Lasse Borgholt, Jakob D. Havtorn,
Joakim Edin, Christian Igel, Katrin Kirchhoff, Shang-Wen Li, Karen Livescu,
Lars Maaløe, Tara N. Sainath, Shinji Watanabe.
Self-Supervised Speech Representation Learning: A Review.
IEEE Journal of Selected Topics in Signal Processing,
16(6):1179–1210, 2022
Maurice Mugabowindekwe, Martin Brandt, Jerome Chave, Florian Reiner,
David Skole, Ankit Kariryaa, Christian Igel, Pierre Hiernaux,
Philippe Ciais, Ole Mertz, Xiaoye Tong, Sizhuo Li, Gaspard
Rwanyiziri, Thaulin Dushimiyimana, Alain Ndoli, Valens Uwizeyimana,
Jens-Peter Lillesø, Fabian Gieseke, Compton Tucker, Sassan
S. Saatchi, and Rasmus Fensholt.
Nation-wide mapping of tree-level aboveground carbon stocks in Rwanda.
Nature Climate Change 13:91-97, 2022
Pengfei Diao, Akshay Pai, Christian Igel, and
Christian Hedeager Krag.
Histogram-based unsupervised domain adaptation for medical image
classification.
In
L. Wang, Q. Dou, P. T. Fletcher,
S. Speidel, and S. Li, eds.:
Medical Image Computing and Computer Assisted
Intervention (MICCAI), pp. 755–764, LNCS 13437,
Springer, 2022
Constanza Fierro, Laura Cabello Piqueras, Jonas
Lotz, Philip Rust, Joen Rommedahl, Jeppe Klok Due, Christian Igel,
Desmond Elliott, Carsten Bøcker Pedersen, Israfel Salazar and Anders
Søgaard.
Date Recognition in Historical Parish Records.
International Conference on Frontiers in Handwriting Recognition
(ICFHR), pp. 49–64, LNCS 13639,
Springer, 2022
Thorben Hellweg, Stefan Oehmcke, Ankit Kariryaa, Fabian Gieseke, and Christian Igel.
Ensemble Learning for Semantic Segmentation of Ancient Maya
Architectures. In D. Kocev, N. Simidjievski, A. Kostovska,
I. Dimitrovski, and Žiga Kokalj, eds.: Discover the Mysteries of
the Maya, pp. 13–19. Jožef Stefan Institute, Jamova cesta 39, 1000
Ljubljana, Slovenia, 2022
Rasmus Kær Jørgensen, Fiammetta Caccavale, Christian Igel, and Anders
Søgaard. Are Multilingual Sentiment Models Equally Right for the Right
Reasons?
BlackboxNLP Workshop at EMNLP 2022, 2022
Tianfang Zhang, Lei Li, Christian Igel, Stefan
Oehmcke, Fabian Gieseke, and Zhenming Peng. LR-CSNet: Low-Rank Deep
Unfolding Network for Image Compressive Sensing.
In: IEEE International Conference on Computer and Communications (ICCC), IEEE, 2022
2021
Arjun D. Desai, Francesco Caliva, Claudia Iriondo, Naji Khosravan,
Aliasghar Mortazi, Sachin Jambawalikar, Drew Torigian, Jutta Ellerman,
Mehmet Akcakaya, Ulas Bagci, Radhika Tibrewala, Io Flament, Matthew
O'Brien, Sharmila Majumdar, Mathias Perslev, Akshay Pai, Christian
Igel, Erik B. Dam, Sibaji Gaj, Mingrui Yang, Kunio Nakamura, Xiaojuan
Li, Cem M. Deniz, Vladimir Juras, Ravinder Regatte, Garry E. Gold, Brian
A Hargreaves, Valentina Pedoia, and Akshay S. Chaudhari.
The International Workshop on Osteoarthritis Imaging Knee MRI Segmentation Challenge: A Multi-Institute Evaluation and Analysis Framework on a Standardized Dataset.
Radiology: Artificial Intelligence 3:e200078, 2021
Espen Jimenez-Solem, Tonny S. Petersen, Casper Hansen, Christian
Hansen, Christina Lioma, Christian Igel,
Wouter Boomsma, Oswin Krause, Stephan Lorenzen,
Raghavendra Selvan, Janne Petersen, Martin Erik Nyeland, Mikkel Zöllner Ankarfeldt, Gert Mehl Virenfeldt, Matilde WintherJensen, Allan Linneberg, Mostafa Mediphour Ghazi,
Nicki Detlefsen, Andreas Lauritzen, Abraham George Smith, Marleen de Bruijne, Bulat Ibragimov, Jens Petersen, Martin Lillholm, Jon Middleton, Stine Hasling Mogensen, Hans-Christian Thorsen-Meyer, Anders Perner, Marie Helleberg, Benjamin Skov Kaas-Hansen, Mikkel Bonde, Alexander Bonde,
Akshay Pai, Mads Nielsen, and Martin
Sillesen.
Developing and Validating COVID-19 Adverse Outcome Risk
Prediction Models From a Bi-national European Cohort of 5594
Patients.
Scientific Reports 11, 3246, 2021
Rasmus Kær Jørgensen and Christian Igel.
Machine learning for financial transaction classification across
companies using character-level word embeddings of text fields.
Intelligent Systems in Accounting, Finance and Management
28(3), pp. 159-172, 2021
2020
Martin Brandt, Compton J. Tucker, Ankit Kariryaa, Kjeld Rasmussen,
Christin Abel, Jennifer Small, Jerome Chave, Laura Vang Rasmussen,
Pierre Hiernaux, Abdoul Aziz Diouf, Laurent Kergoat, Ole Mertz,
Christian Igel, Fabian Gieseke, Johannes Schöning, Sizhuo Li,
Katherine Melocik, Jesse Meyer, Scott Sinno, Eric Romero, Erin
Glennie, Amandine Montagu, Morgane Dendoncker, and Rasmus
Fensholt.
An unexpectedly large count of trees in the western Sahara
and Sahel.
Nature, 2020
popular science summary
Ürün Dogan, Aniket Anand Deshmukh, Marcin Machura, and Christian Igel.
Label-similarity Curriculum Learning.
European Conference
on Computer Vision (ECCV), LNCS
12374,
pp. 174-190, Springer-Verlag, 2020
2019
Saeed Shakibfar,
Oswin Krause,
Casper Lund-Andersen,
Alfonso Aranda Hernandez,
Jonas Moll,
Tariq Osman Andersen,
Jesper Hastrup Svendsen,
Helen Høgh Petersen, and
Christian Igel.
Predicting Electrical Storms by Remote Monitoring of Implantable
Cardioverter Defibrillator Patients Using Machine Learning.
EP Europace 21(2), pp. 268-274, 2019
Fabian Gieseke, Cosmin Eugen Oancea, Ashish Mahabal, Christian
Igel, and Tom Heskes. Bigger Buffer k-d Trees
on Multi-Many-Core Systems.
In: Senger H. et al., eds.:
High Performance Computing for Computational Science (VECPAR 2018),
LNCS
11333,
pp. 202-214,Springer-Verlag, 2019
source code
Thorbjørn Louring Koch, Mathias Perslev, Christian Igel, and Sami Sebastian Brandt.
Accurate Segmentation of Dental Panoramic Radiographs with U-Nets.
In: IEEE International Symposium on Biomedical Imaging
(ISBI), pp. 15-19, IEEE Press, 2019
Mauricio Orbes-Arteaga, Jorge Cardoso, Lauge Sørensen, Christian Igel,
Sebastien Ourselin, Marc Modat, Mads Nielsen, and Akshay Pai.
Knowledge distillation
for semi-supervised domain adaptation.
In:
Machine Learning in Clinical Neuroimaging (MLCN 2019), LNCS
11796, pp. 68-76, 2019
Mauricio Orbes-Arteaga, Lauge Sørensen, Jorge Cardoso, Marc Modat,
Sebastien Ourselin, Stefan Sommer, Mads Nielsen, Christian Igel, and
Akshay Pai.
PADDIT: Probabilistic Augmentation of Data using Diffeomorphic Image
Transformation.
In: Medical Imaging 2019: Image Processing, Proceedings
of SPIE 10949, SPIE, 2019
2018
Oswin Krause, Asja Fischer and Christian Igel.
Population-Contrastive-Divergence: Does Consistency help with RBM training?
Pattern Recognition Letters 102, pp. 1-7, 2018
Dídac R. Arbonès,
Nataliia Y. Sergiienko,
Boyin Ding, Oswin Krause, Christian Igel
and Markus Wagner.
Sparse Incomplete LU-decomposition for Wave Farm Designs under Realistic Conditions.
Parallel Problem Solving from Nature (PPSN), LNCS, Springer-Verlag,
2018
Jan Kremer, Fei Sha, and Christian Igel.
Robust Active Label Correction.
International Conference on
Artificial Intelligence and Statistics (AISTATS), Proceedings of Machine Learning Research
84, 2018
Fabian Gieseke, Kai Polsterer, Ashish Mahabal, Christian Igel, and Tom
Heskes. Massively-Parallel Best Subset Selection for Ordinary Least-Squares Regression. IEEE Symposium Series on
Computational Intelligence (SSCI 2017), IEEE Press, 2018
Mathias Perslev, Akshay Pai, Christian Igel, and Erik Dam. Knee
Segmentation by Multiplanar Deep Learning Network – with data from
OAI.
International Workshop on Osteoarthritis Imaging, 2018
2017
Fabian Gieseke, Cosmin Oancea, and Christian Igel.
bufferkdtree: A Python Library for Massive Nearest Neighbor Queries on Multi-Many-Core Devices.
Knowledge-Based Systems 120, pp. 1-3, 2017
source code
Marc Schlipsing, Jan Salmen, Marc Philipp Tschentscher, and Christian
Igel. Adaptive Pattern Recognition in Real-time Video-based Soccer Analysis.
Journal of Real-Time Image Processing 13(2), pp. 345-361, 2017
Lauge Sørensen, Christian Igel, Akshay Pai, Ioana Balas, Cecilie
Anker, Martin Lillholm, and Mads Nielsen.
Differential diagnosis of mild cognitive impairment and Alzheimer's disease using structural MRI cortical thickness, hippocampal shape, hippocampal texture, and volumetry.
NeuroImage: Clinical 13, pp. 470-482, 2017
Akshay Pai, Yuan-Ching Teng, Joseph Blair, Michiel Kallenberg, Erik
B. Dam, Stefan Sommer, Christian Igel, and Mads Nielsen.
Characterisation of errors in deep
learning-based brain MRI segmentation. In S. K. Zhou, H. Greenspan, and
D. Shen, eds.:
Deep Learning for Medical
Image Analysis, Chapter 10, pp. 223–242, Academic Press, 2017
Niklas Thiemann, Christian Igel, Olivier Wintenberger, and Yevgeny Seldin.
A Strongly Quasiconvex PAC-Bayesian Bound.
In S. Hanneke and L. Reyzin, eds.:
Algorithmic Learning
Theory (ALT), Proceedings of Machine Learning Research
76, pp.
466-492, 2017
2016
Michiel Kallenberg, Kersten Petersen, Mads Nielsen, Andrew Y. Ng, Pengfei Diao, Christian Igel, Celine M. Vachon, Katharina Holland, Rikke Rass Winkel, Nico Karssemeijer, and Martin Lillholm.
Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring.
IEEE Transactions on Medical Imaging 35(5), pp. 1322-1331, 2016
Kristoffer Stensbo-Smidt,
Fabian Gieseke, Christian Igel, Andrew
Zirm, and
Kim Steenstrup Pedersen.
Sacrificing Information for the Greater Good: How to Select
Photometric Bands for Optimal Accuracy.
Monthly Notices of the Royal Astronomical Society
464(3), pp.
2577-2596, 2016
Christian Igel. Evolutionary kernel learning. Encyclopedia of Machine Learning and Data Mining, Springer, 2016
Michiel Kallenberg, Mads Nielsen, Nico Karssemeijer, Christian Igel, and Martin Lillholm.
Learning Density Independent Texture Features. In A. Tingberg,
K. Lång, and
P. Timberg, eds.:
Breast Imaging, LNCS 9699,
pp. 299-306, Springer-Verlag, 2016
Oswin Krause, Tobias Glasmachers, and Christian Igel.
Multi-objective Optimization with Unbounded Solution Sets.
NIPS Workshop on Bayesian Optimization (BayesOpt 2016),
submission, 2016
Kai Lars Polsterer,
Fabian Gieseke,
Christian Igel, Bernd Doser, and Nikos Gianniotis.
Parallelized rotation and flipping INvariant Kohonen maps (PINK) on
GPUs.
24th European Symposium on Artificial Neural
Networks, Computational Intelligence
and Machine Learning (ESANN 2016), pp. 405-410, Belgium: i6doc.com, 2016
2015
Kai Lars Polsterer,
Fabian Gieseke, and
Christian Igel. Automatic classification of galaxies via machine
learning techniques: Parallelized Rotation/Flipping INvariant Kohonen Maps (PINK). In A. R. Taylor and E. Rosolowsky, eds.:
Astronomical Data Analysis Software and
Systems (ADASS XXVI), pp. 81-86. Astronomical Society of the Pacific, ASP Conference Series
495, 2015
Best Poster Award
Oswin Krause, Asja Fischer and Christian Igel.
Population Monte Carlo Meets Contrastive Divergence Learning.
In B. Hammer and M. Martinetz and T. Villmann, eds.: New Challenges in Neural Computation (NC2),
Machine Learning Reports 03/2015, pp. 93-94, 2015
2014
Dídac R. Arbonès, Henrik G. Jensen, Annika Loft, Per Munck af Rosenschöld, Anders Elias Hansen, Christian Igel, and Sune Darkner. Automatic FDG-PET-based tumor and metastatic lymph node segmentation in cervical cancer. In: Proc. SPIE 9034,
Medical Imaging 2014: Image Processing, 903441, 2014
Fabian Gieseke,
Kai Lars Polsterer,
Cosmin E. Oancea, and
Christian Igel.
Speedy Greedy Feature Selection: Better Redshift Estimation via Massive Parallism. In M. Verleysen, ed.:
22th European Symposium on Artificial Neural
Networks, Computational Intelligence
and Machine Learning (ESANN 2014), pp. 87-92, Belgium: i6doc.com, 2014
Kai Lars Polsterer,
Fabian Gieseke, Christian Igel, and Tomotsugu Goto.
Improving the Performance of Photometric Regression Models via Massive Parallel Feature Selection. In N. Manset and P. Forshay, eds.:
23rd Annual Astronomical Data Analysis Software and Systems
Conference (ADASS XXIII), pp. 425-428,
ASP Conference Series
485, 2014
Lauge Sørensen, Akshay Pai, Cecilie Anker, Ioana Balas,
Martin Lillholm, Christian Igel, and
Mads Nielsen.
Dementia diagnosis using MRI cortical thickness, shape, texture,
and volumetry.
In E. E. Bron, S. Klein, M. Smits, J. C. van Swieten, and
W. J.
Niessen, eds.:
Medical Image Computing and Computer Assisted
Intervention (MICCAI): CADDementia Workshop, 2014.
1st and 2nd rank in the CADDementia Grand
Challenge
2013
Joselene Marques, Christian Igel, Martin Lillholm, and Erik B. Dam. Linear feature selection in
texture analysis. Machine Vision and Applications 24, pp. 1435-1444, 2013
Marc Schlipsing, Jan Salmen, and Christian
Igel. Echtzeit-Videoanalyse im Fußball - Entwurf eines
Live-Systems zum Spieler-Tracking.
Künstliche Intelligenz 27(3), pp 235-240, 2013
Kristoffer Stensbo-Smidt, Christian Igel,
Andrew Zirm, and Kim Steenstrup Pedersen. Nearest Neighbour
Regression Outperforms Model-based Prediction of Specific Star
Formation Rate. IEEE International Conference on Big Data
2013, pp. 141-144, IEEE Press, 2013
Adhish Prasoon, Christian Igel,
Marco Loog,
Francois Lauze, Erik
Dam, and
Mads
Nielsen. Femoral Cartilage Segmentation in Knee MRI Scans Using
Two Stage Voxel Classification. In:
35th Annual
International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), pp 5469-5472, IEEE Press, 2012
note
2012
Christian Igel. Learning ∈ Artificial
Intelligence ∩ Cognitive Technologies ∩ Neural
Computation ∩ ... Künstliche Intelligenz
26(3), pp. 209-212, 2012 (editorial)
Oliver Kramer, Christian Igel, and
Günter
Rudolph. Evolutionary Kernel Machines.
Evolutionary
Intelligence 5(3), pp. 151-152, 2012 (guest editorial)
Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel.
Introduction to the Special Issue on Machine Learning for Traffic Sign Recognition.
IEEE Transactions on Transportation Systems 13(4), pp. 1481-1481, 2012 (guest editorial)
Matthias Tuma, Christian Igel, and Mark
Prior. Hydroacoustic Signal Classification Using Support Vector
Machines. In C. H. Chen, ed.: Signal and Image Processing for Remote
Sensing, 2nd edition, pp. 37-56, CRC Press, 2012
Ürün Dogan,
Tobias Glasmachers, and Christian Igel.
A Note on Extending Generalization Bounds for Binary Large-margin
Classifiers to Multiple Classes.
In P. A. Flach, T. De Bie, and N. Cristianini, eds.:
European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML-PKDD 2012),
LNCS
7523, pp.122-129, Springer-Verlag, 2012
Asja Fischer and Christian Igel.
An Introduction to Restricted Boltzmann Machines.
In L. Alvarez, M. Mejail, L. Gomez, and J. Jacobo, eds.:
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications
(CIARP 2012),
LNCS
7441, pp. 14-36, Springer-Verlag, 2012
Adhish Prasoon, Christian Igel,
Marco Loog,
Francois Lauze, Erik Dam, and
Mads Nielsen. Cascaded classifier for
large-scale data applied to automatic segmentation of articular
cartilage. In:
SPIE Medical Imaging 2012: Image Processing. Proceedings of SPIE 8314, 83144V, 2012
Ürün Dogan,
Tobias Glasmachers, and Christian Igel.
Turning Binary Large-margin Bounds into Multi-class Bounds.
In A. Gretton,
Z. Harchaoui, and
B. Sriperumbudur, organizers:
ICML 2012 Workshop on RKHS and kernel-based methods, 2012
2011
Holger
Blume,
Bernd Bischl, Martin Botteck, Christian Igel, Rainer
Martin, Günther Rötter,
Günter
Rudolph, Wolfgang Theimer, Igor Vatolkin, and
Claus Weihs.
Huge Music Archives on Mobile Devices.
IEEE Signal Processing Magazine,
28(4),
pp. 24-39, 2011
Chen Chen, Francois Lauze, Christian Igel,
Aasa Feragen, Marco Loog, and Mads Nielsen. Towards exaggerated
image stereotypes. In:
Asian Conference on Pattern Recognition
(ACPR 2011), pp. 422-426, IEEE Press, 2011
Asja
Fischer and Christian Igel.
Training RBMs Based on the Signs of the CD Approximation of the Log-likelihood Derivatives. In M. Verleysen, ed.:
19th European Symposium on Artificial Neural
Networks (ESANN 2011), pp. 495-500, Belgium: d-side
publications, 2011
Jan Salmen, Lukas Caup, and Christian Igel.
Real-time Estimation of Optical Flow Based
on Optimized Haar Wavelet Features.
In R. H. C. Takahashi, K. Deb, E. F. Wanner and S. Greco, eds.: Sixth International Conference on Evolutionary Multi-Criterion
Optimization (EMO 2011), LNCS 6576, pp. 448-461,
Springer-Verlag, 2011
Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel.
The German Traffic Sign Recognition Benchmark: A Multi-class
Classification Competition.
International Joint Conference on Neural Networks (IJCNN
2011), pp. 1453-1460, IEEE Press, 2011
data
Matthias Tuma and Christian Igel.
Improved Working Set Selection for LaRank. In A. Berciano et al., eds.:
14th International Conference on
Computer Analysis of Images and Patterns (CAIP 2011), LNCS
6854, pp. 327-334,
Springer-Verlag, 2011
2010
Jan Salmen, Marc Schlipsing, and Christian Igel.
Efficient Update of the Covariance Matrix Inverse in Iterated Linear Discriminant Analysis.
Pattern Recognition Letters 31(1), pp. 1903-1907, 2010
Benjamin Roeschies and Christian Igel.
Structure Optimization of Reservoir Networks. Logic Journal of the
IGPL 18(5), pp. 635-669, 2010
Rolf P. Würtz, Kirstie L. Bellman,
Hartmut Schmeck, and Christian Igel. Special Issue on Organic
Computing. ACM Transactions Autonomous and Adaptive Systems, (3), pp. 1-3, 2010 (guest editorial)
Asja Fischer and Christian Igel.
Challenges in Training Restricted Boltzmann Machines.
In B. Hammer and T. Villmann, eds.: New Challenges in Neural Computation (NC2),
Machine Learning Reports 04/2010, pp. 11–24, 2010
Verena Heidrich-Meisner and Christian Igel.
Direct policy search: Intrinsic versus extrinsic perturbations.
In B. Hammer and T. Villmann, eds.: New Challenges in Neural Computation (NC2),
Machine Learning Reports 04/2010, pp. 33–39, 2010
Matthias Tuma, Christian Igel, and Mark Prior.
Hydroacoustic Signal Classification Using Kernel
Functions for Variable Feature Sets. In: International Conference on
Pattern Recognition (ICPR 2010), 2010
Thomas Voß, Heike Trautmann, and Christian Igel.
New Uncertainty Handling Strategies in Multi-Objective Evolutionary Optimization.
Parallel Problem Solving from Nature (PPSN XI), LNCS,
Springer-Verlag, 2010
2009
Christian Igel. Service: Reinforcement Learning. Künstliche Intelligenz 09(3), p. 44, 2009
Christian Igel. Reinforcement
Learning. Künstliche Intelligenz 09(3),
p. 4, 2009 (guest editorial)
Julian Togelius, Tom Schaul, Daan Wierstra, Christian Igel, Faustino Gomez, and Jürgen Schmidhuber. Ontogenetic and Phylogenetic Reinforcement Learning.
Künstliche Intelligenz 09(3), pp. 30-33, 2009
Susanne Winter, Ioannis Pechlivanis, Claudia Dekomien, Bernhard Brendel, Christian Igel, and Kirsten Schmieder. Toward Registration of 3D Ultrasound and CT Images of the Spine in Clinical Praxis: Design and Evaluation of a Data Acquisition Protocol.
Ultrasound in Medicine and Biology 35(11), pp. 1773-1782, 2009, doi:10.1016/j.ultrasmedbio.2009.06.1089
Verena Heidrich-Meisner and Christian Igel.
Uncertainty Handling CMA-ES for Reinforcement Learning. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2009), pp. 1211-1218, ACM Press, 2009
Christian Igel and Tobias Glasmachers.
Second-order SMO for SVM Online and Active Learning.
In: 23rd European Conference on Operational Research (EURO 2009), 2009
Thomas Voß,
Nikolaus Hansen, and Christian Igel.
Recombination for Learning Strategy Parameters in the MO-CMA-ES.
In M. Ehrgott, C. Fonseca, X. Gandibleux, J.-K. Hao, and M. Sevaux,
eds.:
Fifth International Conference on Evolutionary Multi-Criterion
Optimization (EMO 2009), LNCS
5467, pp. 155-168,
Springer-Verlag, 2009
2008
Susanne
Winter, Bernhard Brendel, Ioannis Pechlivanis, Kirsten Schmieder,
and Christian Igel. Registration of CT and Intraoperative 3D
Ultrasound Images of the Spine Using Evolutionary and Gradient-based
Methods.
IEEE Transactions on Evolutionary Computation,
12(3), pp. 284–296, 2008
2007
Jens Niehaus, Christian Igel, and
Wolfgang Banzhaf. Reducing the
Number of Fitness Evaluations in Graph Genetic Programming Using a
Canonical Graph Indexed Database.
Evolutionary Computation,
15(2), pp. 199-221, 2007
Verena Heidrich-Meisner, Martin Lauer, Christian Igel, and Martin Riedmiller.
Reinforcement Learning in a Nutshell. In M. Verleysen,
ed.:
15th European Symposium on Artificial Neural
Networks (ESANN 2007), Belgium: d-side publications, pp. 277-288, 2007
Karin Liebenrodt, Martin H. J. Busch, Serban
Mateiescu, Christian
Igel,
Susanne
Winter, and Dietrich H. W. Grönemeyer.
Protonenresonanzspektroskopie des Gehirns mit kurzer Echozeit:
Unterstützung der Gewebeklassifizierung durch künstliche
neuronale Netzwerke,
Biomedizinische Technik (BMT),
52 (suppl.), 2007
Jan
Salmen,
Thorsten
Suttorp, Johann Edelbrunner, and Christian Igel. Evolutionary
Optimization of Wavelet Feature Sets for Real-Time Pedestrian
Classification. In A. König, M. Köppen, A. Abraham,
C. Igel, and N. Kasabov, eds.:
International Conference on Hybrid
Intelligent Systems (HIS 2007), pp. 222-227, IEEE Computer Society, 2007
2006
2005
Christian Igel,
Marc
Toussaint, and Wan Weishui.
Rprop Using the
Natural Gradient. In M. G. de Bruin, D. H. Mache, and
J. Szabados, eds.:
Trends and Applications in Constructive
Approximation. International Series of Numerical Mathematics,
vol. 151, pp. 259-272, Birkhäuser Verlag, 2005
Susanne Winter, Bernhard Brendel, and Christian Igel. Registration of
bone structures in 3D ultrasound and CT data: Comparison of different
optimization strategies. In H. U. Lemke, K. Inamura, K. Doi,
M. W. Vannier, and A. G. Farman, eds.:
Computer Assisted
Radiology and Surgery (CARS 2005), International Congress Series 1281,
pp. 242-247, Elsevier, 2005
Christian Igel.
Multiobjective Model Selection for Support
Vector Machines. In C. A. Coello Coello, E. Zitzler, and
A. Hernandez Aguirre, eds.:
Proceedings of the Third International
Conference on Evolutionary Multi-Criterion Optimization (EMO
2005), LNCS
3410, pp. 534-546, Springer-Verlag, 2005
2004
Christian Igel and Karl-Heinz Temme. The Chaining Syllogism in Fuzzy
Logic.
IEEE Transactions on Fuzzy Systems 12(6),
pp. 849-853, 2004 (
extended version)
2003
Christian Igel and Martin Kreutz.
Operator Adaptation in Evolutionary Computation and
its Application to Structure Optimization of Neural Networks.
Neurocomputing 55(1-2), pp. 347-361, 2003 (
uncorrected proof)
Thomas Bücher,
Cristobal Curio, Johann Edelbrunner, Christian Igel, David Kastrup,
Iris
Leefken, Gesa Lorenz, Axel Steinhage, and
Werner von Seelen.
Image Processing and Behaviour Planning for Intelligent Vehicles.
IEEE Transactions on Industrial Electronics 50(1), pp. 62-75, 2003
Christian Igel.
Neuroevolution for Reinforcement
Learning Using Evolution Strategies. In R. Sarker, R. Reynolds, H. Abbass, K. C. Tan, B. McKay, D. Essam, and T. Gedeon, eds.:
Congress on
Evolutionary Computation 2003 (CEC 2003), Volume 4,
pp. 2588-2595, IEEE Press, 2003
Thomas Wiebringhaus, Ulrich Faigle, Dietmar Schomburg, Jutta Gebert,
Christian Igel, and Gerhard-Wilhelm Weber.
Protein Fold Class Prediction Using Neural
Networks Reconsidered.
Currents in Computational Molecular
Biology, The Seventh Annual International Conference on Research
in Computational Molecular Biology (RECOMB 2003), pp. 225-226, 2003
2002
Michael Hüsken and Christian Igel.
Balancing Learning and Evolution. In W. B. Langdon, E. Cantu-Paz, K. Mathias, R. Roy, D. Davis, R. Poli,
K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull,
M. A. Potter, A. C. Schultz, J. F. Miller, E. Burke, and N. Jonoska,
eds.:
Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 2002), pp. 391-398, 2002, Morgan Kaufmann, 2002
2001
Christian Igel and Martin Kreutz.
Operator Adaptation in Structure Optimization of
Neural Networks. In L. Spector, E. Goodman, A. Wu, W.B. Langdon,
H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. Garzon, and
E. Burke, eds.:
Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO '01), p. 1094, Morgan Kaufmann Publishers,
2001
Johann Edelbrunner, Uwe Handmann, Christian Igel,
Iris
Leefken and
Werner
von Seelen. Application and Optimization of Neural Field Dynamics
for Driver Assistance. In
The IEEE 4th International Conference on
Intelligent Transportation Systems (ITSC '01), pp. 309-314, IEEE Press, 2001.
Peter Stagge and Christian Igel.
Structure
Optimization and Isomorphisms. In L. Kallel, B. Naudts and
A. Rogers, eds.:
Theoretical Aspects of Evolutionary
Computing, Natural Computing series, pp. 409-422,
Springer-Verlag, 2001
2000
1999
Christian Igel and
Kumar Chellapilla.
Investigating the Influence of Depth and Degree of Genotypic Change on
Fitness in Genetic Programming. In W. Banzhaf, J. Daida, A. E. Eiben,
M. H. Garzon, V. Honavar, M. Jakiela and R. E. Smith, eds.:
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO '99), Volume 2, pp. 1061-1068, Morgan Kaufmann Publishers, 1999
note
1998
1997
Edited Conference Proceedings
Christian Igel et al.: Proceedings of the Sixteenth International
Conference on Genetic and Evolutionary Computation (GECCO 2014). ACM
Press, 2014 (editor-in-chief)
Christian Blum et al.: Proceedings of the Ffteenth International Conference on
Genetic and Evolutionary Computation (GECCO 2013), ACM Press, 2013 (ESEP track chair)
Terence Soule, Anne Auger, Christian Blum, Jürgen Branke, Nicolas
Bredeche, Will Neil Browne, John Andrew Clark, Kalyanmoy Deb, Alan
Dorin, Rene Doursat, Aniko Ekart, Tobias Friedrich, Steven Gustafson,
Gregory S. Hornby, Christian Igel, Tim Kovacs, Dario Landa-Silva,
Fernando G. Lobo, Gisele Lobo Pappa, Jose A. Lozano, Silja
Meyer-Nieberg, Alison Motsinger, Frank Neumann, Gabriela Ochoa,
Gustavo Olague, Yew-Soon Ong, Martin Pelikan, David Pelta, Clara
Pizzuti, Mike Preuss, Jonathan Rowe, Stephen Leslie Smith, Christine
Solnon, Giovanni Squillero, Daniel Tauritz, Man Leung Wong, Shin Yoo, and
Tina Yu, eds.: Proceedings of the Fourteenth International Conference on
Genetic and Evolutionary Computation (GECCO 2012), ACM Press, 2012 (ESEP track chair)
Andreas König, Mario Köppen, Ajith Abraham,
Christian Igel, and Nikola Kasabov, eds.: International Conference on Hybrid
Intelligent Systems (HIS 2007), IEEE Computer Society, 2007
Theses
Christian Igel. Optimization of Support Vector Machines, Habiltation thesis, Faculty of Electrical Engineering and Information Technology, Ruhr-Universität Bochum, 2010
Christian Igel. Beiträge zum Entwurf neuronaler
Systeme, Doctoral thesis, University of Bielefeld, Faculty of
Technology, Shaker-Verlag, Aachen, Germany,
ISBN: 3-8322-1103-9
Christian Igel. Untersuchungen zur Kettenregel für Fuzzy-Regeln und Regelbasen mit
implikationsbasierter Semantik, Diploma thesis, University of Dortmund, Department of Computer Science, 1997
Abstracts and not strictly peer-reviewed contributions to
conferences and journals
Bobby Z. S. Lo, Bjørn Møller, Christian Igel, Signe Wildt, Ida
Vind, Flemming Bendtsen, Johan Burisch, and Bulat Ibragimov. Validating and enhancing real-time disease severity classification in ulcerative colitis: Artificial intelligence as a second opinion trigger. Journal of Crohn’s and Colitis 18:i1163–i1164, 2024.
Erik B. Dam, Arjun Desai, Cem M. Deniz, H. Rajamohan, Ravinder
Regatte, Claudia Iriondo, Valentina Pedoia, Sharmila Majumdar,
Mathias Perslev, Christian Igel, Akshay Pai, Sibaji Gaj, Mingrui
Yang, Kunio Nakamura, Xiaojuan Li, Hasan Maqbool, Ismail Irmakci,
Sang-Eun Song, Ulas Bagci, Brian A. Hargreaves, Garry E. Gold, and
Akshay S. Chaudhari. Multi-institutional large-scale validation of 8 methods
for automatic knee MRI segmentation for use in clinical
trials. Osteoarthritis and Cartilage 30:S291–S292, 2022
Mathias Perslev, Anders Sode West, Sofie Amalie Simonsen, Laura Bødker
Ponsaing, Helle Klingenberg Iversen, Christian Igel, Poul Jørgen
Jennum.
Automatic detection of abnormal sleeping patterns in stroke patients
using high-frequency sleep staging.
Journal of Sleep Research 31, 2022
Bobby Lo, ZhuoYuan Liu, Flemming Bendtsen, Christian Igel, Ida Vind, and Johan Burisch.
Artificial intelligence surpasses gastrointestinal experts in the classification of endoscopic severity among Ulcerative Colitis.
Journal of Crohn's & Colitis 15 Suppl 1, p. S007, 2021
Arjun D. Desai, Francesco Caliva, Claudia Iriondo, Naji Khosravan,
Aliasghar Mortazi, Sachin Jambawalikar, Drew Torigian, Jutta Ellerman,
Mehmet Akcakaya, Ulas Bagci, Radhika Tibrewala, Io Flament, Matthew
O'Brien, Sharmila Majumdar, Mathias Perslev, Akshay Pai, Christian
Igel, Erik B. Dam, Sibaji Gaj, Mingrui Yang, Kunio Nakamura, Xiaojuan
Li, Cem M. Deniz, Vladimir Juras, Ravinder Regatte, Garry E. Gold, Brian
A. Hargreaves, Valentina Pedoia, and Akshay S. Chaudhari.
A multi-institute automated segmentation evaluation on a standard
dataset: Findings from the international workshop on osteoarthritis
imaging segmentation challenge. Osteoarthritis and Cartilage 28, pp. S304–S305, 2020
Mathias Perslev, Akshay Pai, Christian Igel, Jos Runhaar, and Erik Dam. Validation of an
open source, generic deep learning architecture for 3D MRI
segmentation - with data from the OAI, PROOF, and
CCBR. Osteoarthritis and Cartilage 27(Supplement
1), pp. S393–S394, 2019
Mathias Perslev, Akshay Pai, Christian Igel, and Erik Dam. Knee Segmentation by Multiplanar Deep Learning Network - with data from OAI. International Workshop on Osteoarthritis Imaging, 2018
Lauge Sørensen, Christian Igel, and Mads Nielsen. MCI trial enrichment using MRI hippocampus texture. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 2016
Michiel Kallenberg, Martin Lilholm, Pengfei Diao, Katharina Holland, Nico Karssemeijer, Christian Igel, and
Mads Nielsen. Assessing breast cancer masking risk in full field digital
mammography with automated texture analysis. In 7th International
Workshop on Breast Densitometry and Cancer Risk Assessment (Non-CME),
p. 109. University of California, 2015
Michiel Kallenberg, Martin Lilholm, Pengfei Diao, Kersten Petersen, Katharina Holland, Nico Karssemeijer, Christian Igel, and Mads Nielsen. Assessing breast cancer masking risk with automated texture analysis in full field digital mammography. In Breast Imaging and Interventional, p. 218. Radiological Society of North America, Inc, 2015
Michiel Kallenberg, Kersten Petersen, Martin
Lilholm, Dan Richter Jørgensen, Pengfei Diao, Katharina Holland,
Nico Karssemeijer, Christian Igel, and Mads Nielsen. Automated texture scoring for assessing breast cancer masking risk in full field digital mammography. In European Congress of Radiology (ERC 2015), 2015
Jan Kremer, Kim Steenstrup Pedersen, and Christian Igel. Support vector machines for active learning. In E uropean Conference on Data Analysis (ECDA), 2014
Lauge Sørensen, Akshay Pai, Christian Igel, and Mads Nielsen. Hippocampal MRI texture is related to hippocampal glucose metabolism. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association 11(7, Supplement):P55–P56, 2015
Mads Nielsen, Christian Igel, and Lauge Sørensen. Hippocampal texture predicts ad conversion in amyloid positive mild cognitively impaired subjects. Neurodegenerative Diseases 15(Suppl. 1):262, 2015
Lauge Sørensen, Martin Lillholm, Akshay Pai, Ioana Balas, Cecilie Anker, Christian Igel, and Mads Nielsen. Improved alzheimer’s disease diagnostic performance using structural MRI: validation of the MRI combination biomarker that won the caddementia challenge. In ECR 2015 Book of Abstracts - B - Scientific Sessions and Late-Breaking Clinical Trials, p. S177. Springer-Verlag, 2015
Mads Nielsen, Lauge Sørensen, Akshay Pai, Christian Igel, and Martin Lillholm. Hippocampus MRI T1 texture’s relation to established alzheimer’s disease biomarkers and prediction of progression. In 101st Scientific Assembly and Annual Meeting of the Radiological Society of North America, 2015
Lauge Sørensen, Christian Igel, Naja Liv Hansen, Martin Lauritzen, Merete Osler, Egil Rostrup, and
Mads Nielsen. Validation of hippocampal texture for early Alzheimers
disease detection: Generalization to independent cohorts and
extrapolation to very early signs of dementia. Alzheimer’s & Dementia:
The Journal of the Alzheimer’s Association 10(4, AAIC supplement):P139,
2014
Lauge Sørensen, Christian Igel, Naja Liv Hansen, Martin Lauritzen, Merete Osler, Egil Rostrup, and
Mads Nielsen. Validation of hippocampal texture for early Alzheimers
disease detection: Generalization to independent cohorts and
extrapolation to very early signs of dementia. Alzheimer’s & Dementia:
The Journal of the Alzheimer’s Association 10(4, AIC supplement):P133,
2014
Matthias Tuma, Christian Igel, and P. Mialle.
Kernel-based machine learning techniques for infrasound signal classification.
European Geosciences Union
General Assembly 2014, 2014
Lauge
Sørensen, Akshay Pai, Sune Darkner, Gennan Chen, Joonmi Oh,
Joyce Suhy, Christian Igel, and
Mads Nielsen.
Hippocampal Texture Predicts One-Year Hippocampal Atrophy in Mild
Cognitively Impaired Subjects. European Congress on Radiology,
2013
Lauge
Sørensen, Akshay Pai and Christian Igel and Mads Nielsen.
Hippocampal Texture Predicts Conversion from MCI to AD. Alzheimer's Association International Conference,
Alzheimer's and Dementia 9(4), suppl., P581, 2013
Lauge
Sørensen, Akshay Pai and Christian Igel and Mads Nielsen.
Hippocampal Texture Predicts Conversion from MCI to AD.
Alzheimer's Imaging Consortium, Alzheimer's and Dementia 9(4), suppl., P52
2013
Lauge
Sørensen, Akshay Pai, Sune Darkner, Joyce Suhy, Joommi Oh, Gennan Chen, Christian Igel,
Mads Nielsen.
Hippocampal Texture Provides Volume Independent Information
for Alzheimer’s Disease Diagnosis. Alzheimer's & Dementia: The Journal of the
Alzheimer’s Association 8(4) supplement, P162–P163, 2012
Lauge
Sørensen, Akshay Pai, Sune Darkner, Joyce Suhy, Joommi Oh, Gennan Chen, Christian Igel,
Mads Nielsen.
Hippocampal Texture Provides Volume Independent Information
for Alzheimer’s Diagnosis. Alzheimer's & Dementia: The Journal of the
Alzheimer’s Association 8(4), supplement, P15, IC-P-013, 2012
Asja Fischer and Christian Igel. Bounding the Bias of Contrastive Divergence Used for
Maximum Likelihood Learning in Restricted Boltzmann Machines. In: Second Joint Statistical Meeting Deutsche
Arbeitsgemeinschaft Statistik `Statistics under one umbrella' (DAGStat 2010), p. 98, 2010
Matthias Tuma and Christian Igel.
Automatic Classification of Hydroacoustic Signals to Support
Verification of the Comprehensive Nuclear-Test-Ban Treaty.
In: Second Joint Statistical Meeting Deutsche Arbeitsgemeinschaft Statistik `Statistics under one umbrella'
(DAGStat 2010), p. 361, 2010
Valentin Markounikau, Christian Igel, and Dirk Jancke. Neural Field Models
of Early Cortical Processing of Real and Apparent Motion. In:
Computational Vision and Neuroscience Symposium, p. 36. Max Planck
Institute for Biological Cybernetics, Tübingen, 2008
Christian Igel. Efficient Covariance Matrix Update
for Evolution Strategies. In D. V. Arnold, A. Auger, J. E. Rowe, and C. Witt, eds.: Theory of Evolutionary Algorithms, Dagstuhl Seminar Proceedings 08051,
Abstract Collection. Internationales Begegnungs- und Forschungszentrum für Informatik
(IBFI), Schloss Dagstuhl, 2008
Jennifer Meyer,
Dirk Jancke,
and Christian Igel. Modelling cortical activity underlying
apparent and real motion perception. In K.-A. Hossmann, ed.:
Symposium `Neuro-Visionen 4, Perspektiven in
Nordrhein-Westfalen', pp. 257-258. Verlag Ferdinand Schöningh, 2007
Christian Igel. Computational Efficient Covariance Matrix Update and the Multi-objective Variable
Metric Evolution Strategy. In D. V. Arnold, T. Jansen, J. E. Rowe, and M. D. Vose, eds.: Theory of Evolutionary Algorithms, Dagstuhl Seminar Proceedings 06061,
Abstract Collection. Internationales Begegnungs- und Forschungszentrum für Informatik
(IBFI), Schloss Dagstuhl, 2006
Christian Igel. The Bias-Invariance Dilemma. In K. Bellman, P. Hofmann, C. Müller-Schloer,
H. Schmeck, and R.Würtz, eds.: Organic Computing - Controlled Emergence, Dagstuhl Seminar Proceedings 06031, Abstract Collection. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, 2006
Jennifer Meyer, Christian Igel, and
Dirk Jancke. Modelling dynamic
activity patterns in early visual cortex based on voltage sensitive
dye experiments. In K.-A. Hossmann, ed.:
Symposium `Neuro-Visionen 3, Perspektiven in
Nordrhein-Westfalen', pp. 193-195. Verlag Ferdinand Schöningh,
2006
Christian Igel: Recent Results on No-Free-Lunch for Optimization. In H.-G. Beyer, T. Jansen, C. Reeves, and M. D. Vose, eds.: Theory of Evolutionary Algorithms, Dagstuhl Seminar Proceedings 04081, Abstract Collection. Internationales Begegnungs- und Forschungszentrum
für Informatik (IBFI), Schloss Dagstuhl, 2004.
Michael Hüsken, Christian Igel,
and
Marc
Toussaint. Task-Dependent Evolution of Modularity in Neural Networks -
A Quantitative Case Study. In Erik D. Goodman, ed.:
Late Breaking Papers at the 2001 Genetic and Evolutionary
Computation Conference, pp. 187-193, 2001
Jens Busse, Hans-Jürgen Röhm, Sascha Wenzel, Gerd Emmrich, and Christian Igel.
Zur Auslegung von thermisch und stofflich gekoppelten Destillationskolonnen mit evulutionären Algorithmen, GVC / DECHEMA Fachausschuss Prozess- und Anlagentechnik, 2001
Technical reports
Christian Igel and Martin Kreutz.
Operator Adaptation in Evolutionary Computation and
its Application to Structure Optimization of Neural Networks.
Technical Report, IRINI-2001-03,
Institut für Neuroinformatik, 2001